
Web Data Integration for Non-Expert
Users

by

Ahmed El-Roby

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2018

c© Ahmed El-Roby 2018

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Renée J. Miller
Professor
Department of Computer Science
University of Toronto

Supervisor: Ashraf Aboulnaga
Adjunct Associate Professor
David R. Cheriton School of Computer Science
University of Waterloo

Internal Member: Tamer Özsu
Professor
David R. Cheriton School of Computer Science
University of Waterloo

Internal Member: Grant Weddell
Associate Professor
David R. Cheriton School of Computer Science
University of Waterloo

Internal-External Member: Wojciech Golab
Assistant Professor
Department of Electrical and Computer Engineering
University of Waterloo

ii

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

Today, there is an abundance of structured data available on the web in the form of RDF
graphs and relational (i.e., tabular) data. This data comes from heterogeneous sources,
and realizing its full value requires integrating these sources so that they can be queried
together. Due to the scale and heterogeneity of the data sources on the web, integrating
them is typically an automatic process. However, automatic data integration approaches
are not completely accurate since they infer semantics from syntax in data sources with
a high degree of heterogeneity. Therefore, these automatic approaches can be considered
as a first step to quickly get reasonable quality data integration output that can be used
in issuing queries over the data sources. A second step is refining this output over time
while it is being used. Interacting with the data sources through the output of the data
integration system and refining this output requires expertise in data management, which
limits the scope of this activity to power users and consequently limits the usability of data
integration systems.

This thesis focuses on helping non-expert users to access heterogeneous data sources
through data integration systems, without requiring the users to have prior knowledge
of the queried data sources or exposing them to the details of the output of the data
integration system. In addition, the users can provide feedback over the answers to their
queries, which can then be used to refine and improve the quality of the data integration
output. The thesis studies both RDF and relational data. For RDF data, the thesis focuses
on helping non-expert users to query heterogeneous RDF data sources, and utilizing their
feedback over query answers to improve the quality of the interlinking between these data
sources. For relational data, the thesis focuses on improving the quality of the mediated
schema for a set of relational data sources and the semantic mappings between these sources
based on user feedback over query answers.

iv

Acknowledgements

First, I would like to express my sincere gratitude to my supervisor, Prof. Ashraf
Aboulnaga, whom I learned most of my research skills from. Ashraf has been always
patient, flexible, and inspiring in his mentorship. I literally learned new things each time
we met on both academic and personal levels. I will be eternally in debt to him.

I would also like to thank the people I collaborated with at the Qatar Computing
Research Institute and Carnegie Mellon University. Specifically, I would like to thank
Prof. Andy Pavlo who, despite me working with him for only three months, influenced
me greatly. He has been a great manager who got the best out of his team despite their
different backgrounds and skills. He has also been a pleasure to work and hang out with.

I am also very grateful to my thesis committee members, Prof. Tamer Özsu and Prof.
Grant Weddell, who gave me great feedback and advice on how to improve my PhD research
after Comp-II, and also Prof. Renée J. Miller and Prof. Wojciech Golab for taking the time
and effort to read and offer suggestions to further improve this thesis.

I would like to thank my mother-in-law, Hala, who believed in me and was always there
for our small family, supporting us in difficult times during my PhD. I would also like to
thank my brothers-in-law, Marawan and Mohammed, for the fun times we had together,
and my sister Sara for being such a great sister.

I would especially thank my parents without whom I would have not been where I am
today. They gave me so much selflessly, expecting nothing in return. I am forever in debt
for everything they did for me. I would also like to thank my late father-in-law who was
the kindest person I have ever met. Looking up to him has inspired me on how to be a
better person.

