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Abstract

Cloud computing systems, like MapReduce and Pregel, provide a scalable and fault toler-
ant environment for running computations at massive scale. However, these systems are
designed primarily for data intensive computational tasks, while a large class of problems in
scientific computing and business analytics are computationally intensive (i.e., they require
a lot of CPU in addition to I/O). In this thesis, we investigate the use of cloud computing
systems, in particular MapReduce, for computationally intensive problems, focusing on
two classic problems that arise in scientific computing and also in analytics: maximum
clique and matrix inversion.

The key contribution that enables us to effectively use MapReduce to solve the maxi-
mum clique problem on dense graphs is a recursive partitioning method that partitions the
graph into several subgraphs of similar size and running time complexity. After partition-
ing, the maximum cliques of the different partitions can be computed independently, and
the computation is sped up using a branch and bound method. Our experiments show that
our approach leads to good scalability, which is unachievable by other partitioning meth-
ods since they result in partitions of different sizes and hence lead to load imbalance. Our
method is more scalable than an MPI algorithm, and is simpler and more fault tolerant.

For the matrix inversion problem, we show that a recursive block LU decomposition
allows us to effectively compute in parallel both the lower triangular (L) and upper triangu-
lar (U) matrices using MapReduce. After computing the L and U matrices, their inverses
are computed using MapReduce. The inverse of the original matrix, which is the product
of the inverses of the L and U matrices, is also obtained using MapReduce. Our technique
is the first matrix inversion technique that uses MapReduce. We show experimentally that
our technique has good scalability, and it is simpler and more fault tolerant than MPI
implementations such as ScaLAPACK.
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Chapter 1

Introduction

Ever since the computer was invented, scientific computing, also called computational
science, plays a vital role in most kinds of scientific activities. Many algorithms or software
packages, such as Matlab, Octave, and Maple, can run on a single computer or on a
parallel computing cluster with multiple computers. Many of the scientific computing
implementations for clusters rely on parallel programming frameworks such as the message
passing interface (MPI) [27, 48]. As the size of computer clusters increases to thousands
or even tens of thousands of nodes (i.e., computers), traditional parallel programming
frameworks such as MPI run into limitations due to lack of scalability and fault tolerance.

In contrast, cloud computing systems such as MapReduce [19], which is our focus in this
thesis, are designed with scalability and fault tolerance as primary design objectives. The
MapReduce model is, however, mainly designed for data intensive computational tasks,
while most of scientific computing is compute intensive. Our goal in this thesis is to
explore the use of MapReduce as a framework for solving scientific computing problems.
We focus in particular on two problems: finding the maximum clique of a graph and matrix
inversion. In addition, we present an overview of the solution to a third problem: finding
the eigenvalues and eigenvectors of a matrix. By using MapReduce for these problems, we
benefit from the scalability, fault tolerance, broad adoption, simple programming model,
and rich software ecosystem that MapReduce provides.

In this chapter, we first briefly introduce the idea of scientific computing in Section
1.1, as well as the problems in scientific computing that we focus on in this thesis: the
maximum clique problem, the matrix inversion problem, and the matrix eigenvalues and
eigenvectors problem. Cloud computing is discussed in Section 1.2 and we introduce the
MapReduce model in Section 1.3. Hadoop, which is an open source implementation of
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MapReduce, is introduced in Section 1.4.

1.1 Scientific Computing

Scientific computing is concerned with analyzing and solving scientific problems using
computers. Scientific computing tasks include numerical simulations, model fitting and
data analysis, computational optimization, among others. Many software packages such as
Matlab, Mathematica, SciLab, GNU Octave, Python with SciPy, and ScaLAPACK have
been developed to solve scientific computing problems. However, most of these packages
run on a single computer, or on a cluster using frameworks such as MPI that do not offer
scalability and fault tolerance.

In this thesis, we present algorithms to solve important scientific computing problems,
namely the maximum clique problem, the matrix inversion problem, and the matrix eigen-
value and eigenvector problem, using the MapReduce cloud computing framework. Our
results demonstrate that one can indeed use cloud computing to solve scientific problems
with good scalability and fault tolerance.

Next, we introduce the maximum clique problem and briefly review its applications
in various fields of scientific research. The matrix inversion problem is then introduced,
followed by the eigenvalue and eigenvector problem.

1.1.1 The Maximum Clique Problem

A clique is a complete graph, that is, a graph where any two vertices are connected by
an edge. The maximum clique within a graph G is the largest size subgraph of G that is
a clique. We focus on the maximum clique problem because it is a computationally hard
problem with practical applications.

We motivate our work by presenting some applications of the maximum clique prob-
lem. A key motivating application for us comes from the area of coding theory, and in
particular quantum error correcting codes. A code C of length n is a subset of all n-bit
strings. The Hamming distance d(x,y) between two n-bit strings x and y is the number
of positions in which x and y differ. The (minimum) distance d of a code C is the smallest
distance between distinct codewords, which is proportional to the number of errors that
the code can correct. For a given n and d, finding the largest possible code cardinality K
(i.e., the number of codewords in the code) is then a maximum clique problem [39, 49].
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The corresponding graph, called the coding graph, contains 2n vertices where each vertex
corresponds to an n-bit string. The edges are given by the pairs of strings (x,y) with
Hamming distance greater than or equal to d. The vertices of the maximum clique of this
graph represent the codewords, and the number of vertices of the maximum clique is the
cardinality K. The case for quantum error-correcting codes is more complicated, but for
a large class of codes, the problem can be reduced to a maximum clique problem similar
to the classical case by modifying the definition of distance d using a framework known as
codeword stabilized (CWS) quantum codes [11, 12]. In our experiments, we show orders of
magnitude improvement in the time required to compute the maximum clique for a real
coding graph from a quantum error correcting code.

Another application of the maximum clique problem is in the study of Internet topology.
The Internet consists of several independent autonomous systems (ASes). An AS is a set
of routers within a single administrative domain (e.g., an ISP, a company, or a university).
An AS can be related to another AS in one of three ways: provider-customer, where
one AS provides transit service to the other AS (e.g., an ISP providing service to its
customer, who may be a smaller ISP), peering, where the two ASes exchange traffic to
their customers for free, and sibling, where the two ASes exchange traffic freely without
any limitation. Knowing how ASes are related to each other is useful for many network
research questions such as predicting communication latency, selecting peering partners,
and defending against attacks known as BGP prefix hijacking. However, AS relationship
information is not public, so it must be inferred from information about the routing paths
taken by different packets. Each network packet (BGP packet to be more precise) that
arrives at a destination contains information about its AS path, the set of ASes that it
traversed to get from its source to its destination. An assumption we can make about valid
AS paths is that they follow the valley-free model. This model states that after traversing
a provider-to-customer or peer-to-peer link, an AS path cannot traverse a customer-to-
provider or peer-to-peer link [28]. According to the valley-free model, there is at most one
peer-to-peer link in an AS path. If we are given a set of AS paths that are assumed to
follow the valley-free model, we can find the maximum set of peer-to-peer links by solving
the following maximum clique problem. Construct a graph with a vertex for every AS-to-
AS link that appears in any AS path. If two AS-to-AS links never appear in the same AS
path, add an edge between their corresponding vertices. Since a valid AS path contains at
most one peer-to-peer link, we can assume that the maximum clique in this graph is the
maximum set of peer-to-peer links [22].

The maximum clique problem also arises in the area of social networking. In the graph
of a social network, vertices represent actors, and edges represent connections between
actors. A clique is a sub-structure of a network in which actors are more strongly tied to
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each other than they are to other members of the network. The graph of a social network
can become very dense. Take the recent study of the spread of steroids in baseball [43]
as an example. As players change teams, new links are formed while old ties are still
maintained. The graph becomes densely interconnected quickly, so finding the maximum
clique becomes time-consuming.

In biochemistry, maximum clique is used to find the largest possible pharmacophore
(a group of atoms responsible for an interaction) for a pair of 3D molecules. Each of the
two molecules is represented by a graph with atoms as vertices. A correspondence graph
G is constructed for the two graphs of the molecules G1 and G2, such that G has a vertex
for each pair of vertices with one from G1 and one from G2. Two correspondence graph
vertices {G1(X), G2(M)} and {G1(Y ), G2(N)} are adjacent in G if there is an edge from
G1(X) to G1(Y ) in G1 and an edge from G2(M) to G2(N) in G2. Matching 3D molecular
structures is equivalent to the maximum clique problem in G [29].

From these examples, we can see that the maximum clique problem has many applica-
tions in different scientific domains, which motivates our focus on this problem. Next, we
turn our attention to the matrix inversion problem.

1.1.2 The Matrix Inversion Problem

Matrix operations are a fundamental building block of many computational tasks in diverse
fields including machine learning, data mining, physics, bioinformatics, scientific comput-
ing, and many others. In most of these fields, there is a need to scale to large matrices to
obtain higher fidelity and better results (e.g., running a simulation on a finer grid, or train-
ing a machine learning model with more data). To scale to large matrices, it is important
to design efficient parallel algorithms for matrix operations, and using MapReduce is one
way to achieve this goal. There has been prior work on implementing matrix operations in
MapReduce (e.g., [31], and also refer to the brief introduction in the following sections),
but that work does not handle matrix inversion even though matrix inversion is a very
fundamental matrix operation. Matrix inversion is difficult to implement in MapReduce
because each element in the inverse of a matrix depends on multiple elements in the input
matrix, so the computation is not easily partitionable as required by the MapReduce pro-
gramming model. In this thesis, we address this problem and design a novel partitionable
matrix inversion technique that is suitable for MapReduce. We implement our technique
in Hadoop, and develop several optimizations as part of this implementation.

Before we present our technique, we further motivate the importance of matrix inversion
by presenting some of its applications in different fields. A key application of matrix
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inversion is solving systems of linear equations. Suppose that we want to solve the equation
Ax = b, where A is an n× n matrix, and x and b are both vectors with n elements. One
method is to multiply both sides of the equation on the left by the the matrix inverse A−1,
to get x = A−1b.

Matrix inversion is also widely used in computed tomography (CT). In CT, the rela-
tionship between the original image of the material (S) and the image (T) detected by the
detector can be written as: T = MS, where M is the projection matrix [76]. In order to
reconstruct the original image, we can simply invert the projection matrix and calculate
the product of M−1 and T. As the accuracy of the detector increases, the number of
image pixels increases and hence the order of the projection matrix (M) also increases,
motivating the need for scalable matrix inversion techniques. Image reconstruction using
matrix inversion can also be found in other fields such as astrophysics [79].

In the field of numerical optimization, matrix inversion is used in the Newton method
for high dimensional convex optimization. In this method, a sequence of approximate
solutions Xn is computed as follows: Xn+1 = Xn− [Hf(Xn)]−1∆f(Xn), where Hf(Xn) is
the Hessian matrix [54]. As is clear from the equation, matrix inversion is a key component
in this numerical method.

In bioinformatics, matrix inversion is used to solve the problem of protein structure
prediction [52]. A scalable matrix inversion technique would enable novel insights into the
evolutionary dynamics of sequence variation and protein folding.

These are but a few of the numerous applications that rely on matrix inversion. In some
cases, it may be possible to avoid matrix inversion by using alternate numerical methods
(e.g., pseudo-Newton methods for convex optimization), but it is clear that a scalable and
efficient matrix inversion technique such as the one we present would be highly useful in
many applications. The fact that our technique uses MapReduce and Hadoop means that it
benefits from the scalability, fault tolerance, and wide adoption of MapReduce, in addition
to being part of the rich software ecosystem of Hadoop (e.g., HDFS, Pig, and Mahout).

1.1.3 The Eigenvalue and Eigenvector Problem

Matrix inversion can also be used in solving the problem of finding the eigenvalues and
eigenvectors of a matrix. An eigenvector of a square matrix is a non-zero vector that, when
multiplied by the matrix, yields a vector that differs from the original vector at most by a
multiplicative scalar. Finding eigenvectors is a very important mathematical computation
that is used in many areas, including the Schrödinger equation in quantum mechanics,
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molecular orbitals, geology and glaciology, principal components analysis, vibration analy-
sis, eigenfaces, and tensors of moments of inertia. Therefore, it is extremely useful to find
an efficient solution to the eigenvector problem. Our matrix inversion technique can help
to find the eigenvectors of a given large scale matrix very efficiently, using, for example the
inverse power method [71] or preconditioning (a preconditioner matrix for Ax = b can be
almost A−1). In addition, matrix inversion can be used to find a preconditioner for partial
differential equations (PDE), such as the Navier-Stokes equations [60].

1.2 Cloud Computing

Cloud computing, in which computing is provided as a service, has become quite popular
in recent years. Cloud computing enables users of computing to elastically grow and shrink
their computing infrastructure as the load increases and decreases. Cloud computing also
enables unprecedented levels of scalability, facilitated by computing frameworks such as
MapReduce, which is our focus in this thesis.

There are many companies that provide cloud computing services, such as the Elastic
Compute Cloud (EC2) that is part of Amazon Web Services (AWS), the Azure cloud
from Microsoft, and Google App Engine. In this thesis we use Amazon EC2 [25] for all
our experiments, since it offers a high degree of scalability using a pay-as-you-go pricing
model.

1.3 MapReduce

MapReduce is a parallel dataflow programming and execution framework introduced by
Google in 2004 [18, 19]. It supports performing distributed computing on a large cloud.
MapReduce separates the computation into two phases: (1) the map phase, where a mapper
task runs on each node in a cluster and applies a map function to records read from splits
of input files, then emits intermediate (key, value) pairs for each record processed, and (2)
the reduce phase, where a reducer task runs each node and applies a reduce function to
all intermediate (key, value) pairs that have the same key, emitting zero or more output
(key, value) pairs. Between the map phase and the reduce phase, the (key, value) pairs
emitted from map functions are shuffled to different reducer tasks nodes based on the hash
value of the map output key. This shuffling guarantees that the (key, value) pairs with the
same key will be sent to the same reducer task. The MapReduce framework is suitable
for computations that have little or no communication between the compute nodes. The
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Figure 1.1: MapReduce framework.

framework provides good fault tolerance such that it can be easily used on a very large
cluster, up to thousands of nodes. The MapReduce framework is shown in Figure 1.1,
where m + 1 splits of files are read into m + 1 compute nodes in the map phase, and the
results produced by these m+1 nodes are emitted to n+1 nodes (the reduce phase) based
on the hash value of Key1, and finally the reduce function writes the result into k+ 1 files
based on the hash value of Key2.

1.4 Hadoop

Hadoop is an open source implementation of Google’s MapReduce framework. Hadoop
supports programs written in Java and can be extended to support programs written in
other languages such as C or Python. In this thesis, we use Hadoop and all implementation
is done in the Java language.

In addition to the MapReduce computation framework, the Hadoop platform encom-
passes a file system, named HDFS (Hadoop Distributed File System), which provides scal-
ability and fault tolerance for data storage. The HDFS file system is designed to run
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on low-cost commodity hardware and provides high throughput access to the data [37].
Hadoop is also the basis of a rich ecosystem that encompasses scripting languages like Pig
Latin and Hive, storage systems like HBase and Cassandra, and other libraries and soft-
ware systems like Mahout for machine learning and Zookeper for coordination. Hadoop is
an easy-to-use, popular, well understood framework, which is part of the motivation for
using it as the basis of our implementation in this thesis.

The rest of the thesis is organized as follows. In Chapter 2, we describe the details of
our maximum clique algorithm. In Chapter 3, we describe our matrix inversion technique.
Chapter 4 discusses extending our matrix inversion technique to the problem of finding
eigenvalues and eigenvectors. Chapter 5 presents our conclusions.
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Chapter 2

Scalable Maximum Clique
Computation Using MapReduce

In this chapter, we present the details of our technique for finding maximum clique in a
graph. This work appeared in [78].