Finally, this dissertation would have not been possible without the love of my life, my
wife, Yara. Yara has always encouraged me, motivated me, and supported me during the
happy moments and especially during the sad and tough ones. I believe that having her
by my side, achieving our dreams together is a great blessing. I especially thank my child
Yahya, without whom, this thesis would have been defended a year earlier.

v

Dedication

This thesis is dedicated to my amazing child Yahya, my beloved wife Yara, my wonderful
parents Hassan and Aida, and my late father-in-law, Moustafa.

vi

Table of Contents

List of Tables xii

List of Figures xiii

1 Introduction 1

1.1 Improving the Interlinking of RDF Data Sets 2

1.2 Answering Questions on RDF Data Sets 3

1.3 Refining Relational Web Data Integration Systems 5

1.4 Thesis Statement . 6

1.5 Thesis Outline . 7

2 Preliminaries on the Resource Description Framework (RDF) and SPARQL 8

2.1 Resource Description Framework (RDF) 8

2.2 The SPARQL Query Language . 9

3 ALEX: Automatic Link Exploration Based on User Feedback 11

3.1 Related Work . 13

3.1.1 Automatic Linking of RDF Data Sets 13

3.1.2 Incorporating Users in Automatic Linking 14

3.2 Overview of ALEX . 15

3.3 User Interface . 17

vii

3.4 Analysis of the owl:sameAs Links in the LOD Cloud 20

3.4.1 Data Sets Used in the Analysis . 20

3.4.2 Analysis of owl:sameAs Links . 21

3.5 Background on Reinforcement Learning . 26

3.6 Discovering New Links in ALEX . 29

3.6.1 States in ALEX . 30

3.6.2 Actions in ALEX . 31

3.6.3 Rewards and Feedback . 32

3.6.4 Iterative Improvement . 34

3.6.5 Interaction Between Policy Evaluation and Improvement 36

3.7 Soundness of ALEX . 38

3.8 Optimizations to ALEX . 41

3.8.1 Filtering to Reduce the Search Space 41

3.8.2 Partitioning the Search Space . 42

3.8.3 Optimizations for Handling Incorrect Links 42

3.9 Experimental Evaluation . 43

3.9.1 Experimental Setup . 43

3.9.2 Quality of Links . 45

3.9.3 Efficiency of ALEX . 49

3.9.4 Effect of Incorrect Feedback . 52

3.9.5 Sensitivity of ALEX to Parameter Values 54

3.10 Conclusion and Future Work . 56

4 Sapphire: Querying RDF Data Made Simple 58

4.1 Related Work . 59

4.1.1 Approaches to Querying RDF Data 59

4.1.2 Natural Language Approaches to Querying RDF Data 60

4.1.3 Approximate Structured Queries on RDF Data 60

viii

4.1.4 Querying By Example . 61

4.2 Sapphire Architecture and Challenges . 61

4.3 User Interface of Sapphire . 63

4.4 SPARQL Features Not Supported by Sapphire 65

4.5 Initialization for a New Endpoint . 66

4.5.1 Caching Data from a New Endpoint 66

4.5.2 Indexing Cached Data . 68

4.6 Predictive User Model . 69

4.6.1 Query Completion Module . 70

4.6.2 Query Suggestion Module . 70

4.7 Experimental Evaluation . 79

4.7.1 User Study . 80

4.7.2 Comparison to Other Systems . 85

4.7.3 Sapphire Response Time . 87

4.8 Conclusion and Future Work . 88

5 UFeed: Refining Relational Web Data Integration Based on User Feed-
back 89

5.1 Related Work . 93

5.1.1 Schema Matching and Mapping . 93

5.1.2 Incorporating Users and User Feedback in Data Integration Systems 94

5.2 Preliminaries on Relational Data Integration 96

5.2.1 Schema Matching and Mapping . 96

5.2.2 Probabilistic Mediated Schemas and Mappings 97

5.2.3 Answering Queries over Relational Mediated Schemas 98

5.3 Refinement in UFeed . 99

5.3.1 Attribute Correspondence and Answer Association 100

5.3.2 UFeed Operations . 101

ix

5.3.3 Applying UFeed Operations to Probabilistic Mediated
Schemas and Mappings . 108

5.3.4 Handling Incorrect Feedback . 109

5.4 UFeed Completeness . 110

5.5 User Interface of UFeed . 112

5.5.1 Generating Mediated Schemas and Mappings 112

5.5.2 Query Processing . 114

5.5.3 Feedback and Schema Refinement 115

5.6 Experimental Evaluation . 116

5.6.1 Experimental Setup . 116

5.6.2 Quality of Query Answers . 117

5.6.3 Distance to the Gold Standard . 120

5.7 Conclusion and Future Work . 121

6 Conclusion and Future Work 123

6.1 Thesis Conclusion . 123

6.2 Future Work . 124

References 126

APPENDICES 141

A Similarity Function used in ALEX 142

A.1 Similarity Scores for Strings . 142

A.2 Similarity Score for Dates . 143

A.3 Similarity Score for Numbers . 143

B Distinctive Features Found in the Analysis of Links 144

C Initialization of Sapphire 153

x

D Evaluation Questions for the Sapphire User Study 158

D.1 Easy Queries . 158

D.2 Medium Queries . 159

D.3 Difficult Queries . 159

xi

List of Tables

3.1 Data sets used in the analysis and experiments. 17

3.2 Pairs of data sets used in the analysis and experiments. 20

3.3 Savings due to using a dynamic exploration band compared to a static band. 50

4.1 Comparing systems using questions from QALD-5. 85

5.1 Data sets used in the experiments. 116

5.2 Number of queries in the different settings. 118

xii

List of Figures

3.1 Architecture of a federated query system with ALEX. 15

3.2 Issuing SPARQL queries and giving feedback over the returned answer. . . 18

3.3 Showing the entities that are connected with an owl:sameAs link. A user
can explicitly approve or reject the link. 19

3.4 Generating a feature set for any two entities E1 and E2 by constructing a
similarity matrix then reducing it to a feature set. 23

3.5 The total number of features and number of distinctive features for each
pair of data set. 25

3.6 The average distinctive score and the average correct link score. The error
bars represent the standard deviation. 25

3.7 Patterns of feature scores for a sample of distinctive features. The x-axis is
an arbitrary ordering of links and the y-axis is the similarity score value. . 27

3.8 Detailed view of the components of ALEX. 29

3.9 Quality of links for the batch mode setting. The x-axis is the episode number
and the y-axis is the quality value. 47

3.10 Quality of links for the specific domain setting. The x-axis is the episode
number and the y-axis is the quality value. 48

3.11 Number of distinctive features identified by ALEX. 49

3.12 Comparing number of links: total possible links vs. filtered search space vs.
ground truth. 51

3.13 Effect of the blacklist: (a) F-measure, and (b) negative feedback. 51

3.14 Effect of rollback: (a) quality without rollback, (b) a partition that con-
verges, and (c) a partition that does not converge. 53

xiii

3.15 ALEX with correct feedback and with 10% incorrect feedback. 54

3.16 F-measure for ALEX with different episode sizes. 55

4.1 Architecture of Sapphire. 62

4.2 User interface showing a suggestion to modify the current query which re-
turned to answers. 63

4.3 Auto-complete suggestions using the QCM. 64

4.4 The answer table after applying the query suggestion in Figure 4.2. In this
example, the 1,051 answers to the query are filtered via a keyword search
on “john”, and the filtered answers are ordered by the “person” column. . 64

4.5 Completing a query term in the QCM. 72

4.6 Example query and the subgraph from the data set that can be used to
answer this query. 75

4.7 The expansion steps in the process of relaxing query structure. 79

4.8 Success rate of answering questions. 81

4.9 Percentage of questions answered by at least one participant. 82

4.10 Average number of attempts before finding an answer. 82

4.11 Average time spent on answered queries. 83

5.1 The gold standard G for integrating schemas S1, S2, S3, and S4 in Example
1, and a possible mediated schema M . 91

5.2 The mappings to the mediated schema M and to the gold standard G. . . 92

5.3 Positive feedback over an answer tuple and the resulting attribute corre-
spondences (AC) and answer associations (AA). 103

5.4 Negative feedback over an answer tuple and the resulting linking of the
attribute correspondence (AC) and answer association (AA) to which the
feedback applies. Attribute correspondences and answer associations from
the previous query are shown above the blue dotted line. 104

5.5 Positive feedback over an answer tuple to a query asking for counties in
North America. 104

5.6 Negative feedback over an answer tuple to a query asking for counties in
North America. 106

xiv

5.7 Positive feedback that results in triggering the Merge operation. 107

5.8 Selecting data sources in UFeed. 113

5.9 The initial mediated schema vs. the manually created gold standard for the
domain of NBA basketball. 113

5.10 Answers to the query “SELECT Player, Points/Game WHERE Year =
2014, Points/Game > 25 ” (Correct answers are in green and incorrect an-
swers are in red). 114