A clique is a complete graph, in which any two vertices are connected by an edge. As
mention in Chapter 1, the maximum clique problem is an important problem in scientific
computing. The main idea of our solution is to recursively partition the input graph
into smaller possibly overlapping subgraphs so that each compute node in the MapReduce
cluster can independently compute the maximum clique for its partition. When two vertices
connected by an edge are placed in two different partitions, one of the vertices has to be
replicated in the other’s partition so that the edge is preserved (hence the overlapping
partitions). Graph partitioning has been studied in previous work, but partitioning for
the maximum clique problem is challenging for two reasons: (1) Since any edge can be
part of the maximum clique, there is no notion of a workload that dictates “important”
edges that should not be split across partitions. Some partitioning methods require such
a workload-driven measure of edge importance [80]. (2) Maximum clique is of interest on
dense graphs, where a significant fraction of the edges that can be present in a graph are
actually present. Most general purpose graph partitioning algorithms do not work well
for dense graphs, since they end up replicating a large fraction of the vertices (as we will
demonstrate in Section 2.7).

In this chapter, we develop a graph partitioning algorithm that addresses these two
challenges and is targeted towards computing maximum cliques. Our partitioning algo-
rithm removes one vertex at a time from the graph and puts the subgraph consisting of this
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vertex plus all its neighbors in one partition. By repeatedly partitioning the graph, we end
up with multiple subgraphs on which the maximum clique can be computed independently.
The maximum clique of the original graph is the largest of the maximum cliques computed
on the partitions.

Partitioning alone does not result in a scalable maximum clique algorithm, since we still
need to compute the maximum clique for all partitions. To avoid this brute-force effort, we
use a branch and bound approach to avoid computing the maximum clique of a partition
if it can be shown that its maximum clique will be smaller than the largest clique found
so far. For this pruning to be effective, we need to find large cliques as early as possible.
At the same time, we need the partitions to be of similar size for load balancing. Our
partitioning method, which we call Balanced Multi-depth Color-based (BMC) partitioning,
achieves these objectives. It uses graph coloring to compute an upper bound on the clique
size and to heuristically order the partitions so that pruning can be effective. It partitions
the graph recursively to multiple depths to achieve load balancing.

After the graph is partitioned, the maximum cliques for the different partitions can
be computed independently on different nodes of a computing cluster, with some pruning
based on the size of the largest clique found so far. In this thesis, we implement this
parallel branch and bound computation using MapReduce, and in particular Hadoop. It
is important to note that this approach to computing maximum cliques can be imple-
mented using other cluster-based computing platforms, such as Pregel or even traditional
Message Passing Interface (MPI) [35]. We use Hadoop because of its simple programming
model, scalability, and fault tolerance, characteristics that are not available with, say, MPI.
Moreover, Hadoop is popular and widely available, so a Hadoop-based maximum clique
implementation would be easy for users to adopt and deploy on private clouds or pub-
lic clouds such as Amazon EC2 [25]. Furthermore, such an implementation would work
seamlessly with other tools and technologies in the Hadoop ecosystem.

To illustrate the power of our solution, we consider the DIMACS Maximum Clique
Benchmark [20]. Maximum clique was part of the Second DIMACS Implementation Chal-
lenge [21], and the DIMACS Maximum Clique Benchmark consists of a set of graphs for
which finding the maximum clique is difficult. Despite being well studied, the maximum
clique for some of these graphs was still not known. We ran our algorithm on one such
graph with 4000 vertices (C4000.5) on 128 Amazon EC2 high CPU medium instances, and
completely solved the maximum clique problem for this graph for the first time in 39 hours.
We estimate that a serial solution on a single CPU would have taken more than 1 year.
More details about this experiment are presented in Section 2.7.

Note that while this is the largest graph that we used in our experiments, it is still
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only a few tens of megabytes in size. The complexity of maximum clique stems not from
the size of the data but rather from the CPU time required to compute the maximum
clique on individual partitions. The key factor determining complexity is the density of
the graph not its size. Thus, our work represents an interesting study in using MapReduce
for CPU-intensive parallel computation, in contrast to the data intensive computation for
which MapReduce is typically used.

The rest of this chapter is organized as follows: in Section 2.1, we present preliminary
information about the maximum clique problem. Section 2.2 presents related work, and
Section 2.3 discusses single-node maximum clique algorithms. In Section 2.4, we present
different graph partitioning techniques and introduce our proposed BMC partitioning.
Section 2.5 describes our approach to running time estimation, which is required for BMC
partitioning. The MapReduce implementation of our algorithm is discussed in Section 2.6.
Section 2.7 presents an experimental evaluation and Section 2.8 concludes.

2.1 Preliminaries and Notation

In this thesis, we focus on undirected unweighted graphs. An undirected graph G is
represented by an ordered pair (V,E), where V is a finite set of vertices and E is a set
of two-element subsets of vertices called edges. For a graph G, we write V (G) and E(G)
for the vertex set and the edge set, respectively. The number of vertices of a graph, i.e.,
the cardinality of V (G), denoted by |V (G)| or |G| for simplicity, is called the order of the
graph. The number of edges of a graph, denoted by |E(G)|, is called the size of the graph.

Two vertices a, b ∈ V (G) are called adjacent if (a, b) ∈ E(G) (which implies (b, a) ∈
E(G) for undirected graph). A graph G is called complete if all its vertices are pairwise
adjacent. For a set of vertices S ⊆ V (G), S(G) = (S,E(G) ∩ (S × S)) is the subgraph
induced by S. A clique C is a subset of V such that the induced subgraph C(G) is
complete. A k-clique of G is a clique in G of order k. A clique is called maximal if it
cannot be extended by including one more adjacent vertex. In other words, a maximal
clique does not exist exclusively within the vertex set of a larger clique. For a given graph
G, the maximum cliques, denoted as MaxClique(G), are cliques of the largest possible
order in G. The order of a maximum clique in G is denoted by ω(G).

We now turn our attention to graph partitioning. The neighborhood of vertex v in
G, denoted by N(G, v), is a subgraph of G consisting of the adjacent vertices to ver-
tex v. That is, V (N(G, v)) = {w|(v, w) ∈ E(G)} and E(N(G, v)) = {(v, w)|v, w ∈
V (N(G, v)), (v, w) ∈ E(G)}. The degree of a vertex v in G, denoted by D(G, v), is
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Symbol Definition

G = (V,E) Graph with vertices V and edges E
V (G) All vertices of G
E(G) All edges of G
|G| or |V (G)| Number of vertices in G
|E(G)| Number of edges in G
G− {v} Subgraph of G obtained by removing vertex v
G ∪ {v} Adding the vertex v ∈ G′ −G to G ⊆ G′

MaxClique(G) Maximum clique of G

ω(G)
Number of vertices in the maximum clique
of G, |MaxClique(G)|
Neighborhood of vertex v in G,

N(G, v) V = {w|(v, w) ∈ E(G)}
E = {(v, w)|v, w ∈ V, (v, w) ∈ E(G)}

D(G, v) Degree of v in G, |N(G, v)|
Ext D(G, v) Extension degree of v in G,

∑
w∈N(G,v)

D(G,w)

I(G,G1, G2) Inter-graph induced by subgraphs G1, G2 of G
CG Coloring of G (each vertex has a color number)
CG[v] Color of vertex v

ρ, or ρ(G) Density of G, 2|E(G)|
|G|(|G|−1)

Table 2.1: Notation used in this chapter.

the number of adjacent vertices of v in G, i.e., D(G, v) = |N(G, v)|, while the extension
degree of a vertex v in G, denoted by Ext D(G, v), is the sum of the degree of its adjacent
vertices in G, i.e., Ext D(G, v) =

∑
w∈N(G,v)D(G,w).

Consider a graph G which is a subgraph of G′. For any v ∈ V (G′) − V (G), the union
G ∪ {v} is a subgraph of G′ induced by adding a vertex v to V (G), i.e., V (G ∪ {v}) =
V (G) ∪ {v} and ∀(v, w) ∈ E(G′), (v, w) ∈ E(G ∪ {v}) (i.e., E(G ∪ {v}) = {(a, b)|(a, b) ∈
E(G′),∀a ∈ V (G ∪ {v}),∀b ∈ V (G ∪ {v}), a 6= b}).

For two subgraphs of G, G1 and G2, where V (G1)∩ V (G2) = {}, the inter-graph of G1

and G2 is a subgraph of G, denoted by I(G,G1, G2). The vertex set of I(G,G1, G2), V (I),
is the set of all vertices v ∈ V (G1) and w ∈ V (G2) such that (v, w) ∈ G. The edge set of
I(G,G1, G2), E(I), is given by E(I) = {(v, w)|v, w ∈ V (I), (v, w) ∈ E(G)}.
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Our partitioning algorithm relies on graph coloring. A coloring of a graph G is a list,
denoted by CG, containing for each vertex a number denoting the color of that vertex. The
color of a vertex v is denoted by CG[v].

Our partitioning also relies on graph density. The density of a graph G is defined as
ρ(G) = 2|E(G)|

|G|(|G|−1) . For any graph G, 0 ≤ ρ(G) ≤ 1, and for a complete graph ρ(G) = 1. We
summarize the notation used in this chapter in Table 2.1.

2.2 Related Work

Ever since the term “clique” was introduced [46], the maximum clique problem has been
investigated by many researchers. The k-clique decision problem asks whether there exists
a k-clique in a given graph G, and is known to be NP-complete [30, 67]. Therefore, the
maximum clique problem is NP-hard. If one can solve the maximum clique problem, one
can also solve the k-clique decision problem by comparing the number of vertices in the
maximum clique to k.

A common and effective method to find the maximum clique is to use branch and bound
search. A classical algorithm proposed by Carraghan and Pardalos [10] is a straightforward
heuristic and pruning algorithm. At every stage of the algorithm, there is a global control
parameter ω, which is the largest known clique at this stage. For each subgraph G′, the
algorithm finds the set of vertices {w} which are not in G′ but are connected to all vertices
in G′. In addition, any two vertices in {w} are connected to each other. Denote by m the
number of vertices in {w}. If m + |G′| ≤ ω, the subgraph G′ is pruned. This algorithm
is shown to be much more effective than a brute-force exhaustive search and is easy to
parallelize.

Another maximum clique algorithm is proposed by Österg̊ard [56]. That paper intro-
duces an additional pruning strategy based on the following observation. Given a graph
G = (V,E) containing vertices {v1, v2, . . . , v|V |}, we can sort the vertices in some order and
let subgraph Gi = {vi, vi+1, . . . , v|V |}. Observe that ω(Gi) = ω(Gi+1) + 1 if vertex vi is
included in the maximum clique of Gi, and ω(Gi) = ω(Gi+1) if vertex vi is not included in
the maximum clique of Gi. The algorithm uses a search strategy similar to [10], and adds
a pruning rule based on the above observation.

An effective algorithm named MCR is proposed by Tomita and Kameda [69]. This
algorithm uses graph coloring to obtain an upper bound on the size of the maximum
clique, which achieves better branch pruning than previous algorithms. We use the MCR
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algorithm as our single-node maximum clique algorithm, and discuss it in more detail in
the next section.

Wang and Cheng [75] recently suggested using the size of the maximum k-truss of a
graph as an upper bound on the size of the maximum clique, so that some subgraphs can
be more effectively pruned. The k-truss of a graph G is the largest subgraph of G in which
every edge is contained in at least (k − 2) triangles within the subgraph. Finding the
k-truss of a graph can be solved in polynomial time.

If a graph could be represented as a combination of a random graph of order n and a
large clique of order larger than

√
n (a “planted clique”), the maximum clique can be found

with high probability using spectral methods [3]. In this thesis, we encounter maximum
cliques whose orders are smaller than

√
n, so spectral methods cannot be used even if the

planted clique assumption holds.

There have been previous attempts to solve the maximum clique problem on computer
clusters. A parallel maximum clique algorithm based on MPI has been proposed in [58].
This algorithm uses a master-worker architecture where the master uses graph partitioning
to assign a separate task to each worker. Once a worker has finished the task, the master
will assign another subgraph to it. The partitioning strategy used by this algorithm is
a simple version of our one-depth partitioning strategy. This strategy balances the load
among workers in many cases, but it is not sufficient when the density of the graph is large.
For dense graphs, the first few subgraphs generated by the partitioning are likely to be
larger than others and will therefore take much longer to finish. The time taken for one
of these large subgraphs can be larger than the total time of the smaller subgraphs. We
show in our experiments that this limits the scalability of the approach in [58], even if we
use an improved single-node maximum clique algorithm. In addition, MPI is a complex
programming model, does not provide fault tolerance, and is not as scalable as MapReduce.

MapReduce solutions for the maximum clique problem have been proposed before. Lin
et al. [45] proposed a MapReduce algorithm for maximum clique, but their partitioning
strategy is naive random partitioning, and they do not employ good pruning. At best,
their algorithm would perform similar to our one-depth partitioning strategy, which is
much less scalable than our multi-depth partitioning strategy. In practice, it would be
difficult for their algorithm to match our one-depth performance since they employ a naive
random partitioning strategy with no partition optimization at all and also no pruning
optimization. Wu et al. [77] also proposed a MapReduce algorithm for the clique problem,
but they focus on enumerating all maximal cliques instead of the maximum clique problem.
Moreover, their algorithm shows poor scalability.

It may be possible to use a system dedicated to graph processing for solving the maxi-
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mum clique problem. One such system is Pregel [51], and its open source implementation
based on Hadoop called Giraph [32]. Pregel implements a computational model called bulk
synchronous parallel computation [72], which is targeted towards iterative computation
on graphs. Our partitioning algorithm results in subgraphs that are completely indepen-
dent, so iteration on the graph vertices is not required. What is needed is independently
computing maximum clique on the individual partitions, for which MapReduce is suitable.

2.3 Maximum Clique Algorithm on a Single Node

Our approach partitions a graph into subgraphs, and can use any single-node algorithm to
compute the maximum clique on one partition. We experimented with different single-node
algorithms and found that the MCR algorithm [69] gives the best performance. Therefore,
we use it as our single-node algorithm. Furthermore, the graph coloring that is used by
MCR to order vertices is the basis for our color-based partitioning. Hence, we describe
the MCR algorithm in some detail in this section.

The MCR algorithm is a branch and bound algorithm. Given a graph G = (V,E), if
ω(G) is the number of vertices in the maximum clique of G, then ω(G) can be obtained
by independently computing the maximum cliques of different independent subgraphs as
follows:

ω(N(G, v1)) + 1,

ω(N(G− {v1}, v2)) + 1,

ω(N(G− {v1, v2}, v3)) + 1,

. . . ,

ω(N(G− {v1, v2, . . . , vk}, vk+1)) + 1,

. . . ,

ω(N(G− {v1, v2, . . . , v|V |−2}, v|V |−1)) + 1

To compute the maximum clique of N(G, v1), we can perform the same process on the
subgraph N(G, v1). Thus, the maximum clique can be found in a recursive way. Without a
pruning strategy, this algorithm is equivalent to brute-force exhaustive search. Therefore,
it is important to prune the search based on bounds on the size of the maximum clique.

The MCR algorithm proposes a pruning strategy based on coloring the vertices of the
graph. In this method, each vertex in the graph is given a color, and any two adjacent
vertices cannot have the same color. Since no adjacent vertices can have the same color,
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a clique will always consist of vertices of different colors. Thus, the total number of colors
used to color the graph is an upper bound on the size of the maximum clique. Using fewer
colors results in a tighter upper bound, but the coloring procedure becomes more complex.
At one extreme, we can use a different color for each vertex, in which case the coloring
procedure is very simple but has no pruning power. At the other extreme, we can use
the minimum possible number of colors, which increases the pruning power of coloring but
makes the coloring procedure very complex.

A coloring procedure is given in [69] that strikes a balance between coloring complexity
and pruning power. The coloring procedure starts by sorting the vertices of the graph in
descending order according to their degree. The procedure for doing this is as follows: (1)
Select a vertex v with the minimum degree from the graph G and append it to R (which is
initially an empty list). If there are k (> 1) vertices with the same degree (denote this set
of vertices as G′ = {v1, v2, . . . , vk}), select the vertex with the minimum extension degree
in G′. (2) Remove v from G. When removing v, we also remove all edges incident on v,
which changes the degrees of the other vertices in G and hence may change the vertex with
the minimum degree chosen in the next step. (3) Repeat Step (1) and (2) until there are
no vertices in G. (4) Reverse the list R.