5.11 Quality of query answers. 119

5.12 Distance to the gold standard. 121

xv

Chapter 1

Introduction

In recent years, there has been a big increase in the amount of structured data available on
the web. This structured data exists in different formats like RDF and relational tables.
Large RDF data sets are known as knowledge bases, and they span many domains. Some of
these knowledge bases are general-purpose [15, 28, 63], and others focus on specific domains
such as movies1, geographic information2, music3, and city data4. Publishing these RDF
data sets on the web was encouraged by the Semantic Web principle of making data on
the web readable and processable directly by machines [22]. These data sets are graph-
structured, and are interlinked via edges that point from one data set to another, forming
a massive graph known as the Linked Open Data (LOD) cloud [7]. Today, the LOD cloud
contains almost 150 billion triples from almost 1000 data sets5.

Just like RDF data is expanding on the web, relational (i.e., table-structured) data on
the web is also expanding. The web contains a massive amount of crawlable, relational
data. This data is extracted from various sources, such as HTML tables, web forms, and
on-line spreadsheets [1, 32, 61, 72, 121, 143]. Each of these data sources can be viewed
as a relational data source (i.e., a table with a schema). The number of such sources is
very large and continuously increasing. For example, 125M HTML tables were extracted
in 2015 [55].

This wealth of structured information available in both RDF and relational formats
can be extremely valuable to users and applications in diverse domains. To realize the full

1http://www.linkedmdb.org
2http://www.geonames.org
3http://musicbrainz.org
4http://www.data.gov/opendatasites
5http://stats.lod2.eu

1

http://www.linkedmdb.org
http://www.geonames.org
http://musicbrainz.org
http://www.data.gov/opendatasites
http://stats.lod2.eu

value of the data, users should be able to query data from multiple sources at the same
time, which requires some form of data integration. At web scale, most data integration
techniques are fully automatic. They do not rely on a data architect to guide the data
integration process, but rather infer the best way to integrate data sources based on the
features of these sources. Fully automatic data integration techniques are best effort in
nature and can have errors in their output. Thus, they could benefit from guidance or
feedback from end users. This thesis is about the interaction between end users, specifically
non-expert end users, and data integration systems.

At a high level, the focus of this thesis is on (a) helping non-expert users to easily query
heterogeneous data sets which typically are the output of data integration techniques, and
(b) using the feedback of non-expert users over the answers to their queries to improve
the quality of the output of data integration systems. The thesis comprises three technical
contributions, two dealing with RDF data and one dealing with relational data. The first
contribution is improving the quality of links between heterogeneous RDF data sets based
on user feedback. The second is facilitating the process of querying multiple heterogeneous
RDF data sets. The third is improving the quality of the output of relational data integra-
tion systems based on user feedback. An overview of these three contributions is presented
next.

1.1 Improving the Interlinking of RDF Data Sets

Publishing RDF data sets individually on the web is useful, but not sufficient to realize
the full potential of linked open data. The true power of linked data is realized only
when the data sets are linked to each other so that their semantic properties can be fully
exploited [27]. Linking data sets is crucial for answering queries that cannot be answered
using one RDF data set alone. For example, consider the query “Find all New York Times
articles about the no. 1 squash player in the world”. Articles about people are available
from the New York Times RDF knowledge base. However, the identity of the “No. 1 squash
player” is unknown, since this information cannot be found in the New York Times data set.
Another data set like DBpedia could have the information that “Mohamed El Shorbagy”
is the “No. 1 squash player”. One can use the Web Ontology Language (OWL)6 to define
an owl:sameAs relation linking the two entities representing “Mohamed El Shorbagy” from
both data sets. This relation indicates that the two entities refer to the same individual,
and enables the system to return all articles about “Mohamed El Shorbagy” from the New
York Times data set.

6http://www.w3.org/2001/sw/wiki/OWL

2

http://www.w3.org/2001/sw/wiki/OWL

Some work has been done on aligning RDF schemas [16, 70] and automatically linking
equivalent entities from different data sets [25, 65, 76]. That work aims to automatically
introduce owl:sameAs links between two data sets. However, automatic linking approaches
are best effort in nature, with no guarantees on the quality of the output. They try to
automatically infer the semantics of the data based on its syntax, which is a difficult task in
the absence of human guidance. As such, automatic linking of RDF data sets can greatly
benefit from user feedback on the quality of the generated links.

This thesis introduces ALEX (Automatic Link EXploration in linked data) [56, 57],
a system that improves the quality of links between linked RDF data sets by utilizing
feedback that users provide on answers to their queries (helping users issue queries on
linked RDF data sets will be discussed in the next section). ALEX allows users to issue
queries over multiple RDF data sets that are linked using any automatic linking approach.
These queries can be answered using one or more data sets. When the query answer is
produced using links between multiple data sets, ALEX gives the user the opportunity to
approve or reject the query answers (i.e., mark the answers as correct or incorrect). ALEX
considers the approval/rejection of a query answer as an approval/rejection of the link(s)
used to produce this answer, and it uses this feedback to improve the quality of links.
ALEX uses a stochastic reinforcement learning technique that generalizes the feedback
provided by the user and is resilient to errors in this feedback. Errors in user feedback
(approving a wrong answer or rejecting a correct answer) can arise due to errors in the
data or errors made by the user.

1.2 Answering Questions on RDF Data Sets

Utilizing user feedback over query answers to improve the interlinking of RDF data sets is
useful, but it requires the user to be able to issue queries on these data sets, and querying
RDF data is far from trivial. This section introduces some challenges to querying a large
number of heterogeneous RDF data sets and gives a high-level overview of the approach
proposed by the thesis to face these challenges.

Answering questions over RDF data generally follows one of two approaches: (a) natural
language queries, and (b) structured querying using SPARQL [5], the standard query
language for RDF. Natural language approaches rely on keyword search or more complex
question answering techniques. These approaches are convenient and easy to use, and they
find accurate answers for simple questions such as “How many people live in New York?”.
Questions like this one that ask about a specific property of an entity (e.g., population of a

3

city) are termed factoid questions. Such questions can be answered by a simple structured
search that can be constructed effectively by natural language approaches.

However, the RDF data that makes up the LOD cloud is not limited to answering
simple questions. This data can be used to answer complex questions that require complex
structured searches. These complex structured searches are valuable in many applications
such as searching for entities, business analytics, and recommendation systems. Natural
language approaches are not effective at constructing such complex structured searches. In-
stead, complex structured searches are better expressed directly by the user using SPARQL
queries. It is a common practice for data sources in the LOD cloud to provide SPARQL
endpoints that allow users and applications to issue SPARQL queries on the RDF data
that they contain7.

To illustrate the need for SPARQL, consider the question “How many scientists gradu-
ated from an Ivy League university?” This question was used in the QALD-5 competition in
2015 [132]. QALD is an annual competition for Question Answering over linked data, and
this question was not answered by any of the natural language systems that participated
in QALD-5. This is not surprising since the question involves concepts such as “scientist”,
“graduated”, and “Ivy League university” that are not easy to map to a structured search
over the queried data set (DBpedia), in addition to requiring a count of the results. On
the other hand, it is possible to construct a SPARQL query to answer the question. For
example, the following query over the SPARQL endpoint of DBpedia will find the required
answer:

PREFIX res: <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>
SELECT DISTINCT count (?uri) WHERE {
?uri rdf:type dbo:Scientist.
?uri dbo:almaMater ?university.
?university dbo:affiliation res:Ivy_League.

}

To be able to correctly compose a query such as this one, the user needs to know the
structure of the data set, the vocabulary used to represent different concepts, and the
literals used in the data set including their data types and format. For example, the user
needs to know that “scientist” is an rdf:type associated with the persons thet need to
be found, “graduated” is represented by the almaMater predicate that links a person to

7e.g., http://dbpedia.org/sparql for DBpedia.