After sorting, the procedure shown in Algorithm 1 is applied. Each color is represented
by a number, with 1 being the first color used. The last step in Algorithm 1 sorts the
vertices by color in descending order. Sorting the vertices by degree before coloring and then
sorting the colors in descending order is shown to improve the effectiveness of coloring. We
return to this coloring algorithm in Section 2.4.6 when we discuss color-based partitioning.

The MCR algorithm processes vertices in descending order of color as shown in Algo-
rithm 2. The variables Qmax and Q are global variables recording the maximum clique and
the current maximal clique, respectively. The pruning based on the maximum color is in
line 5 of the algorithm.

2.4 Graph Partitioning Strategies

In order to compute the maximum clique in parallel on a computer cluster, we need to
partition the graph into several smaller subgraphs and compute the maximum clique for
these subgraphs independently on the compute nodes. Graph partitioning has been studied
before (e.g., [2, 38, 41]). In this section, we present some possible partitioning strategies
from the literature, and our proposed BMC partitioning. Our experiments show that BMC
partitioning outperforms all other partitioning strategies presented in this section.
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Algorithm 1 Simple graph coloring.

1: function Color(G)
2: G1, G2, . . . , Gn = {}
3: i = 1
4: while i < |G| do
5: j = 1
6: while ∃vk ∈ Gj, s.t., vi ∈ N(G, vk) do
7: j = j + 1
8: end while
9: CG(vi) = j, append vi to Gj

10: i = i+ 1
11: end while
12: Sort V (G) based on CG in descending order
13: return CG

2.4.1 Bisection Partitioning

A straightforward partitioning strategy is bisection partitioning, which partitions the orig-
inal graph G into two graphs GA and GB that have a similar number of vertices. In order
to obtain the maximum clique of G, we need to compute the maximum cliques of GA, GB,
and the inter-graph I(G,GA, GB) (recall the definition of the inter-graph from Section 2.1).
Both subgraphs GA and GB can be further partitioned into three more subgraphs, and so
on.

In order to reduce the number of vertices of the inter-graph, we need to minimize
the number of edges connecting GA and GB. This converts the partitioning problem
into the bisection partitioning problem, which is a well-known NP-hard problem. Some
approximate bisection partitioning algorithms exist, such as the classical Kernighan and
Lin algorithm [41] as well as more recent algorithms [64, 65]. However, in our experiments
we found that bisection partitioning (using the Kernighan and Lin algorithm) is not suitable
for the maximum clique problem because it results in large inter-graphs I(G,GA, GB). In
general, we found that the largest inter-graphs typically have the same size as the original
graph, so we gain no reduction in complexity through bisection partitioning.
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Algorithm 2 MCR for single node maximum clique.

1: function MaxClique(G)
2: while |G| > 0 do
3: /* CG is the color list of G */
4: v = {p|CG[p] = max(CG)}
5: if |Q|+ CG[v] > |Qmax| then
6: Q = Q ∪ v
7: G1 = N(G, v)
8: if |G1| > 0 then
9: MaxClique(G1)
10: else if |Q| > |Qmax| then
11: Qmax = Q
12: end if
13: Q = Q− {v}
14: end if
15: G = G− {v}
16: end while
17: return Qmax

2.4.2 k-way Partitioning

Another possible partitioning strategy is k-way partitioning, which partitions the graph G
into k subgraphs of similar size, denoted as {G1, G2, G3, . . . , Gk}, instead of two subgraphs
as in bisection partitioning. A good partitioning also minimizes the number of edges
running between separated subgraphs. There are many methods for k-way partitioning,
such as spectral partitioning [36] and multi-level graph partitioning [38].

In order to compute the maximum clique of G, we need to separately compute the
maximum clique of graphs G1, G2, G3, . . . , Gk, and the maximum clique of the inter-graphs
that contain edges running between different subgraphs and the vertices connected by those
edges. The inter-graphs can be obtained in various ways. The straightforward way is to
compute the inter-graphs using multiple steps. The i-th step produces k/2i inter-graphs,
each of which is computed from 2i subgraphs. That is, in the first step,

I1,1 = I(G,G1, G2),

. . . ,

I1,k/2 = I(G,Gk−1, Gk), (2.1)
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and in the i-th step, the m-th inter-graph is

Ii,m = I(G,∪2i−1

n=1G(m−1)2i−1+n,∪2
i−1

n=1Gm2i−1+n). (2.2)

The last inter-graph is

Ilog(k),1 = I(G,G1 ∪G2 ∪ . . . ∪Gk/2, Gk/2+1 ∪Gk/2+2 ∪ . . . ∪Gk), (2.3)

which is very similar to the inter-graph obtained from bisection partitioning. As with
bisection partitioning, such an inter-graph generally has the same size as the original graph
G.

To avoid this problem, we use another method. Here we consider the inter-graphs one
by one. That is, the i-th inter-graph is I(G,G1 ∪ G2 ∪ . . . ∪ Gi−1, Gi) (i = 2, 3, . . . , n).
Using this method, we can get smaller inter-graphs for graphs with low densities, but we
still face the problem of large inter-graphs for graphs with high densities.

2.4.3 PICS Partitioning

A recently proposed partitioning strategy that is fundamentally different from bisection
partitioning or k-way partitioning is PICS partitioning [2]. Instead of partitioning the graph
into subgraphs with a similar number of vertices, PICS partitioning tries to find clusters
in a given graph. If we consider these clusters as subgraphs, we can use PICS to partition
graph G into several subgraphs (subgroups to use the PICS terminology) G1, G2, . . . , Gk.
In contrast to bisection partitioning and k-way partitioning, it is not necessary that these
subgraphs have a similar number of vertices.

In order to compute the maximum clique of the original graph G, we need to separately
compute the maximum cliques of those subgraphs and the inter-graphs, as described above.
The inter-graphs can be obtained using the same method as in Section 2.4.2. If we want
to partition the subgraphs into smaller subgraphs, we can apply the PICS algorithm to
those subgraphs. However, we find that this algorithm cannot guarantee to partition some
subgraphs into two or more smaller subgraphs. Additionally, the algorithm suffers the
same problem of large inter-graphs and is not suitable for the maximum clique problem.

2.4.4 One-Depth Partitioning

Motivated by the shortcomings of existing partitioning techniques, we present a simple
partitioning that we call one-depth partitioning, which is similar to the partitioning used
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by the MCR algorithm in Section 2.3. Given a graph G = (V,E), the subgraphs are
obtained as follows:

G1 = v1 ∪N(G, v1),

G2 = v2 ∪N(G− {v1}, v2), (2.4)

G3 = v3 ∪N(G− {v1, v2}, v3),
. . . ,

Gk = vk ∪N(G− {v1, v2, . . . , vk−1}, vk),
. . . ,

G|V |−1 = v|V |−1 ∪ (G− {v1, v2, . . . , v|V |−2}, v|V |−1)

This method has been used previously in the parallel computation of maximum cliques
based on MPI [58] and MapReduce [45]. However, this method does not work for dense
graphs because it results in poor load balancing between the partitions, since some parti-
tions are much larger than others.

2.4.5 Multi-Depth Partitioning

Due to the load balancing problem of one-depth partitioning, we propose a novel partition-
ing method suitable for parallel maximum clique computation using MapReduce. First,
we partition the original graph into several smaller subgraphs as in Equation 2.4. Next, we
estimate the running time of the maximum clique algorithm on each partition. Estimating
the running time is based on a simple experiment-driven performance model described in
Section 2.5. If the estimated running time on a partition is above a bound value, we further
partition that subgraph into smaller subgraphs. The bound value in this thesis is chosen
through experiments to be 60 seconds (see Section 2.7.2). We repeat this partitioning step
until the estimated running time on each of the partitions is below the bound value.

If the estimated running time of any subgraph in G1, G2, . . . , G|V |−1 is larger than the
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bound value (let us assume it is Gk), the subgraph Gk will be partitioned again as follows:

Gk,1 = {vk, w1} ∪N(Gk − {vk}, w1),

Gk,2 = {vk, w2} ∪N(Gk − {vk, w1}, w2), (2.5)

Gk,3 = {vk, w3} ∪N(Gk − {vk, w1, w2}, w3),

. . . ,

Gk,l = {vk, wl} ∪N(Gk − {vk, w1, . . . , wl−1}, wl),
. . . ,

Gk,m = {vk, wm} ∪N(Gk − {vk, w1, . . . , wm−1}, wm),

where m is a cutoff value such that the estimated running time of the remaining subgraph
Gk−{vk, w1, w2, . . . , wm−1} is no larger than the bound value, while the estimated running
time of Gk − {vk, w1, w2, . . . , wm−2} is larger than the bound value.

Again, if there is a subgraph in Gk,1, Gk,2, . . . , Gk,m such that its estimated running time
is larger than the bound value (let us assume it is Gk,l), then Gk,l needs to be partitioned
again. The n-th partitioned subgraph from Gk,l is defined as follows:

Gk,l,n = {vk, wl, un} ∪N(Gk,l − {vk, wl, u1, u2, . . . , un−1}, un). (2.6)

At the end of the partitioning, the estimated running time of any subgraph is less than the
bound value.

In our algorithm, the partitioning path is recorded. This path indicates how the sub-
graph is obtained from the original graph. For example, the subgraph Gk,l,n is obtained
by the partitioning algorithm via vk → wl → un. Therefore, the maximum clique of Gk,l,n

can be computed with the call

MaxClique(N(Gk,l − {u1, u2, . . . , un−1}, un)) ∪ {vk, wl, un} (2.7)

instead of
MaxClique({vk, wl, un} ∪N(Gk,l − {u1, u2, . . . , un−1}, un)), (2.8)

which improves performance because the subgraphN(Gk,l − {u1, u2, . . . , un−1}, un) is smaller
than the subgraph {vk, wl, un} ∪N(Gk,l − {u1, u2, . . . , un−1}, un).

2.4.6 Sorting Vertices Based on Color

As described in Section 2.3, sorting the vertices based on graph coloring can significantly
reduce the running time of solving the maximum clique problem on a single node. Our
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experiments based on random graphs also show that, in most cases, sorting the vertices
based on color before partitioning leads to fewer partitions than other sorting methods
such as sorting the vertices based on order. After partitioning, the running time to find the
maximum clique in each subgraph of the final partitioning does not vary much, regardless
of how the vertices were sorted. And since sorting based on color leads to fewer partitions,
it reduces the running time of the overall maximum clique computation.

Therefore, we heuristically propose to sort the vertices based on color before each
partitioning step in the multi-depth partitioning is performed. The coloring method is the
same as the one used in the MCR algorithm [69], described in Section 2.3. The vertex
with the largest color is first selected, then the one with the largest color in the remaining
graph is selected, and so on.

In our implementation, we sort graphs based on color in both one-depth partitioning
and multi-depth partitioning. However, our recommended partitioning method is multi-
depth partitioning with sorting based on color. We call this partitioning method Balanced
Multi-depth Color-based (BMC) partitioning.

Figure 1 presents an example to illustrate BMC partitioning. In this example, we
assume that the running time of a graph with 6 vertices is greater than the bound value,
i.e, the bound value corresponds to 5 vertices. First, the vertices are sorted based on
degree in ascending order, resulting in the sorted list {3, 2, 7, 6, 8, 4, 9, 1, 5}. Next, we use
Algorithm 1 to color these vertices. The colored vertices are shown in Figure 2.1 (a). The
sorted vertices based on color in descending order are {5, 1, 8, 6, 9, 3, 2, 7, 4}. Therefore,
vertex 5 is first selected for the partitioning (Figure 2.1 (b)) since it has the maximum
color = 4. Then vertex 1 is selected because it has the highest color number after vertex 5
is removed, then vertex 8 is selected after vertices {5, 1} are removed, and so on until the
remaining graph has only 5 vertices and the estimated running time is less than the bound
value. But we find that the subgraph from the neighborhood of vertex 5 has 7 vertices,
so it needs to be partitioned again. Before partitioning, its vertices are again sorted based
on the degree in this subgraph resulting in the list {3, 8, 7, 6, 9, 4, 1}. Then this list is
colored and the sorted list of vertices based on color is {1, 4, 7, 9, 6, 8, 3}. Thus, vertex 1
is first selected since it has the maximum color number and then the next selected vertex
is vertex 4. After that, we find that both the subgraphs partitioned via vertex 4 and the
remaining subgraph have no more than 5 vertices (Figure 2.1 (c)). The BMC partitioning
is then done.
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Figure 2.1: BMC partitioning. The numbers for the colors are: black = 1, red = 2, blue =
3, and green = 4.
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2.5 Running Time Estimation

When we partition the graph into smaller subgraphs for better load balancing, the running
time of each subgraph should be no greater than a bound value. Therefore, we need to
model the relationship of the running time versus the number of vertices and the density
of the graph. In this section, we present an experiment-driven model to estimate running
time. The model can easily be calibrated for different computer clusters with different
hardware and software configurations.

The exact relationship between running time and vertices and density is difficult to
obtain. Therefore, we only aim to get an approximate relationship. First, we know that
the worst case running time for a given graph G is T (G) = O(a|G|), where a is a constant.
Thus, an accurate model for running time would require an exponential function. For our
model, we assume that T (G) = f(|G|, ρ(G))|G|g(ρ(G)), where f(|G|, ρ(G)) and g(ρ(G)) are
polynomial functions of the number of vertices |G| and the density ρ(G). We conducted
experiments in which we observed that the function g(ρ(G)) can be modelled accurately
as a quadratic function of ρ(G). The Taylor series expansion of f(|G|, ρ(G)) gives us the
following:

T (G) = (
k∑
i=0

|G|i
k∑
j=0

aijρ(G)j)|G|(ρ(G)2+bρ(G)+c) (2.9)

where k is set to control the degrees of freedom in the model, and aij, b, and c are parameters
determined by fitting training data obtained through experiments.

We run the model training experiments on a given machine A and obtain the model
parameters for that machine. After that, we can estimate the running time on another
machine B by multiplying a normalization factor f = TB(G0)/T (G0), where G0 is a cali-
bration graph, T (G0) is the estimated running time for graph G0 on machine A based on
Equation 2.9, and TB(G0) is the actual running time for graph G0 on machine B. Thus,
for a given input graph G, the estimated running time on machine B is given by:

TB(G) = T (G)× TB(G0)

T (G0)
(2.10)

We have found that this equation is not overly sensitive to the choice of calibration graph,
G0. In our experiments, we choose G0 as a random graph with |G0| = 500 and ρ(G0) = 0.5.
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2.6 Implementation and Optimizations

In this section, we show the implementation of our algorithm in MapReduce, in particular
Hadoop, and optimizations of this implementation. We reiterate that other cluster com-
puting frameworks such as MPI or Pregel can be used for this implementation, but they
do not give us the flexibility, automatic scalability and fault tolerance, and wide adoption
that we have with MapReduce.

2.6.1 Implementation Using MapReduce

In our implementation, we use two MapReduce jobs: the first job performs the partitioning
and the second one computes the maximum clique of the subgraphs. There is only one
input to the partitioning MapReduce job, namely the original graph. In order to parallelize
the computation as soon as possible, we do only one-depth partitioning in the map phase of
this job, and distribute the subgraphs to the reducers to continue the partitioning process.
Each (key, value) pair from this map function contains (v,N(G, v)). Each reducer task
will partition the subgraph into smaller subgraphs until the estimated running time of
each smaller subgraph is less than the bound value. The output of the reducers is a set of
(key, value) pairs. Each value is a partitioned subgraph, e.g., G′, and the key is the set
of vertices {vd1, vd2, . . . , vdm} that records how G′ is partitioned from the original graph
G. The pseudocode of the MapReduce implementation of BMC partitioning is shown in
Algorithm 3. The global parameter BOUND is used to determine when partitioning is
terminated. The function Running Time(G) estimates the running time required to solve
the maximum clique problem for graph G.

In the second MapReduce job, the maximum clique of each subgraph is computed
using Algorithm 2. The map function reads strings containing the subgraphs and their
expanding vertices (i.e., {vk, wl, un} in Equation 2.8) from HDFS files, which are created
by the reducers of the first MapReduce job. The map function then splits these strings
into (key, value) pairs, where the value is the subgraph G′ and the key is the set of
vertices that records how subgraph G′ was partitioned from G. In the reduce function, we
use Algorithm 2 to calculate the maximum clique for each subgraph. It should be noted
that this algorithm can easily be replaced by other maximum clique algorithms such as
MCS [70] or cliquer [56], if desired, without compromising the scalability of the solution.
The pseudocode of the second MapReduce job is shown in Algorithm 4.
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Algorithm 3 BMC partitioning using MapReduce.