4

http://dbpedia.org/sparql

the university they graduated from, and “Ivy League” is an affiliation of a university.
Achieving this level of knowledge about a data set can be difficult even for experienced
users given the massive scale and diverse vocabulary of the LOD cloud. Due to the size
and heterogeneity of the data sets in the LOD cloud, there is a great diversity in the
vocabularies used. To illustrate the diversity of the vocabulary in the LOD cloud, consider
that DBpedia alone has over 3K distinct predicates. Thus, it is quite likely that a user
would need to construct SPARQL queries on data whose structure and vocabulary she
does not know in full, for example when querying a new data set. This is a challenging
task, and one of the goals of this thesis is to help users with this task.

This thesis introduces Sapphire [59], an interactive tool aimed at helping users write
syntactically and semantically correct SPARQL queries on RDF data sets they do not have
any prior knowledge about. Sapphire is aimed at users who have a technical background
but are not necessarily SPARQL experts, e.g., data scientists or application developers.
Thus, Sapphire makes no attempt to “shield” its users from the syntax of SPARQL, but
rather helps them construct valid SPARQL queries with ease.

1.3 Refining Relational Web Data Integration Systems

The third technical contribution of the thesis shifts the focus from RDF to relational data
sources on the web. As mentioned earlier, the web has a massive amount of table-structured
data sources that can be viewed as relations. Users and application programs can greatly
benefit from having a unified interface to simultaneously query multiple heterogeneous
relational data sources. Data integration systems for relational data provide such a unified
interface by automatically building a relational mediated schema for the data sources along
with semantic mappings between the schemas of the data sources and the mediated schema.
Despite substantial research progress in the field of data integration, web data sources
such as web tables still represent a significant challenge for traditional data integration.
One reason is the scale of the problem, since web data integration typically deals with a
large number of data sources. The more important reason is that these data sources are
semantically heterogeneous to a high degree. Data sources on the web deal with many
different real world domains (e.g., sports, movies, finance, etc.), and the representation
of table names, attribute names, and data values is based on human language and can
therefore be ambiguous, inconsistent, and varying. Even if the data sources are clustered
into individual domains [73, 95], the semantic gap among the data sources can still be very
high [67].

5

A good way to address the challenge of data integration on the web is to recognize that
many applications do not require full integration of the data sources that they use in order
to provide useful services. This encourages a pay-as-you-go approach to integrating web
data sources [66]. The pay-as-you-go approach involves two phases: setup and refinement.
In the setup phase, the system creates: (1) a mediated schema or possibly several schemas,
and (2) mappings between the schemas of the data sources and the mediated schema(s).
Since setup is done fully automatically, the mediated schema and mappings will likely
contain semantic errors. The pay-as-you-go philosophy requires the mediated schema and
mappings to be refined during use based on feedback from the user. The typical way a
user would use the mediated schema is to issue queries against it and receive answers to
these queries from the data sources. Thus, the natural way for a user to provide feedback
is to indicate the correctness of the tuples that she sees in the answers to her queries.
Surprisingly, most of the prior work on the refinement step has been decoupled from the
querying process. Instead of requiring a user to provide feedback on the answers to her
queries, most prior refinement approaches expose the user to the details of the mediated
schema and the source schemas used to answer her queries, and enable her to directly
modify the mediated schema and mappings. Thus, instead of the system automatically
fixing its mistakes based on feedback from the user, the system presents these mistakes to
the user and asks her to fix them. Such approaches implicitly assume that the user is a
database expert, which may not be true in practice. In addition, the focus in prior work
has been on refining the mappings, assuming that the target schema (mediated schema)
is correct. While this assumption is valid when the mediated schema is manually created
(and therefore of high quality), this is not a practical assumption for pay-as-you-go data
integration, where the mediated schema is automatically generated.

This thesis introduces UFeed [58], a pay-as-you-go data integration system that ad-
dresses the problems with prior refinement approaches. To the best of my knowledge,
UFeed is the first system that fixes both the mediated schema and mappings based on user
feedback over query answers. UFeed accepts as input a mediated schema and mappings
between each source schema and this mediated schema. UFeed does not make any assump-
tions about the techniques used to create the initial mediated schema and mappings (the
setup phase), and can work with any technique for schema matching and mapping.