1: /* First map function (key, value) */
2: function map one(key, value)
3: G = get graph(value)
4: while Running Time(G) > BOUND do
5: /* CG is the color list of G*/
6: i = {j|CG[vj] = max(CG[vk]|vk ∈ G)}
7: Emit (vi, N(G, vi))
8: G = G− {vi}
9: end while
10: Emit (-1, G)
11: return
12:

13: /* First reduce function (key, value) */
14: function reduce one(key, value)
15: G = get graph(value)
16: w = get vertex(value) /* vi in line 7 */
17: multi partition(G, w, BOUND)
18: return
19:

20: function multi partition(G, w, BOUND)
21: CG = Color(G)
22: while Running Time(G) > BOUND do
23: i = {j|CG[vj] = max(CG[vk]|vk ∈ G)}
24: if Running Time(N(G, vi)) > BOUND then
25: multi partition(N(G, vi), w ∪ vi, BOUND)
26: end if
27: Emit (w ∪ vi, N(G, vi))
28: G = G− vi
29: end while
30: Emit (w, G)
31: return
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2.6.2 Optimizations in Hadoop

In order to implement an efficient branch and bound search, we use a global parameter
MAX to store the number of vertices in the largest clique found so far. This global
parameter is used to set the pruning parameter |Qmax| in Algorithm 2 so that it can reduce
the search space for most subgraphs. The global parameter MAX is communicated via a
socket to the Hadoop job tracker. Before computing the maximum clique for a subgraph G′

expanded from vertices {vd1, vd2, . . . , vdm}, the reduce function of the second MapReduce
job first receives MAX from the socket, and then adds {vd1, vd2, . . . , vdm} to Q and sets
|Qmax| = MAX. The maximum clique of this subgraph is then obtained by running
MaxClique(G′). After the algorithm terminates, we again request a current value of MAX
over the socket and compare it with the |Qmax| found for G′. If |Qmax| is greater than
MAX, a new maximum clique has been found from this subgraph and we send the value
of |Qmax| to the job tracker over the socket and update the parameter MAX. Otherwise,
we do not update MAX. To obtain fault tolerance, we write MAX into an HDFS file
once it is updated, so that if the socket connection fails, the parameter MAX can be read
from this HDFS file.

Algorithm 4 Maximum clique on the partitioned subgraphs using MapReduce.

1: /*Second map function (key, value) */
2: function map two(key, value)
3: G = get graph(value) /* Read graph */
4: /* key is w ∪ vi in line 27 of Algorithm 3 */
5: key = get vertices(value)
6: Emit (key, G)
7: return
8:

9: /* Second reduce function (key, value) */
10: function reduce two(key, value)
11: G = get graph(value)
12: Q = get vertices(key)
13: |Qmax| = MAX /* MAX is a global parameter */
14: Q = MaxClique(G)
15: if |Q| > MAX then
16: Update global parameter MAX with |Q|
17: end if
18: return
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Graph Order Size (Bytes) Density ω Comment
G1 738 192243 0.71 19 Quantum Code
G2 250 27980 0.9 44 DIMACS C250.9
G3 2000 999836 0.5 16 DIMACS C2000.5
G4 4000 4000268 0.5 18 DIMACS C4000.5

Table 2.2: Four graphs used in the experiments.

When deciding the BOUND parameter, there is a trade-off between load balancing and
the amount of time taken to move graphs to worker nodes. To obtain good load balancing,
we need to ensure that there are no large subgraphs that take a long time for maximum
clique computation. Therefore, we should partition the graph into small subgraphs, i.e.,
set the bound value to be small. However, if the bound value is too small, the number
of partitioned subgraphs is too large, and it takes a long time to shuffle the subgraphs
to worker nodes. It should be noted that the number of partitioned subgraphs increases
exponentially with decreasing the bound value. Therefore, an optimal choice of the bound
value may improve the performance of our algorithm. We experimentally study the optimal
value of this parameter in Section 2.7.2.

2.7 Experimental Evaluation

2.7.1 Experimental Environment

Our experiments are based on four graphs, which are summarized in Table 2.2. The first
graph is a real-world coding graph for a CWS quantum error-correcting code, for given
length n = 10 and d = 3. The other three graphs are DIMACS graphs [20, 21], which are
synthetically generated graphs meant as benchmarks for maximum clique computation.
All the graphs are undirected and unweighted.

We implemented our algorithm on Hadoop 1.0.0, and we perform all our experiments
using Amazon’s Elastic Compute Cloud (EC2) [25], except the investigation of the run-
ning time estimation (Section 2.7.2). Since we mainly want to measure the scalability of
our algorithm, we use small Amazon EC2 instances to run our experiments. Each small
instance has 1.7 GB of memory and 1 virtual core with 1 EC2 compute unit, which has a
similar performance as one 2007-era 1.0–1.2 GHz AMD Opteron or Xeon processor.
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2.7.2 Running Time Estimation and Bound Value

In order to evaluate the accuracy of Equation 2.9, we first generate many random graphs
with the number of vertices |G| from 100 to 1000 in a step of 50 and the density ρ from
0.1 to 0.93− 0.0003|G|. Second, we use the MCR algorithm to solve the maximum clique
problem for those graphs and record the running time on a PC with one dual core processor
(2.9 GHz) and 4 GB memory. Third, we use some graphs with |G| = 100, 200, . . . , 1000 as
training data to fit Equation 2.9, and the remaining graphs to test whether the model can
predict the running time.

We find that when k = 4 in Equation 2.9, our model could fit the data very well
(χ2/d.o.f = 550/527 with 27 parameters). Therefore, we use k = 4 in this paper. Some
graphs over-plotted by the best-fit model are shown in Figure 2.2 (note that the y-axis of
Figures 2.2, 2.4, and 2.5 is log scale). The predicted running time from the model is also
shown in the figure, which shows that the model does indeed give a good estimation of
the running time. The figure shows that the model is accurate even up to a running time
of around 100 minutes. Since we set the bound value to 60 seconds (i.e., 1 minute), the
subgraphs on which the model will be invoked will be well within the region in which it is
accurate. Moreover, even if the model estimates are inaccurate, the end-to-end performance
of the maximum clique algorithm will not be severely impacted since the algorithm is robust
over a wide range of the bound value, as we show next.

To evaluate the robustness of the algorithm when changing the bound value on the
estimated running time of the partitioned subgraphs, we first note that if the bound value
is too large, some subgraphs will be too large and the load balancing will be bad. However,
if the bound value is too small, the number of subgraphs will be too large and Hadoop will
need more time to shuffle, read, and write the data. Recall that the number of subgraphs
increases exponentially with decreasing the bound value.

We use 32 small EC2 instances for this experiment. The total running time versus the
bound value for graphs G1 and G2 is shown in Figure 2.3. From this figure, we can see that
there is a wide range in which the bound value results in good performance (approximately
5–500 seconds). Therefore, our algorithm is robust to changes or inaccuracy in setting the
bound value, and our choice of 60 seconds is justified.

2.7.3 Scalability

In this section, we investigate the scalability of our proposed algorithm, namely, BMC
partitioning with the optimization of the global parameter MAX. Comparisons between
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Figure 2.2: Running time for random graphs over-plotted by the best-fit model. The black
data are training data used to fit the models (red solid lines), while the blue data are test
data used to evaluate model predictions (purple dashed lines).

our algorithm and other alternatives, such as different partitioning strategies, removing
the global parameter MAX, one-depth partitioning, and comparing to an MPI algorithm,
are presented in the following sections.

We run our algorithm for first three graphs shown in Table 2.2, G1, G2, and G3. We
vary the number of EC2 nodes from 2 to 128. The total running time versus the number of
EC2 nodes is shown in Figure 2.4. In order to illustrate the scalability of our algorithm, we
over-plot a dashed line that indicates ideal scalability, i.e, T (n) = T (1)/n, where T (n) is
the running time on n EC2 nodes. This figure shows that our algorithm provides excellent
scalability that is very close to ideal.
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Figure 2.3: Running time of G1 and G2 versus the bound value on the running time of the
partitioned subgraphs on 32 EC2 nodes.

The largest graph (G4) is not used to investigate scalability because its running time
is too large, particularly on a small number of nodes such as 2 or 4. However, we use this
graph to test the effectiveness of our algorithm for solving the maximum clique problem
on such large graphs by running it on 128 high CPU medium Amazon EC2 instances, each
of which has two CPU cores equivalent to 5 compute units. The problem is completely
solved in 39 hours. The size of the maximum clique is found to be 18, which is the same
size as the largest clique previously found in this graph. However, we can now say with
certainty that this is indeed the maximum clique, and we can enumerate several cliques
that have this maximum size. This is the first time to completely solve the maximum
clique problem for this DIMACS instance. We estimate that a solution on a single CPU
would have required more than 1 year.
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Figure 2.4: The scalability of our algorithm. The dashed purple line shows ideal scalability,
i.e., T (n) = T (1)/n, where T (n) is the running time on n EC2 nodes.

2.7.4 Comparison of Partitioning Strategies

In this section, we use graphs G1 and G2, plus 4 randomly generated graphs (which we
call R1–R4), to investigate whether our BMC partitioning is better than other partitioning
strategies.

In this experiment, bisection partitioning is performed using the Kernighan and Lin
algorithm [41], as well as k-way partitioning based on spectral factorization [36] with k set
to 16. We also evaluate PICS partitioning, which is implemented using the code in [2]. In
each experiment, when the number of vertices of a subgraph is 150 or less, the subgraph
is not partitioned any further.
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In order to investigate the effectiveness of each partitioning strategy, Table 2.3 lists the
final number of subgraphs resulting from the partitioning and the number of vertices in
the largest subgraph. The table shows, for each partitioning strategy, partitioning with
depth 1 to 6. The depth of a partitioning is the height of the partitioning tree.

From the table we can see that bisection partitioning and PICS cannot partition the
original graph into smaller subgraphs for any graph. The largest subgraph has the same
size as the original graph even for a graph with low density (R4: |G| = 500, ρ(G) =
0.05). The k-way partitioning algorithm can partition graphs with low density into smaller
subgraphs but it is not as effective as our BMC partitioning algorithm. Additionally, k-
way partitioning also cannot partition graphs with medium or high density. In contrast,
Table 2.3 shows that BMC partitioning can effectively partition any graph into smaller
subgraphs.

2.7.5 Sorting By Color vs. Random Ordering

The sorting order of vertices (based on color or not) may affect the performance of our
algorithm. Here, we use graphs G1 and G2 to investigate whether BMC partitioning, which
does sort based on color, is better than a partitioning strategy based on a random order of
vertices. The comparison of the running time of G1 and G2 based on these two strategies
on 32 EC2 nodes is shown in Table 2.4. The experiment shows that BMC partitioning
with vertices sorted based on color can significantly improve performance.

2.7.6 Global Parameter MAX

The running time of graph G1 and G2 on 32 EC2 nodes without the global MAX parameter
is shown in Table 2.4. Without the MAX parameter, |Qmax| in Algorithm 2 is set to zero
for each subgraph. The table clearly shows that the global parameter MAX significantly
improves performance.

2.7.7 One-depth Partitioning vs. Multi-depth Partitioning

In order to investigate whether BMC partitioning is better than one-depth partitioning,
we implement a Hapdoop MapReduce program to calculate the maximum clique of a
graph using one-depth partitioning. The graph is partitioned with one-depth partitioning
until the estimated running time of the remaining graph is less than the bound value,
i.e., 60 seconds, which is the same as the bound value in multi-depth partitioning. The
relationship between the total running time and the number of EC2 nodes for graph G2 is
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Graph

Name G1 G2 R1 R2 R3 R4

|V | 250 738 500 500 500 500
Density 0.9 0.73 0.3 0.2 0.1 0.05

Name Depth n v n v n v n v n v n v
1 3 250 3 738 3 500 3 500 3 500 3 500
2 5 250 9 738 9 500 9 500 9 500 9 500

Bisection 3 7 250 27 738 19 500 19 500 19 500 19 500
Partitioning 4 9 250 65 738 33 500 33 500 33 500 33 500

5 11 250 131 738 51 500 51 500 51 500 51 500
6 13 250 233 738 73 500 73 500 73 500 73 500

k-Partitioning

1 31 250 31 737 31 500 31 496 31 458 31 444
2 211 250 421 737 421 500 421 495 361 426 271 350
3 1051 250 4381 737 4321 500 4351 470 2341 389 781 241
4 4021 250 34771 737 35191 500 31711 461 9241 341 1170 148
5 12721 250 224851 737 224160 500 174300 457 24270 304 1168 148
6 34831 250 1228131 737 1174463 500 764451 450 37949 269 1168 148
1 3 250 7 737 3 500 3 500 3 500 3 500
2 5 250 67 737 5 500 7 500 5 500 7 500

PICS 3 7 250 353 737 7 500 13 500 7 500 11 500
Partitioning 4 9 250 2171 737 9 500 21 500 9 500 15 500

5 11 250 13419 737 11 500 31 500 11 500 19 500
6 13 250 78496 737 13 500 43 500 13 500 23 500
1 101 210 589 484 351 150 351 150 351 150 351 150
2 2830 183 98062 350 351 150 351 150 351 150 351 150

BMC 3 18703 160 4693076 258 351 150 351 150 351 150 351 150
Partitioning 4 20951 150 40869924 184 351 150 351 150 351 150 351 150

5 20951 150 42730190 150 351 150 351 150 351 150 351 150
6 20951 150 42730190 150 351 150 351 150 351 150 351 150

Table 2.3: Different partitioning strategies. The value n is the final number of subgraphs,
and v is the number of vertices in the largest subgraph.

shown in Figure 2.5. The figure also shows the result of BMC partitioning. It is clear that
one-depth partitioning does not have good scalability for dense graphs because it does not
effectively balance load.

2.7.8 Comparison with an MPI Algorithm

We developed an MPI-based maximum clique algorithm using the MPICH implementation
of MPI. We employ the framework proposed in [58], in which one process acts as the master
and collects results from other processes, which act as workers. The master first sends the
original graph to all the workers, and then assigns one vertex to each worker node. If the
master sends the vertex index k to worker i, worker i calculates the maximum clique of
the subgraph N(G−{v1, v2, . . . , vk−1}, vk), and sends the result back to the master. If one
worker has finished its work, the master will send another partition to it until the entire
job has been finished. The algorithm in [58] calculates the maximum clique of subgraphs
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Color Random Without
Graph Partitioning Partitioning MAX

T0 Tr
Tr−To
To

(%) Tm
Tm−To
To

(%)

G1 21.8 51.5 135 198 804
G2 20.9 30.0 46 108 427

Table 2.4: Running time (in minutes) of G1 and G2 on 32 EC2 nodes based on color
partitioning compared to the running time based on random partitioning. The running
time without the global parameter MAX is also shown.
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Figure 2.5: Running time of G2 using a varying number of EC2 nodes based on one-depth
partitioning and an MPI implementation, compared to BMC partitioning.

using the classical algorithm in [10]. We replace the algorithm in the workers with the
MCR algorithm [69] to improve performance.
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The MPI algorithm is similar to the one-depth partitioning algorithm and it also suf-
fers from poor load balancing. In order to investigate the performance and scalability of
the MPI algorithm, we use this algorithm to calculate the maximum clique of graph G2.
Figure 2.5 shows the total running time versus the number of EC2 nodes. The number
of nodes in this figure refers to the number of worker nodes, since the master node in the
MPI algorithm does not do any computation. Our one-depth algorithm is comparable in
performance with the MPI algorithm even though the MPI implementation is in C and
our one-depth implementation is in Java. Our multi-depth BMC partitioning significantly
outperforms the MPI implementation because BMC has better scalability.

2.8 Summary

In this chapter, we presented a scalable and fault tolerant maximum clique algorithm based
on MapReduce. Our maximum clique computation relies on a novel graph partitioning al-
gorithm (BMC partitioning) that we implement in MapReduce. BMC partitioning provides
good scalability as compared to alternative algorithms that we investigated. Another way
that our maximum clique computation achieves scalability is by using a branch and bound
search where the bound on the size of the largest clique found so far is updated by all
workers (the MAX parameter). The partitioning algorithm and the single node maximum
clique algorithm both rely on graph coloring to sort vertices in a way that further improves
scalability. We were able to show that our proposed maximum clique computation tech-
nique can effectively scale to large cluster sizes and can find the maximum cliques for large
dense graphs.

There are several directions for future work. For example, we have used the default hash
value to shuffle different subgraphs from the map tasks to the reduce tasks. However, this
random shuffling is not optimal. Therefore, we want to find a better method to combine
these subgraphs such that we can improve the load balancing. We can also theoretically
calculate the running time and compare it with that from random shuffling.
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Chapter 3

Matrix Inversion Using MapReduce

After presenting maximum clique computation on MapReduce, we now turn our atten-
tion to another scientific computing task, namely matrix inversion. In addition to having
numerous applications, matrix inversion is interesting for our research because it is both
compute intensive and data intensive. It requires a lot of CPU, and in addition a lot of data
is shuffled while the matrix inverse is computed. Thus, it is a different type of scientific
computing task compared to computing the maximum clique.

Note that the crux of our technique is partitioning the computation required for matrix
inversion into independent pieces. Such partitioning is required for any cluster computing
framework. Thus, while this paper focuses on MapReduce, our technique can be used as a
basis for implementing matrix inversion in other cluster computing systems such as Dryad
or YARN. We leave this point as a direction for future work.

The contributions of this chapter are as follows:

• The choice of LU decomposition for matrix inversion in order to enable a MapReduce
implementation.

• An algorithm for computing the LU decomposition that partitions the computation
into independent pieces.

• An implementation of the proposed algorithms as a pipeline of MapReduce jobs.

• Optimizations of this implementation to improve numerical accuracy, I/O perfor-
mance, and memory locality.

• An extensive experimental evaluation on Amazon EC2.
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The rest of this chapter is organized as follows. In Section 3.1, we present some basic
matrix inversion algorithms on a single node. In Section 3.2, we present related work. Our
algorithm is introduced in Section 3.3, and our implementation in Section 3.4. We describe
optimizations of the implementation in Section 3.5. We present an experimental evaluation
in Section 3.6. Section 3.7 concludes.

3.1 Preliminaries

For any matrix A, let [A]ij denote its element of the i-th row and the j-th column, and
denote by [A][x1...x2][y1...y2] the block defined by the beginning row x1 (inclusive) and the
ending row x2 (exclusive), and by the beginning column y1 (inclusive) and the ending
column y2 (exclusive).

A square matrix (A: m-by-n) is a matrix with the same number of rows and columns,
i.e, m = n. The m or n is called the order of matrix A. If there is another square matrix
B that satisfies the following equation:

AB = BA = In (3.1)

where In is the identity matrix of order n, then A is called invertible. B is then the inverse
of A, denoted as A−1. Here the identity matrix In is an n-by-n square matrix with entries
aij = 1 for i = j and aij = 0 for i 6= j. A square matrix A is invertible if and only if A is
non-singular, that is, A is of full rank n. The rank of a matrix is the number of rows (or
columns) in the largest collection of linearly independent rows (or columns) of a matrix.
Therefore, a square matrix is invertible if and only if there are no linearly dependent rows
(or columns) in this matrix. For a collection of rows or columns to be linearly independent,
none of these rows or columns can be obtained by a linear combination of other rows or
columns in the collection.

The inverse of a matrix can be computed using many methods, such as Gauss-Jordan
elimination, LU decomposition (also called LU factorization), Singular Value Decompo-
sition (SVD), and QR decomposition [17, 47, 63, 74]. In order to clarify our choice for
MapReduce implementation, we briefly discuss these methods.

Gauss-Jordan elimination is a classical and well-known method to calculate the inverse
of a matrix [63]. This method has two different variants: row elimination and column
elimination. They are quite similar so we only discuss the method using row elimination.
The method first concatenates the matrix A and the identity matrix In into a new matrix
[A|In]. Then, using elementary row operations which include row switching, row multipli-
cation, and row addition, the method transforms the left side to the identity matrix, such
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that the right side is the inverse of matrix A. That is:

[A|In]
row operations−−−−−−−−→ [U|B]

row operations−−−−−−−−→ [In|A−1] (3.2)

where U is an upper triangular matrix. The Gauss-Jordan elimination method first con-
verts the matrix A into an upper triangular matrix in n steps using row operations as
follows. In the first step, the first row is multiplied by a constant such that the first ele-
ment in this row equals to 1, and the first row times a constant is subtracted from the i-th
(1 < i ≤ n) row of [A|In] such that the first element in the i-th (1 < i ≤ n) row is 0. In the
k-th step, the k-th row is multiplied by a constant such that the k-th element in this row
equals to 1, and the k-th row times a constant is subtracted from the i-th (k < i ≤ n) row
of [A|In] such that the k-th element in the i-th (k < i ≤ n) row is 0. If the k-th element
of the k-th row is already 0 or close to 0 before the subtraction, we first switch the k-th
row with any row below the k-th row where the k-th element is not 0. After n − 1 steps,
the left part of matrix [A|In] is converted into an upper triangular matrix.

Next, the method converts the upper triangular matrix into an identity matrix also
using row operations in n steps as follows. In the first step, the n-th row of [U|B] times a
constant is subtracted from the i-th (1 ≤ i < n) row of matrix [U|B] such that the n-th
element of the i-th (1 ≤ i < n) row of matrix [U|B] is 0. In the k-th step, the n+ 1− k-th
row of of [U|B] times a constant is subtracted from i-th (1 ≤ i < n − k) row of matrix
[U|B] such that the n-th element of the i-th (1 ≤ i < n−k) row of matrix [U|B] is 0. After
n−1 steps, the upper triangular matrix in the left part is converted into an identity matrix,
and the right part is the inverse of matrix A. The Gauss-Jordan elimination method uses
n3 multiplication operations and n3 addition operations to invert an n×n matrix, which is
as efficient as, if not better than, any other method. However, this method is very difficult
to parallelize due to the large number of steps that depend on each other in a sequential
fashion, O(n).

The LU decomposition method, also called LU factorization, first decomposes the orig-
inal matrix into a product of two matrices A = LU, where L is a lower triangular matrix
that has nonzero elements only on the diagonal and below, and U is an upper triangular
matrix that has nonzero elements only on the diagonal and above. Since the inverse of
a triangular matrix is easy to compute using back substitution [63] (also refer to Section
3.3), we can get the inverse of A as U−1L−1. The LU decomposition method uses the same
number of multiplication and addition operations as the Gauss-Jordan method. However
the LU decomposition method is much easier to parallelize because the LU decomposi-
tion can be done with a recursive block method. Therefore, in this thesis, we use the LU
decomposition method to compute matrix inverse on MapReduce. The details of the LU
decomposition method and the parallel algorithm will be discussed in Section 3.3.
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Instead of decomposing matrix A into the product of two matrices, the SVD decompo-
sition method [63] decomposes matrix A into the product of three matrices, A = UWVT

(VT is the transpose of matrix V). W is a diagonal matrix with only positive or zero
elements. U and V are both orthogonal matrices (i.e. UUT = VVT = In), such that the
inverse of A can be given by A−1 = VW−1UT , where the inverse of diagonal matrix W
is easily obtained with [W−1]ii = 1/[W]ii in running time O(n). However, this method
needs frequent row exchanges, which means that the computation cannot be partitioned
into independent pieces. Hence, this method is not suitable for the MapReduce framework,
which requires that the task can be divided into independent pieces to be worked on by
separate nodes.

The QR decomposition first decomposes the original matrix A into a product of an
orthogonal matrix Q and an upper triangular matrix R, i.e., A = QR and A−1 = R−1QT .
One way of computing the QR decomposition is using the Gram-Schmidt process [63]. Let

ai be the vector corresponding to the i-th column of A, projea = 〈e,a〉
〈e,e〉e be the projection

of a vector a onto another vector e, and 〈e, a〉 be the scalar product (or dot product, or
inner product) of the vector e and the vector a. The Gram-Schmidt process returns a
set of orthogonal vectors ei which spans the same vector space as the column space of A,
where

e1 =
a1

||a1||
,

e2 =
a2 − proje1a2

||a2 − proje1a2||
,

· · · ,

ek =
ak −

∑k−1
j=1 projejak

||ak −
∑k−1

j=1 projejak||
. (3.3)

This will then give the matrices Q and R.

Q = [e1, e2, ..., en],

Rij =

{
〈ei, aj〉 for i ≤ j
0 for i > j

(3.4)

However, as the vector of ek depends on all vectors ei (i = 1, ..., k − 1), we can only
compute the ek vectors one-by-one, which means that we need at least n steps to compute
all ek. Therefore, this QR decomposition method is not easy to parallelize.
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In order to improve numerical accuracy, the Gauss-Jordan elimination method and LU
decomposition could be applied with the idea of pivoting (since we do not want any pivots
to be close to 0). For example, for the following 2× 2 matrix

A =

(
10−5 1
1 104

)
, (3.5)

if we want to use the Gauss-Jordan elimination method to invert the matrix without
pivoting, the matrix inversion process can be shown as

(A|I) =

(
10−5 1 1 0
1 104 0 1

)
(row 1)×105−−−−−−−→

(
1 105 105 0
1 104 0 1

)
(row 2) - (row 1)−−−−−−−−−→

(
1 105 105 0
0 −90000 −105 1

)
(row 2)/−90000−−−−−−−−−→

(
1 105 105 0
0 1 1.11111 −10−5

)
(3.6)

(row 1) - (row 2)×105−−−−−−−−−−−−→
(

1 0 −11111 1
0 1 1.11111 −10−5

)
,

where we assume the data is accurate to 10−5. The inverse of matrix A is therefore

A−1 =

(
−11111 1
1.11111 −10−5

)
. (3.7)

However, if we invert matrix A with pivoting, the inversion process can be shown as

(A|I) =

(
10−5 1 1 0
1 104 0 1

)
switch (row 1) with (row 2)−−−−−−−−−−−−−−−→

(
1 104 0 1
10−5 1 1 0

)
(row 2) - (row 1)×10−5

−−−−−−−−−−−−−→
(

1 104 0 1
0 0.9 1 −10−5

)
(row 2)/0.9−−−−−−→

(
1 104 0 1
0 1 1.11111 −10−5

)
(3.8)

(row 1) - (row 2)×104−−−−−−−−−−−−→
(

1 0 −11111.1 1.1
0 1 1.11111 −105

)
,
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and the matrix inverse is

A−1 =

(
−11111.1 1.1
1.11111 −10−5

)
. (3.9)

It is easy to check that the Gauss-Jordan elimination method with pivoting produces a
more accurate matrix inverse than the method without pivoting. In general, the pivot in
the k-th step of the Gauss-Jordan elimination is chosen such that the value of the k-th
element is the maximum among the values of all the k-th elements from the k-th row to
the n-th row. There is a similar pivoting in the LU decomposition (see Algorithm 5). With
pivoting, the product of L and U equals PA where P is a permutation operation. Finally
the inverse of A is U−1L−1P.

To recap: There are multiple ways to compute the inverse of a matrix. Many of these
ways use an optimal number of multiplication and addition operations, but are not easy
to parallelize. In this thesis we use LU decomposition since it uses the optimal number of
operations and is easy to parallelize. LU decomposition can also be used with pivoting to
improve numerical accuracy.

3.2 Related Work

Several software packages have been developed that support matrix inversion, such as
LINPACK [24], LAPACK [4] and ScaLAPACK [7]. The LINPACK package is written
in Fortran and designed for supercomputers. The LAPACK package is developed from
LINPACK and is designed to run efficiently on shared-memory vector supercomputers.
ScaLAPACK is a software package that tries to provide a high-performance linear algebra
library for parallel distributed memory machines instead of shared-memory in LAPACK.
This package provides some routines for matrix inversion (see Section 3.6.5 for details).
However, this package does not provide any fault tolerance, while our algorithm provides
fault tolerance through the use of MapReduce. In addition, we show that the scalability
of ScaLAPACK is not as good as our approach.

Parallel algorithms for inverting some special matrices also appear in the literature.
Lau, Kumar, and Venkatesh [44] propose algorithms for parallel inversion of sparse sym-
metric positive matrices on SIMD and MIMD parallel computing platforms. It is not a
surprise that these algorithms perform better than general algorithms that do not take
into account any special properties of the input matrix. For symmetric positive defi-
nite matrices (not necessarily sparse), Bientinesi, Gunter, and Geijn [6] present a parallel
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matrix inversion algorithm based on the Cholesky factorization for symmetric matrices.
Their implementation is based on the Formal Linear Algebra Methodology Environment
(FLAME). The implementation shows good performance and scalability, but it does not
work for general matrices and is not suitable for large clusters.

The most important step in our matrix inversion technique is LU decomposition. This
decomposition has been investigated by many researchers. Agullo et al. [1] have shown
that the LU decomposition in double precision arithmetic can reach a throughput of 500
Gflop/s. That work uses powerful CPUs, GPUs, and large memory. Although this method
can solve the LU decomposition problem very efficiently, it is a centralized method that
is not suitable for MapReduce. Moreover, it needs special hardware (GPUs) and large
memory.

Zheng et al. [84] present an implementation of LU decomposition on a multi-core digital
signal processor that does pre-fetching and pre-shuffling in MapReduce [66]. The algorithm
is very simple and only runs row operations in reduce tasks, using the LU decomposition
algorithm on a single node. That is, one reduce task computes one row as in lines 10–12 in
Algorithm 5, so that the method needs n MapReduce tasks to decompose an n×n matrix,
which represents very poor scalability.

Matrix inversion using LU decomposition has been investigated recently by Dongarra
et al. [23], where a tile data layout [1] is used to compute the LU decomposition and the
upper triangular matrix inversion. In that paper, a run time environment called QUARK is
used to dynamically schedule numerical kernels on the available processing units in order to
reduce the synchronization required between different CPU cores. The algorithm is suitable
for multi-core architectures with shared memory and it achieves better performance than
other numerical libraries, such as LAPACK and ScaLAPACK. However, this algorithm is
not suitable for a distributed environment, since it relies on large shared memory. Hence,
its scalability is limited.

Zhang and Yang [83] investigate I/O optimization for big array analytics. They improve
the performance of a broad range of big array operations by increasing sharing opportu-
nities. Our technique also optimizes I/O for big matrices (Section 3.5.2). However, our
technique mainly focuses on reusing the data in memory as many times as possible to
reduce the need for reading data from disk.

To the best of our knowledge, there are no matrix inversion algorithms using MapRe-
duce, although there are several software packages for other matrix operations that use
MapReduce. One of these packages is SystemML [31], which provides a high-level lan-
guage for expressing some matrix operations such as matrix multiplication, division, and
transpose, but not matrix inversion. SystemML provides a MapReduce implementation of
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these operations, and it achieves good scalability and fault tolerance.

3.3 Matrix Inversion Algorithm

As discussed in Section 3.1, the LU decomposition is the most important step toward our
solution to the matrix inversion problem. In this section, we show how we compute the
lower triangular matrix L and the upper triangular matrix U in both the single node and
parallel setting. We also show how to use the L and U matrices to compute the matrix
inverse.

The LU decomposition algorithm on a single node is widely studied and understood.
It has two variants: with and without pivoting. Since pivoting can significantly improve
numerical accuracy, we only discuss the algorithm with pivoting (in Algorithm 5, the row
having the maximum j-th element among rows j to n is selected in the j-th loop). Although
this algorithm can be found in many references (e.g., [33] and [63]), we present it here for
completeness.