1.4 Thesis Statement

After presenting an overview of the individual technical contributions that make up the
thesis, I now present my thesis statement:

6

Data integration systems can be made more useful to non-expert end users by facili-
tating the interaction of the users with the output of these systems, and by using feedback
information learned from this interaction to improve the quality of this output.

1.5 Thesis Outline

The thesis is structured as follows:

• Chapter 2 presents the preliminaries about RDF and SPARQL needed for the rest
of the thesis.

• Chapter 3 discusses the first contribution of the thesis, improving the quality of
owl:sameAs links based on user feedback over query answers using [56, 57].

• Chapter 4 presents the second contribution the thesis, facilitating the querying of
RDF data sets [59].

• Chapter 5 discusses the third contribution of the thesis, improving the quality of
relational mediated schema and schema mappings based on user feedback over query
answers [58].

• Chapter 6 concludes and discusses future research directions.

The related work and experimental evaluation of Chapters 3, 4, and 5 are covered
within each of the chapters.

7

Chapter 2

Preliminaries on the Resource
Description Framework (RDF) and
SPARQL

This chapter presents preliminary information about RDF and SPARQL, which is required
for Chapters 3 and 4.

2.1 Resource Description Framework (RDF)

The Resource Description Framework (RDF) [2] is a framework for representing informa-
tion on the web, which follows a simple graph-based data model. An RDF graph consists
of a set of subject-predicate-object triples. Each triple represents a directed edge from a
vertex representing the subject to a vertex representing the object. The label on the edge
is the predicate, which represents the relationship between the subject and the object.

Resources (instances, classes, or relations) in the RDF graph are identified by Uniform
Resource Identifiers (URIs). Literals in RDF are strings of characters, and only objects
can be literals. Formally, assume two countably infinite disjoint sets, U for URIs and L
for literals. Any RDF triple (s, p, o) ∈ U × U × (U ∪ L). The following is an example of a
set of triples about the movie “The Godfather” from DBpedia in Turtle format [6]:

Prefix dbp: <http://dbpedia.org/property/> .
Prefix dbo: <http://dbpedia.org/ontology/> .

8

Prefix res: <http://dbpedia.org/resource/> .
res:The_Godfather

dbp:name "The Godfather"@en ;
dbo:director res:Francis_Ford_Coppola ;
dbo:distributor res:Paramount_Pictures .

This example shows three triples. The subject is the URI representing the movie. The
predicates are URIs representing relations to other entities or literals (name, director, and
distributor). One object is a literal (the name of the movie “The Godfather”), and the
other two are URIs of other entities.

This thesis focuses on RDF data that is published as linked data on the web. While it is
true that the RDF format is very commonly used to publish linked data, note for complete-
ness that linked data does not necessarily mandate RDF. Linked data can be published in
any format as long as it follows the following very broad linked data principles [21]:

1. Use URIs as names for things.

2. Use HTTP URIs so that people can look-up those names.

3. When someone looks-up a URI, provide useful information.

4. Include links to other URIs, so that it is easier to navigate between resources.

2.2 The SPARQL Query Language

With the adoption of RDF as an abstraction to publish data comes the challenge of provid-
ing an interface or query language for accessing this data. SPARQL is the standard query
language for RDF [5]. The basic building blocks of a SPARQL query are graph patterns
and conditions applied over these patterns. Formally, assume another countably infinite
set V for variables, which start with a question mark. This set is disjoint from U and L
from the previous section.

A condition is inductively defined as follows:

• if ?x, ?y ∈ V and a ∈ (U ∪L), then ?x op a and ?x op ?y, where op is a binary operator,
are conditions,
• if R1 and R2 are conditions, then (¬R1), (R1 ∨R2), and (R1 ∧R2) are conditions.

9

A graph pattern is inductively defined as follows:

• a triple from (U ∪ V)× (U ∪ V)× (U ∪ V ∪ L) is a graph pattern,
• if P1 and P2 are graph patterns, then (P1 AND P2), (P1 UNION P2), and (P1 MINUS
P2) are graph patterns (see [5] for a definition of these operators),
• if P is a graph pattern and R is a condition, then (P FILTER R) is a graph pattern.