Let aij = [A]ij, lij = [L]ij, and uij = [U]ij. The LU decomposition A = LU can be
presented as follows (the blank elements in the L and U matrices are zeros):

a11 a12 ... a1n
a21 a22 ... a2n
a31 a32 ... a3n
...
an1 an2 ... ann

 =


l11
l12 l22
l13 l23 l33
...
ln1 l2n ... lnn




u11 u12 ... u1n
u22 ... u2n

u33 ...
...
unn

 (3.10)

This matrix multiplication can be viewed as a system of linear equations. Since the
difference between the number of unknown arguments (lij and uij) and the number of
equations is n, there are n free arguments that can be set to any value. Generally, these
n free arguments are chosen to be lii or uii (i = 1, ..., n) and they are all set to be 1.0. In
our work we set all lii to 1.0. The other remaining unknown arguments can be derived by
the following equations:

uij = aij −
j−1∑
k=1

ljkukj,

lij =
1

ujj
(aij −

j−1∑
k=1

likukj), (3.11)
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In order to improve numerical accuracy, the rows of the original matrix A are permuted,
such that we decompose the pivoting matrix PA instead of the original one, i.e., PA = LU.
It should be noted that pivoting in LU decomposition does not affect the final inverse of
matrix A because we can apply the permutation matrix P to the product of the inverses
of L and U. That is, we can compute U−1L−1P to obtain the inverse of original matrix A
since U−1L−1PA = In. Computing U−1L−1P is equivalent to permuting the columns in
the result of U−1L−1 according to P. The pseudocode of LU decomposition with pivoting
is shown in Algorithm 5.

Algorithm 5 LU decomposition on a single node.

1: function LUDecomposition(A)
2: for i = 1 to n do
3: j = {j | [A]ji = max([A]ii, [A]i+1i, ..., [A]ni)}
4: Add j to P
5: Swap i-th row with j-th row if i 6= j
6: for j = i + 1 to n do
7: [A]ji = [A]ji/[A]ii
8: end for
9: for j = i + 1 to n do
10: for k = i + 1 to n do
11: [A]jk = [A]jk − [A]ji × [A]ik
12: end for
13: end for
14: end for
15: return (A,P) /* i.e., return (L, U, P) */

After calling Algorithm 5, the decomposed lower triangular matrix and upper triangular
matrix are stored in the original matrix, except for the diagonal elements of the lower
triangular matrix which are all set to 1.0. Since there is only one nonzero element in each
row or each column of the permutation matrix, the permutation of rows can be stored in
an array S, where [S]i indicates the permuted row number for the i-th row of matrix A.

After decomposing the matrix A into L and U, we need to invert L and U separately.
The inverse of a lower triangular matrix is given by

[L−1]ij =


0 for i < j
1

[L]ii
for i = j

− 1
[L]ii

∑i−1
k=j[L]ik[L

−1]kj for i > j
, (3.12)
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Figure 3.1: Block method for LU decomposition.

where L and L−1 are the original lower triangular matrix and its matrix inverse respectively.

The inverse of the upper triangular matrix can be computed similarly. In fact, in our
implementation, for the upper triangular U matrix we instead compute the inverse of
UT , which is a lower triangular matrix, as an optimization. The details can be found in
Section 3.4.

The classical LU algorithm is not suitable for parallel computing, so we use a block
method to compute the LU decomposition in parallel. Our block method is shown in
Figure 3.1.

In this method, the lower triangular matrix L and the upper triangular matrix U are
both split into three submatrices, while the original matrix A is split into four submatrices.
These smaller matrices satisfy the following equations:

L1U1 = P1A1,

L1U2 = P1A2,

L
′

2U1 = A3, (3.13)

L3U3 = P2(A4 − L
′

2U2),

L2 = P2L
′

2,

where both P1 and P2 are permutations of rows. The entire LU decomposition can be
represented as

LU =

(
P1

P2

)
A = PA,
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where P is also a permutation of rows obtained by augmenting P1 and P2.

The method partitions an LU decomposition into two smaller LU decompositions and
two systems of linear equations which can be easily computed in parallel (details in the
following paragraphs). The logical order of computing the L and U blocks on the left-hand-
side of Equation 3.13 is as follows: First, L1 and U1 are computed from A1 and P1. Then
L
′
2 and U2 are computed from L1, U1, P1, A2, and A3. Third, L3 and U3 are computed

from A4 − L
′
2U2 and P2. Finally, L2 is computed from L

′
2 and P2.

First, let us examine the computation of L1 and U1. If submatrix A1 is small enough,
e.g., order of 103 or less, it can be decomposed into L1 and U1 on a single node very effi-
ciently (about 1 second on a general modern computer). In our MapReduce implementa-
tion, we decompose such small matrices in the MapReduce master node using Algorithm 5.

If submatrix A1 is not small enough, we can recursively partition it into smaller subma-
trices as in Figure 3.1 until the final submatrix is small enough to compute on a single node.
Note that while this is conceptually a recursive computation, the number of partitioning
steps (i.e., the depth of recursion ) can be precomputed at the start of the matrix inversion
process, so that the computation is implemented by a predefined pipeline of MapReduce
jobs. In this pipeline, the input matrix is read only once and the partitioned matrix is
written only once as described in Section 3.4.2.

After obtaining L1 and U1, the elements of L
′
2 and U2 can be computed using the

following two equations (for simplicity, we present the equations without pivoting since
pivoting does not increase the computational complexity):

[L
′

2]ij =
1

[U1]ii

(
[A3]ij −

i−1∑
k=1

[L
′

2]ik[U1]kj

)
,

[U2]ij =
1

[L1]ii

(
[A2]ij −

i−1∑
k=1

[L1]ik[U2]kj

)
. (3.14)

From these equations, it is clear that the elements in one row of L
′
2 are independent of

the elements in other rows. Similarly, the elements in one column of U2 are also indepen-
dent of the elements in other columns. Therefore each row of L

′
2 and each column of U2

can be computed independently, so we can parallelize the computation of L
′
2 and U2. In

MapReduce, we can use one map function (multiple copies of which are executed in parallel
on multiple map workers) to compute L

′
2 and U2 in parallel. We use the reduce function

of the same MapReduce job to compute A4 − L
′
2U2 in parallel on the reduce workers.
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After obtaining A4 − L
′
2U2, we decompose it into L3 and U3. If A4 − L

′
2U2 is small

enough, L3 and U3 are computed on the MapReduce master node using Algorithm 5. Oth-
erwise, A4−L

′
2U2 is further partitioned and the computation proceeds recursively. As with

A1, the number of partitioning steps can be precomputed and the recursive computation
can be implemented by a predefined pipeline of MapReduce jobs. One difference between
A1 and A4−L

′
2U2 is that A1 can be read from the input matrix and completely partitioned

into as many pieces as necessary before the LU decomposition starts, while A4−L
′
2U2 can

only be partitioned after L
′
2 and U2 are computed. Note that while A1 and A4 − L

′
2U2

may need additional partitioning, A2 and A3 never need additional partitioning due to the
easily parallelizable nature of computing L

′
2 and U2 using Equation 3.14.

The pseudocode of block LU decomposition is shown in Algorithm 6. In this algorithm,
at the end of the block decomposition, the permutation matrix P is obtained by augmenting
P1 and P2. The lower triangular matrix L is obtained by augmenting L1, L

′
2, L3, and P2

and the upper triangular matrix U is obtained by augmenting U1, U2, and U3 (Figure 3.1).

Algorithm 6 Block LU decomposition.

1: function BlockLUDecom(A)
2: if A is small enough then
3: (L,U,P) = LUDecompoistion(A)
4: else
5: Partition A into A1,A2,A3,A4

6: (L1,U1,P1) = BlockLUDecom(A1)
7: Compute U2 from A2, U1 and P1

8: Compute L
′
2 from A3 and U1

9: Compute B = A4 − L
′
2U2

10: (L3,U3,P2) = BlockLUDecom(B)
11: P = Combination of P1 and P2

12: L = Combination of L1, L
′
2, L3, and P2

13: U = Combination of U1, U2 and U3

14: end if
15: return (L,U,P)

After obtaining the lower triangular matrix L and the upper triangular matrix U,
we can compute the inverses of these two matrices using Equation 3.12. Inspecting this
equation, we can see that a column of the matrix inverse is independent of other columns
of the inverse. Therefore, the columns can be computed independently in parallel. After
computing the inverses of L and U, the inverse of the original matrix can be obtained by
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multiplying U−1 by L−1, which can also be done in parallel, and permuting the resulting
matrix according to array S. That is, [A−1][S]ij =

∑n
k=1[U

−1]ik[L
−1]kj.

3.4 Implementation in MapReduce

In this section, we discuss the implementation of our algorithm in MapReduce. The im-
plementation involves several steps: (1) We use the master compute node to create some
control files in HDFS, which are used as input files for the mappers of all MapReduce
jobs. (2) We launch a MapReduce job to recursively partition the input matrix A. (3)
We launch a series of MapReduce jobs to compute L

′
2, U2, and B = A4 − L

′
2U2 for the

different partitions of A as in Algorithm 6. Matrices L1 and U1 are computed in the mas-
ter nodes of these jobs if A1 is small enough to be computed in a single node, otherwise
they are computed in another MapReduce pipeline. Similarly, matrices L3 and U3 are
computed in the master nodes if B is small, otherwise in another MapReduce pipeline. (4)
We launch a final MapReduce job to produce the final output by computing U−1, L−1 and
A−1 = U−1L−1P.

The number of MapReduce jobs required to compute the LU decomposition (Step 3)
depends on the order (n) of matrix A and a bound value nb. The bound value nb is the
maximum order of a matrix that can be LU decomposed on a single node (in our case the

MapReduce master node). The number of MapReduce jobs is given by 2
dlog2 n

nb
e
. Thus, we

have a pipeline of MapReduce jobs as shown in Figure 3.2.

A MR
0

MR
1

… MR
k-1

MR
k A-1-1

Final OuputPartition LU Decomposition
2  ‪ ‪ log2(n/nb) jobs  ‫   ‫ 

Figure 3.2: MapReduce pipeline for matrix inversion.

The bound value should be set so that the time to LU decompose a matrix of order
nb on the master node is approximately equal to the constant time required to launch a
MapReduce job. If the running time to decompose a matrix of order nb on the master node
is significantly less than the launch time of a MapReduce job, there will be more MapReduce
jobs than necessary and we can increase nb to reduce the number of MapReduce jobs and
also reduce the total running time of LU decomposition. On the other hand, if the running
time on the master node is significantly larger than the launch time of a MapReduce job,
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the LU decomposition on the master node becomes the bottleneck and we can improve
performance by reducing nb so that we partition the matrix into smaller submatrices. In
our experiments, we set nb to 3200.

Next, we discuss the steps of the implementation. For the purpose of this discussion,
Figure 3.3 shows an example of how the input matrix is partitioned, and Figure 3.4 shows
the HDFS directory structure used by our implementation. The HDFS directory “Root”
is the work directory of our implementation, and the file “a.txt” in “Root” is the input
matrix.

3.4.1 Map Input Files on MapReduce

In the first step, we create m0 files on the Master node, where m0 is the number of compute
nodes. These files are used as input files for the following MapReduce tasks and they are
stored in “Root/MapInput/” (see the purple labels in Figure 3.4), where “Root/” is the
root directory for our implementation. Each file only contains one integer, i.e., the first
file A.0 contains 0, the second file A.1 contains 1, ..., and the last file A.m0 − 1 contains
m0 − 1. The mappers use these files to control the computation, and they produce the
output required for inverting the input matrix by writing directly to HDFS.

3.4.2 Data Partitioning for LU Decomposition

In this section we discuss how the input matrix is partitioned for LU decomposition and
how the different partitions flow through the MapReduce pipeline. We also discuss how the
input, intermediate, and output data files are stored in HDFS to improve I/O efficiency.
In Figure 3.4, the green labels indicate which process produces each result or intermediate
data file. For example “Map 0” means that the result is produced by the mappers in the
first MapReduce job, and “Master 0” means that the result is produced by the master
node of that job. Therefore, these labels also represent the computation process of the LU
decomposition.

We launch a MapReduce job to partition matrix A. This is a map-only job where the
mappers do all the work and the reduce function does nothing. This is the only partitioning
job, and it recursively partitions A into as many submatrices as needed, according to the
depth of recursion implied by n and nb. The mappers of this job read their input files
from “Root/MapInput/”. The integer read by each mapper tells that mapper which rows
of the input matrix in the HDFS file “Root/a.txt” to read and partition. In order to
improve I/O performance, each map function reads an equal number of consecutive rows
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Figure 3.3: Matrix partitioning and data flow for LU decomposition.
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Figure 3.4: HDFS directory structure for LU decomposition.
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from this file to increase I/O sequentiality. Worker j (the mapper assigned input file
“Root/MapInput/A.j”) reads rows r1 = nj

m0
to r2 = r1 + n

m0
(exclusively). Each block is

written to “Root/A1” and “Root/A2” if the block is in the first half of A. Otherwise it is
written to “Root/A3” and “Root/A4”.

In order to improve I/O efficiency while reading submatrices from disk in subsequent
MapReduce jobs, each submatrix, whether A1, A2, A3, or A4, is split into multiple parts,
each of which is stored in a separate file. This ensures that there will never be multiple
mappers that simultaneously read the same file. For example, A3 is stored in m0

2
files

because we use only half the compute nodes to compute L
′
2 using A3, while the other half

are used to compute U2 using A2 (details later). Therefore, m = m0

2
− 1 in Figure 3.4.

This approach also ensures that no two mappers write data into the same file, thereby
eliminating the need for synchronization between mappers and improving I/O efficiency.
Mappers and reducers in subsequent jobs also write their data into independent files, so
synchronization on file writes is never required and I/O efficiency is maintained. The
separate files written by worker nodes are shown in Figure 3.4, for example, “L2/L.1”.

In Figure 3.3, which shows an example of matrix A partitioned by four mappers,
the square blocks surrounded by solid lines are submatrices, while the rectangular blocks
divided by dashed lines are separate files storing these submatrices. In Figure 3.4, the
black labels within braces are the file names of partitioned submatrices. The value f2 is
the maximum factor of m0 less than

√
m0 (see the discussion in Section 3.5.2). The depth

d of the directory structure equals the depth of data partitioning (2 in Figure 3.4) given
by dlog2

n
nb
e. The pseudocode of the data partitioning algorithm for LU decomposition is

given in Algorithm 7. This listing shows one map function partitioning the block of data
in rows r1 to r2.

Partitioning submatrix B = A4 − L
′
2U2 is handled differently from the input matrix.

This submatrix is produced by m0 reducers of a MapReduce job and stored in m0 files.
These files are not read simultaneously by many mappers or reducers, so instead of ma-
terializing the data partitions of B after this submatrix is produced, we only record the
indices of the beginning and ending row, and the beginning and ending column, of each
partition in this submatrix. We also record the names of the files storing this data. Us-
ing this approach, the files in “Root/OUT/A1”, “Root/OUT/A2”, “Root/OUT/A3”, and
“Root/OUT/A4” (indicated by blue labels in Figure 3.4) are very small (in general, less
than 1 KB). The running time to partition A4 − L

′
2U2 with such a method is quite short

(less than 1 second). Therefore, it is not necessary to launch a MapReduce task to partition
this matrix. In our implementation, we partition this matrix in the master node.
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Algorithm 7 Data partitioning for LU decomposition.

1: function Partition(A, r1, r2, n, nb, m, f1, f2, “path”)
2: /* A is the original matrix. r1 is the index of the beginning row to be saved by this

function and r2 is the index of the ending row. n is the order of the matrix. nb is the
bound value for data partitioning. m is the number of map workers partitioning the
current submatrix (e.g., the submatrix in the directory Root/A1 shown in Figure 3.3),
f1 and f2 indicate that A4 is partitioned to f1×f2 blocks according to the optimization
in Section 3.5.2. */

3: if n < nb then
4: /* Save A1*/
5: Save [A][r1...r2][0...n] to “path/A1/A. r1m

n
”

6: else
7: if r1 <

n
2

then
8: Partition(A, r1, r2,

n
2
, nb,

m
2

, f1, f2, “path/A1”)
9: /* Save A2 */
10: for i = 0 to m - 1 do
11: Save [A][r1...r2][n2 ...n] to “path/A2/A.i. rm

n
”

12: end for
13: else
14: /* Save A3 */

15: for i = 0 to (r2−r1)m
2n

− 1 do

16: k = (2r1−n)m
4n

+ i
17: Save [A][r1...r1+ 2mi

n
][0...n

2
] to “path/A3/A.k”

18: end for
19: /* Save A4 */
20: for j = 0 to f2 − 1 do
21: l = (2r1f1

n
− f1)f2 + j

22: for i = 0 to 2(r2−r1)f1
n

− 1 do
23: Save [A]

[r1...r1+
(i+1)n
2f1

][n
2
...n

2
+

(j+1)n
2f2

]
to “path/A4/A.l.i”

24: end for
25: end for
26: end if
27: end if

54



3.4.3 LU Decomposition Using MapReduce

After partitioning A, we use Algorithm 6 to compute the LU decomposition. Since A has
been partitioned, line 5 is ignored, and A1, A2, A3, and A4 are read from HDFS files. We
launch one MapReduce job for lines 7–9 of this algorithm. One MapReduce job is sufficient
regardless of the size of the input block. The map function of this job computes L

′
2 and

U2, while the reduce function computes A4 − L
′
2U2 (red labels in Figure 3.4). In our

implementation, we use half of the mappers to compute L
′
2 and the other half to compute

U2, since computing L
′
2 has the same computational complexity as computing U2. Each

mapper reads an input file from the directory “Root/MapInput/”. If the value in this file
is not larger than m = m0

2
− 1, the mapper computes part of L

′
2. Otherwise it computes

part of U2. This is illustrated in Figure 3.5.

If worker j is computing part of L
′
2, this worker is assigned the file “A.j”. The

worker reads L1 from HDFS directory “Root/A1” and A2.j from files “Root/A2/A.j.0,
Root/A2/A.j.1, ..., Root/A.j.m”, and computes one part of L

′
2, which is written to

“Root/L2/L.j”.

Each mapper in this MapReduce job emits one (key, value) pair containing (j, j), where
j is the value read by the mapper from its input file. These (key, value) pairs are used to
control which part of A4 − L

′
2U2 each reducer should compute. In our implementation,

we use block wrap for matrix multiplication (Section 3.5.2), so worker j computes the j-th
block of A4−L

′
2U2. The detailed files read and written are shown in Figure 3.5. It should

be noted that after obtaining L
′
2 and P2, L2 can be easily obtained by permuting L

′
2 based

on the permutation matrix P2. Therefore in our implementation, L2 is constructed only
as it is read from HDFS.

3.4.4 Time Complexity of LU Decomposition

The time complexity of our LU decomposition is shown in Table 3.1. We also present the
time complexity of the algorithm used in ScaLAPACK (refer Section 3.6.5 for a detailed
comparison of our algorithm with ScaLAPACK). In our algorithm, all data is written to
HDFS, such that the amount of data read from HDFS is similar to the amount of data
transferred between different compute nodes. In the MPI implementation using ScaLA-
PACK (Section 3.6.5), the data is only read once, but data transfer between the master
and workers is very large. The data transfer in our algorithm is better than ScaLAPACK.
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Algorithm Write Read Transfer Mults Adds
Our Algorithm 3

2
n2 (l + 3)n2 (l + 3)n2 1

3
n3 1

3
n3

ScaLAPCK n2 n2 2
3
m0n

2 1
3
n3 1

3
n3

Table 3.1: Time complexity of our LU decomposition algorithm, in comparison with the
ScaLAPACK algorithm, for n× n matrix on m0 compute nodes, where m0 = f1 × f2 and
l = 1

4
(m0 + 2f1 + 2f2).

3.4.5 Triangular Matrix Inversion and Final Output

One MapReduce job is used to compute the inverses of the triangular matrices L and U
and the product of their inverses. In the map phase, the inverses of the triangular matrices
are computed using Equation 3.12. Half of the mappers compute the inverse of L and the
other half compute the inverse of U. In order to balance load, the i-th node is used to
compute the (k×m0 + i)-th column of L−1 if i is less than n

2
. If i ≥ n

2
, the node computes

the (k × n
m0

+ i − n
2
)-th row of U−1, where k is an integer (0 ≤ k < n−i

m0
for i < n

2
or

0 ≤ k < 3n−2i
2m0

for i ≥ n
2
).

In the reduce phase, the product of these two inverses U−1L−1 is derived. Each reducer
reads a number of columns of L−1 and a number of rows of U−1, and multiplies these
two parts. In order to reduce read I/O, block wrap is used for matrix multiplication
(Section 3.5.2). In order to balance load, instead of partitioning the final matrix into f1×f2
blocks (see Section 3.5.2), each of which contains consecutive rows and consecutive columns,
the matrix is partitioned into grid blocks, each of which contains discrete rows and discrete
columns. Worker j computes the product of row m0

f1
k1 + j1 of U−1 and column m0

f2
k2 + j2 of

L−1, where j1 = j
f1

, j2 = j mod f1. Here k1 is any of the non-negative integers that satisfy
m0

f1
k1 + j < m0, and k2 is any of the non-negative integers that satisfy m0

f2
k2 + j < m0. As

in the implementation of LU decomposition, all outputs, L−1,U−1 and A−1 = U−1L−1P,
are written to HDFS. The map function only emits integers (j, j) to control the reduce
tasks, and does not emit outputs. Table 3.2 shows the time complexity and data transfer
of our matrix inversion algorithm, and the corresponding values in ScaLAPACK.

3.5 Optimizations of the MapReduce Implementation

In this section, we present optimizations that we use to speed up our implementation.
Two of these optimizations are to reduce the read and write I/O, which improves the
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Algorithm Write Read Transfer Mults Adds
Our Algorithm 2n2 ln2 (l + 2)n2 2

3
n3 2

3
n3

ScaLAPCK n2 m0n
2 m0n

2 2
3
n3 2

3
n3

Table 3.2: Time complexity of our triangular matrix inversion and final matrix inversion,
in comparison with the ScaLAPACK algorithm, for n × n matrix on m0 compute nodes,
where m0 = f1 × f2 and l = 1

2
(m0 + f1 + f2).

scalability of our algorithm. These optimizations are storing intermediate data in separate
files (Section 3.5.1) and block wrap (Section 3.5.2). A third optimization improves memory
access locality by storing the transpose of the upper triangular matrix in both HDFS and
memory (Section 3.5.3).

3.5.1 Storing Intermediate Data in Separate Files

In order to reduce the amount of read and write I/O in different MapReduce jobs, we do
not combine the results, such as L1, L2 and L3, in any stage. The results are located in
many different files as shown in Section 3.4. Algorithm 6 writes all outputs into HDFS as
separate files and skips lines 11–13. The total number of files for the final lower triangular
or upper triangular matrix is N(d) = 2d + m0

2
(2d− 1), where m0 is the number of compute

nodes, and d is the recursive dept which is constrained by 2d < n
nb
< 2d+1, where n is the

order of the matrix and nb is the bound value. For example, given a square matrix A with
n = 215, nb = 211 = 2048, and m0 = 64, the recursive depth d is 4 and the final lower
triangular matrix L is stored in N(d) = 496 files. In our implementation, these files are
read into memory recursively.

Because combining intermediate files can only happen on one compute node, such as
the master node, and other compute nodes have to wait until combination is completed,
combining intermediate files significantly increases the running time. Therefore, storing
intermediate results in separate files significantly improves performance, as we demonstrate
in Section 3.6.3.

3.5.2 Block Wrap for Matrix Multiplication

Our algorithm requires multiplying two matrices at different stages, for example L
′
2 and

U2, or U−1 and L−1. A simple and easy-to-implement way to multiply two matrices while
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reducing the amount of data read is to use the block method for matrix multiplication. In
general, in order to compute L

′
2U2, each compute node can read a number of rows, e.g.,

i-th to j-th rows, of L
′
2 and the entire matrix U2. This compute node can then compute

the i-th to j-th rows of L
′
2U2. If the number of compute nodes is m0, the amount of data

read in each node is (1 + 1
m0

)n2 and the total data read is (m0 + 1)n2.

There is a better method to multiply two matrices, called the block wrap method [14],
which reduces the amount of data read. In this method, L

′
2 is divided into f1 blocks, each

of which contains n
f1

consecutive rows, while U2 is divided into f2 blocks, each of which

contains n
f2

consecutive columns. Using this partitioning, every block of L
′
2 will need to

be multiplied by every block of U2, and the final matrix is partitioned into f1× f2 blocks.
Each of these blocks is computed by one compute node. That is, each compute node reads
n
f1

rows of L
′
2 and n

f2
columns of U2 (one block from each matrix) and computes the product

of these two block. f1 and f2 are chosen so that m0 = f1 × f2. The data read in each
compute node is ( 1

f1
+ 1

f2
)n2, and the total data is (f1 + f2)n

2, which is significantly less

than (m0 + 1)n2. In order to obtain the minimum data read, we compute f1 and f2 from
n such that |f1 − f2| is as small as possible. That is, we choose f2 ≤ f1, and there is no
other factor of m0 between f1 and f2. For example, given 64 nodes, in the naive algorithm
each node reads data of size 65

64
n2, and the total data read for all 64 nodes is 65n2. Using

the block wrap method and f1 = f2 = 8, each node reads data of size 1
4
n2, and the total

data read for all nodes is 16n2, much better than the naive algorithm.

3.5.3 Storing Transposed U Matrices

In general, matrices L
′
2 and U2 are linearized in row-major order both in memory and in

HDFS. The product of L
′
2 and U2 is computed as follows:

[L
′

2U2]ij =
n∑
k=1

[L
′

2]ik × [U2]kj (3.15)

However, when the order of the matrices n is large, each read of an element from U2 will
access a separate memory page, potentially generating a TLB miss and a cache miss. If a
page can hold k data items, this access pattern can generate up to n3 + k+1

k
n2 misses for

data read and matrix multiplication.

In our implementation, the upper triangular matrix is always stored in a transposed
fashion, i.e., we store UT instead of U. The product of L

′
2 and UT

2 can be computed as
follows:

[L
′

2U2]ij =
n∑
k=1

[L
′

2]ik × [UT
2 ]jk (3.16)
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Matrix Order Elements Text Binary Number of
(Billion) (GB) (GB) MapReduce Jobs

M1 20480 0.42 8 3.2 9
M2 32768 1.07 20 8 17
M3 40960 1.68 40 16 17
M4 102400 10.49 200 80 33
M5 16384 0.26 5 2 9

Table 3.3: Five matrices used for the experiments.

The number of misses can be reduced to n3

k
+ 2n2

k
, which is significantly less than the

previous implementation and can substantially improve performance.

3.6 Experimental Evaluation

In this section, we present the experimental evaluation of our algorithm, implementation,
and optimizations. This section is organized as follows: in Section 3.6.1, we introduce the
experimental environment and the data used for the experiments. The scalability of our
algorithm is demonstrated in Section 3.6.2 and again in Section 3.6.4. The experimental
evaluation of the optimizations of storing intermediate data in separate files and block wrap
is given in Section 3.6.3. Finally, we show a performance comparison of our algorithm with
the ScaLAPACK package in Section 3.6.5.

3.6.1 Experimental Environment

Our algorithm has been implemented on Hadoop 1.1.1, which was the latest stable version
at the time the work was done. All experiments were performed on medium instances
of Amazon’s Elastic Compute Cloud (EC2) [25], except the largest matrix M4, for which
large instances are used. Each medium instance has 3.7 GB of memory and 1 virtual core
with 2 EC2 compute unit, where each EC2 compute unit has a similar performance as one
2007-era 1.0−1.2 GHz AMD Opteron or Xeon processor.

We use five matrices in our experiments. All of these matrices were randomly generated
using the Random class in Java. Details about the matrices are shown in Table 3.3, which
shows the order of each matrix, the number of elements (data type double), the size of
the matrix in text format, and the size in binary format. Recall that the bound value nb
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used in our experiments is 3200. Table 3.3 shows, for this value of nb, the total number of
MapReduce jobs required for inverting each matrix.

In our implementation, the input file is stored in binary format (double data type, 64
bits), while the final output is stored in text format, i.e., the size in binary format and the
size in text format listed in the table are the size of input data and the size of output data
respectively. In our implementation, all intermediate data are stored in double data type
(64 bits). For matrices M1, M2, and M3, we checked the numerical accuracy of the final
inverse by computing the difference between AA−1 and In. We found that the absolute
value of any element in AA−1 − In is less than 10−5. Therefore, we can conclude that
the double data type is accurate enough for our block LU decomposition based matrix
inversion algorithm. We did not verify the numerical accuracy for M4 due to the long
running time.

3.6.2 Algorithm Scalability

In this section, we investigate the scalability of our proposed algorithm. The running time
versus the number of EC2 instances is shown in Figure 3.6. One ideal scalable line has been
over-plotted on this figure in order to demonstrate the scalability of our algorithm. The
deviation of our algorithm from ideal scalability when the number of nodes is high is due to
the constant launch time of MapReduce jobs, since our algorithm uses multiple MapReduce
jobs. However, we also note that the number of MapReduce jobs is proportional to n, where
n is the order of the matrix, while the running time is proportional to n3. Therefore, we
can expect that the larger the matrix, the better the algorithm scalability. This is evident
in Figure 3.6.

We investigated improving scalability by using systems that support iterative MapRe-
duce computations, such as HaLoop [8]. However, we found that HaLoop and similar
systems do not reduce the launch time of MapReduce jobs. HaLoop maintains intermedi-
ate state between MapReduce jobs, which is not useful for our algorithm.

The largest matrix M4 is used to further test the scalability limits of our algorithm
(Section 3.6.4), and the smallest matrix M5 is used to evaluate our optimizations (next
section).

3.6.3 Evaluating the Optimizations

Our first proposed optimization is storing intermediate data in separate files. Without
this optimization, we combine all separate files of L, such as L1,L2,1,L2,2,L2,3,L2,4 and
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Figure 3.6: The scalability of our algorithm, in comparison with ideal scalability (purple
line), which is defined as T (n) = T (1)/n, where T (n) is the running time on n medium
EC2 instances.

L3 in Figure 3.4, as well as all separate files of U, in each MapReduce job in our iterative
MapReduce process. The combination happens in the master node and the combined file
is written by that node into HDFS. Since the combination is done in one node, it takes
a constant time to combine the files independent on the number of the compute nodes.
Therefore, we can expect that the benefit of this optimization increases as the number of
compute nodes increases since the running time gets smaller.

To validate this, we conduct an experiment with matrix M5 in which we compare the
time taken by our optimized algorithm to the time taken by the algorithm that combines
L and U files. The ratio of the unoptimized running time to the optimized running time
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Figure 3.7: The running time of the optimized algorithm compare to the algorithm without
the separate intermediate file optimization (blue), and without the block wrap optimization
(red).

for 4–64 nodes is shown in Figure 3.7. The figure shows the unoptimized version to be
close to 30% slower in some cases, demonstrating the importance of this optimization.

As mentioned in Section 3.5.2, the block wrap method can significantly reduce the
amount of read I/O, which improves performance. In this section, we also use the smallest
matrix M5 to validate this optimization. As before, we measure the running time without
this optimization on 4–64 compute nodes and then compare this to the running time with
the optimization. The improvement of this optimization is also shown in Figure 3.7. The
figure shows that the larger the number of compute nodes, the larger the improvement in
performance.
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We did not evaluate the third optimization (transpose storing) in our experiments, but
our experience is that this optimization greatly improves the performance of our algorithm,
by a factor of 2–3.

3.6.4 Scaling to a Very Large Matrix

In this section, we study the ability of our algorithm to invert a very large matrix, namely
M4, which is a matrix of order 102400. We measure the running time on 128 Amazon EC2
large instances, each of which has two medium CPU cores, for a total of 256 medium CPU
cores. A medium CPU core has performance similar to two 2007-era 1.0–1.2 GHz AMD
Opteron or Xeon processors.

We executed two runs of our algorithm to invert this large matrix. In the first run,
it took about 8 hours to solve the problem. During this run, one mapper computing the
inverse of a triangular matrix failed and this mapper did not restart until one of the other
mappers finished. This increased the running time. However, this failure recovery is a
good demonstration of the benefit of using a fault tolerant framework like MapReduce for
large scale problems. In the second run, there were no failures and it took about 5 hours
to invert the matrix.

The large matrix is about 80 GB in size in binary representation. Our algorithm on the
EC2 large instances writes more than 500 GB of data and reads more than 20 TB of data
in the 33 MapReduce jobs required to invert the matrix. In this experiment, there were
more than 1015 double precision additions and 1015 double precision multiplications. This
illustrates the scale at which our algorithm operates, and shows that the matrix inversion
problem is both compute intensive and data intensive.

We also used 64 medium EC2 instances to invert this matrix. It took about 15 hours in
this case to invert the matrix. Analyzing the scalability of the medium instances compared
to the large instances, we see that the medium instances show better scalability. The
reasoning is as follows. Assume for simplicity that each medium instance core has similar
compute performance to a large instance core. When we used 128 large EC2 instances we
were using 256 cores, whereas when we used 64 medium instances, we were using 64 cores.
Thus, we have four times as many cores when using large instances. Therefore, if our
algorithm has ideal scalability, the running time in large instances should be 15/4 = 3.8
hours (four times the cores should result in 1

4
the running time). However, the running

time we observed on large instances (5 hours) is longer than this time assuming ideal
scalability. There are two possible reasons related to EC2 for the running time being
longer than expected. The first reason is that we found that the performance variance
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between different large EC2 instances is high, even though the instances are supposed to
have similar performance. The second reason is that the data read speed on some large
instances is less than the speed on the medium instances. We found that the speed of
copying files between large instances is around 30–60 MB/s, while the speed of copying
files between medium instances is around 60 MB/s.

Setting this difference in scalability between medium and large instances aside, the
main conclusion of the experiment is that we are able to scale to such very large scales in
terms of both data size and number of nodes, and that this scalability holds in different
runs on different cluster sizes, even in the presence of failures.

3.6.5 Comparison with ScaLAPACK

ScaLAPACK is a popular library of high-performance linear algebra routines for distributed
memory message passing computers and clusters. ScaLAPACK is an extension of LA-
PACK [4], and it has been shown to have good scalability and performance. More details
about ScaLAPACK can be found in [7]. In this section, we compare our matrix inversion
technique to ScaLAPACK, to see how we stack up against a state-of-the-art competitor.

In this experiment, the package libscalapack-mpi-dev in Ubuntu is used. The version of
MPI used is MPICH [48]. The drive routines PDGETRF and PDGETRI in ScaLAPACK
are used to compute the LU decomposition and the triangular matrix inverse respectively.
In order to reduce the data transfer between compute nodes in ScaLAPACK, we use an
optimization similar to our block wrap optimization. In particular, we set the process grid
to f1 × f2, where m0 = f1 × f2 is the number of compute nodes, f1 ≤ f2, and there is no
factor of m0 between f1 and f2, which means that the matrix is partitioned into f1 × f2.
The matrix is first partitioned into blocks of dimension 128× 128, since we found that this
size provides the best performance in our experiment. Next, these blocks are assigned to
the process grid. In order to improve load balancing, the blocks are assigned as follows: the
block in row f1×m1 + i and column f2×m2 + j is assigned to the (f2× j+ i)-th compute
node, where m, n, i and j are integers that are constrained by following inequalities:
f1×m1 + i < n

128
, f2×m2 + j < n

128
, i ≤ f1, and j ≤ f2, where n is the order of the matrix.

In our ScaLAPACK implementation, all intermediate data is stored in memory, such that
the matrix is read only once and written only once.

The ratio of the running time of ScaLAPACK to the running time of our algorithm on
medium EC2 nodes for matrices M1 to M3 is shown in Figure 3.8. This experiment shows
that the running time of our algorithm is comparable to ScaLAPACK for these scales.
We expect ScaLAPACK to perform well since it is written in Fortran, which has better
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Figure 3.8: The ratio of the running time of ScaLAPACK to the running time of our
algorithm.

performance than Java for numerical computation. Therefore, it is a positive result that
our algorithm performs comparable to ScaLAPACK for these experiments. The advantage
of our algorithm is that it uses the popular and widely deployed MapReduce framework,
and it is scalable and fault tolerant.

To demonstrate the scalability of our algorithm as compared to ScaLAPACK, we run
another experiment in which we use both 128 large EC2 instances (256 CPU cores) and
64 medium EC2 instances (64 CPU cores) to compute the inverse of the largest matrix,
M4. These are the same cluster sizes that we used with our algorithm for this matrix.
ScaLAPACK takes 8 hours on large instances and more than 48 hours on medium instances
to invert this matrix, both of which are significantly longer than our results reported in
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Section 3.6.4 (5 hours on large instances and 15 hours on medium instances). It should
be noted that the running time of our algorithm on the large instances with a failure
(approximately 8 hours) is similar to the running time of ScaLAPACK without failure.
This experiment shows that our algorithm has better scalability for the large matrix than
ScaLAPACK.

3.7 Summary and Future Work

In this chapter, we present a scalable and fault tolerant solution for the dense matrix
inversion problem based on the MapReduce framework. We summarize our work as follows:

• We propose a recursive block LU decomposition algorithm that effectively decom-
poses the matrix into a lower triangular matrix and an upper triangular matrix using
MapReduce.

• After calculating the lower triangular and upper triangular matrices, we use the
MapReduce framework to compute their inverses and the inverse of original matrix,
which is the product of inverses of lower triangular and upper triangular matrices.

• Our experiments show that our approach leads to good scalability, which for matrix
inversion. To the best of our knowledge, ours is the first work to provide a scalable
matrix inversion solution using MapReduce.

• Our optimizations, namely storing intermediate data in separate files, block wrap,
and transpose storing, significantly improve the performance, further demonstrating
the scalability of our algorithm. of our algorithm.

• Our algorithm finds the inverse of a large matrix with order 102400 on 128 Amazon
EC2 large instances (256 CPU cores) in 5 hours. No other work has reported finding
the inverse of such large matrix with comparable performance to our algorithm. It
shows that our algorithm can scale to very large matrices.

• Our experiments also show that our algorithm has better scalability than the ScaLA-
PACK package. In addition, our algorithm is fault tolerant, while ScaLAPACK is
not.

In our implementation using Hadoop, all intermediate data, such as L1 and U1, is
written to HDFS files in each MapReduce job and this intermediate data is read from
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HDFS files in the next MapReduce job. Therefore, the read I/O in our algorithm is much
larger than other algorithms that persist intermediate data in memory, such as the MPI
implementation of ScaLAPACK (see the comparison in the Table 3.1). In Hadoop, it is not
easy to persist this data in memory and still keep the algorithm fault tolerant. However,
the recently developed Spark system [82] provides parallel data structures that let users
explicitly persist data in memory with fault tolerance. Therefore, one direction for future
work is to implement our algorithm using Spark, which we expect would improve perfor-
mance by reducing read I/O. Since Spark is based on MapReduce, the implementation of
our algorithm in Spark is similar to the one in Hadoop, except that L1 and U1 in Figure 3.5
are loaded from distributed memory instead of being read from HDFS files.
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Chapter 4

Finding Eigenvalues and Eigenvectors

Finding the eigenvalues and eigenvectors of a matrix is an important problem in many
fields. In this chapter, we briefly motivate the eigenvalue and eigenvector problem. We
then propose an algorithm to solve this problem using MapReduce. Unlike the previous
two scientific computing problems, we do not implement the algorithms proposed in this
chapter. Thus, this chapter can be viewed as an initial investigation of the problem, to be
completed as future work.

4.1 Applications of the Eigenvalue and Eigenvector

Problem

In physics and engineering, the eigenvalue and eigenvector problem is often the most crucial,
or even the ‘only’ problem. That is because the dynamics of our world are typically
governed by some linear differential equation, whose solution is essentially given by the
eigenvalues and eigenvectors of some large matrix.

As an example, in classical mechanics, the dynamics of the positions of a system of
particles, denoted by r(t), are usually governed by the coupled equation, which has motion
of the form

d

dt
r(t) = Ar(t), (4.1)

where A is a square matrix [68]. The solution to this systems of equations is to diagonalize
A to find all the eigenvalues and eigenvectors. Denote the set of eigenvalues and the
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corresponding eigenvectors by λj, and rj. In the basis of {rj} which diagonalizes A,
Equation 4.1 is rewritten as, for each j,

d

dt
rj(t) = Anrj(t), (4.2)

which are decoupled harmonic oscillator equations that can be solved independently.

Another example is from quantum physics, where a central goal is to solve the Shrödinger
equation

i
∂

∂t
Ψ(r, t) = H(r, t)Ψ(r, t). (4.3)

Here, Ψ(r, t), as a function of position r and time t, is the wave function characterizing
the state of the system, and i is the imaginary unit, i.e., i2 = −1. H(r, t), called the
Hamiltonian of the system, is a matrix representing the Hermitian operator in terms of the
position r and time t.

In most practical cases, the Hamiltonian H is time independent, i.e., independent of t.
Hence, the solution to the Shrödinger equation can be given by

Ψ(r, t) = e−iHtΨ(r, t = 0), (4.4)

where Ψ(r, t = 0) is the initial state of the system, and the operator e−iHt is a unitary
operator that governs the dynamics of the system.

The form of the operator e−iHt is given by diagonalizing H, i.e., solving the ‘stationary’
Shrödinger equation

HΨj(r) = EjΨj(r), (4.5)

to find the eigenvalues Ej and the eigenvectors Ψj(r) of H.

One can then expand the initial state Ψ(r, t = 0) in terms of the complete basis of the
eigenvectors Ψj(r) of H, i.e.,

Ψ(r, t = 0) =
∑
j

cjΨj(r), (4.6)

then the solution to the Shrödinger equation is found, which is given by

Ψ(r, t) =
∑
j

e−iEjtΨj(r). (4.7)

In these two examples, the key step toward the solution to the equation of motion is
to diagonalize some large square matrix. In the quantum mechanics case, the matrix is
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of size 2n × 2n, where n is the number of particles in the system. In many cases, the
most important thing one needs to know is the smallest eigenvalue and the corresponding
eigenvector, which are called the ground state energy and ground state wave function of
the systems, respectively. In those systems where each particle has interaction with most
other particles, the matrix H is a dense matrix.

Many other applications of the eigenvalues and eigenvector problems exist, and we now
turn our attention to solving this problem on MapReduce.

4.2 Finding Eigenvalues and Eigenvectors on MapRed-

cue

The eigenvalue and eigenvector problem can be written as

Av = λv (4.8)

where A is a square matrix of order n, and v is a vector of dimension n. λ is the eigenvalue
of A associated with the eigenvector v.

There are many methods to solve the eigenvalue and eigenvector problems. They,
however, are designed to run on a single core. When the order of the matrix A becomes
very large, we need to extend these algorithms so that they can efficiently run on a large
cluster. MapReduce can give us the required scalability and fault tolerance to run on such
clusters.

In this chapter, we do not introduce all possible algorithms that are suitable for parallel
computing. Instead, we briefly present one algorithm, named inverse iteration [61], and
propose an approach to use it to solve the eigenvalue and eigenvector problem for large
dense matrices on MapReduce.

The inverse iteration method first assumes that there is an approximate eigenvalue µ,
and an approximate eigenvector v0. The method then uses an iteration step to get an
increasingly accurate eigenvector. The iteration step is given by

vk+1 =
(A− µIn)−1vk
||(A− µIn)−1vk||

(4.9)

where In is the identity matrix of order n. The eigenvalue corresponding to this eigenvector
is

λ =
v∗Av

v∗v
(4.10)
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Algorithm 8 Bisection binary search algorithm to find all eigenvalues.

1: function BinarySearch(A, λ1, λ2)
2: λ = (λ1 + λ2)/2
3: λ0 = getEigenvalue(A, λ)
4: if λ0 <= λ1 OR λ0 >= λ2 then
5: return
6: end if
7: Add λ0 into result set. /* Get new eigenvalue */
8: if λ0 <= λ then
9: BinarySearch(A, λ1, λ0)
10: BinarySearch(A, λ, (λ + λ1) / 2)
11: BinarySearch(A, (λ + λ1) / 2, λ1)
12: else
13: BinarySearch(A, λ1, (λ1 + λ) / 2)
14: BinarySearch(A, (λ1 + λ) / 2, λ)
15: BinarySearch(A, λ0, λ1)
16: end if
17: return

where v∗ is the conjugate transpose of v. The conjugate transpose of v is defined as
[v∗]ij = [v]ji, where the overbar is a scalar complex conjugate, i.e., a+ bi = a− bi, where
a and b are both real. If we set µ = 0, then this iteration method would get the ground
(smallest) eigenvalue and the ground eigenvector, while with µ = ∞, it gets the largest
eigenvalue and the corresponding eigenvector.

The complexity of this method is O(n3) + kO(n2), i.e., the most time consuming part
is computing (A−µIn)−1. In general, k is much less than n. Therefore if we can efficiently
compute (A−µIn)−1, we can efficiently solve the eigenvalue and eigenvector problem using
the inverse iteration method.

We propose that we first compute the inverse of matrix (A−µIn) using MapReduce as
shown in Chapter 3, and then compute the eigenvector v on one CPU. Finally, we can derive
the eigenvalue λ on one CPU. Since we have shown that the matrix inversion algorithm
in Chapter 3 is scalable and fault tolerant, the proposed inverse iteration algorithm to
determine the eigenvalue and eigenvector is expected to be scalable and fault tolerant as
well.

In order to calculate other eigenvalues and eigenvectors of the matrix A, we need to
choose an appropriate starting eigenvalue µ. For this, we can use the bisection binary
search method. Assuming that we have found the smallest (ground) eigenvalue λ0 and the
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largest eigenvalue λn−1, then we can set the next initial eigenvalue to (λ0 + λm)/2 and
we get another eigenvalue λk. After that we can use this new eigenvalue to find the next
eigenvalue in other intervals, and so on. The pseudocode of the bisection binary search
method is given in Algorithm 8, where the function getEigenvalue(A, λ) is the MapReduce
based algorithm using Equations 4.9 and 4.10.

Using this approach, all eigenvalues and eigenvectors of a large matrix A can be effi-
ciently obtained using MapReduce. The detailed implementation and evaluation of this
approach are left to future work.

73



Chapter 5

Conclusion

In this thesis, we presented algorithms to solve two important scientific computing problems
using MapReduce, the maximum clique problem and the matrix inversion problem. Our
results illustrate that we can use cloud computing, in particular MapReduce, to solve some
scientific computing problems with good scalability and fault tolerance. We also outline
an algorithm to solve the eigenvalue and eigenvector problem using MapReduce. Next, we
summarize the main contributions of the thesis.

We presented a scalable and fault tolerant maximum clique algorithm based on MapRe-
duce. The main contribution underlying our algorithm is the BMC partitioning method,
which enables us to partition a graph into many subgraphs in a way that maintains load bal-
ancing. Good load balancing cannot be achieved with alternative partitioning algorithms
that we investigated such as one-depth partitioning. We also investigated the relation-
ship between the total running time of our maximum clique algorithm and the graph size
and density, and provided a cost model to accurately estimate this running time, which is
required by our algorithm.

Our experiments show that our approach outperforms other approaches on real and
synthetic graphs, and is robust to tuning parameter settings. Some real maximum clique
problems have been solved using our scalable and fault tolerant algorithm with orders of
magnitude improvement in performance.

We also presented a scalable and fault tolerant algorithm for matrix inversion based
on the MapReduce framework. Our main contribution is to design a parallel algorithm
suitable for MapReduce to LU decompose the matrix, i.e., to compute the L and U matrices
that are used to invert the matrix. The algorithm uses a pipeline of MapReduce jobs, and
depends on a recursive block partitioning of the matrix to optimize data flow through this
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pipeline of jobs. Our experiments show that our approach leads to good scalability, which
is a first using the MapReduce framework. Our method is simpler and more fault tolerant
than MPI implementations such as ScaLAPACK, as well as solutions that require special
hardware such as GPUs.

We also propose an algorithm to find the eigenvalues and eigenvectors of a large dense
matrix based on our scalable and fault tolerant matrix inversion algorithm. Implementing
and evaluating this algorithm is an interesting direction for future work.
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[56] P. R. Österg̊ard. A fast algorithm for the maximum clique problem. Discrete Applied
Mathematics, 120(1–3), 2002.
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