The goal of SPARQL query processing is to match the graph patterns in the query to
the queried data sets to find values that can be associated with the variables in the graph
pattern. These values are the answers to the SPARQL query. If a pattern has a FILTER,
then only the matches that satisfy the FILTER condition are retained. SPARQL also has
other features such as solution modifiers (e.g., DISTINCT), aggregations (e.g., COUNT,
GROUP BY, and HAVING), and optional pattern matching (the OPTIONAL keyword).
See [5] for a full specification of the SPARQL query language.

Following is an example of a SPARQL query that finds the name of the director of
the movie “The Godfather” and other movies by the same director, given that they were
distributed by the same studio:

PREFIX dbp: <http://dbpedia.org/property/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dbo: <http://dbpedia.org/ontology/>
SELECT DISTINCT ?directorName ?movies WHERE {

?movie dbp:name "The Godfather"@en.
?movie dbp:director ?director.
?movie dbo:distributor ?godFatherDistr.
?director foaf:name ?directorName.
?movies dbp:director ?director.
?movies dbo:distributor ?otherDistr.
FILTER (?godFatherDistr = ?otherDistr).

}

10

Chapter 3

ALEX: Automatic Link Exploration
Based on User Feedback

This chapter presents the first contribution of the thesis, namely improving the quality of
owl:sameAs links between RDF data sets in the LOD cloud based on user feedback over
query answers. The LOD cloud contains a wealth of structured information that can be
extremely useful to users and applications in diverse domains. However, for the LOD to
be useful, the data sets in this cloud need to be (a) accurately and efficiently linked, and
(b) easily usable to find answers to questions. This thesis addresses these two problems by
allowing non-expert users to easily issue queries over the LOD cloud, and by utilizing their
feedback over query answers to improve the quality of the links between RDF data sets.
Helping the user to issue queries over the LOD cloud will be discussed in Chapter 4. In
this chapter, the focus is on how ALEX improves the quality of owl:sameAs links between
RDF data sets based on user feedback over query answers.

ALEX starts with two RDF data sets and a set of automatically generated links between
these data sets. These links can be produced using any automatic linking algorithm, and
they are referred to in this thesis as candidate links. When a user issues queries on the two
data sets and receives answers, she can provide feedback on the answers that are based on
the links. If an answer is marked correct (also referred to as positive feedback or approving
the link), the link used to produce this answer is assumed to be correct. If an answer is
marked incorrect (also referred to as negative feedback or rejecting the link), the link is
assumed to be incorrect.

ALEX removes incorrect links rejected by the user. However, the main focus of ALEX
is to discover new links that are similar to the links approved by the user. The way ALEX

11

discovers similar links is as follows: An entity in an RDF data set is represented by a
URI. Each entity has a set of attributes (RDF predicates), and values corresponding to
these attributes (RDF objects). A link between two entities from different data sets is
represented as a set of features made up of the predicates of the two entities. A feature
is a pair of predicates where the first predicate comes from the first entity and the second
comes from the second entity. Each feature has a value, which is the similarity score of
the values of the two objects associated with the predicates. When a user approves a link
by approving a query answer based on this link, ALEX chooses one feature and finds new
candidate links for which the value of this feature (i.e., the similarity score) is within a
(narrow) range around the value of the feature of the approved link. We refer to this as
exploring around the feature.

An important question that ALEX needs to answer is: Which feature to explore around
for a given approved link?. Exploring around a random feature is not effective since it
incorrectly assumes that all features are of equal importance in determining whether the
entities are equivalent. At the same time, ALEX has no prior knowledge of which features
may be important, and the best feature to explore around can depend on the link being
explored. For example, the title of the two entities may be a good feature to explore around
for some data set, while the phone number may return better results for another. Thus,
ALEX needs to (a) identify features that can distinctively differentiate between equivalent
and non-equivalent entities, and (b) find the distinctive scores for the distinctive features
such that this score differentiates between correct and incorrect links. To guide the answer
to these questions, Section 3.4 presents an analysis of several pairs of real RDF linked data
sets in the LOD cloud that aims to identify the characteristics of correct links. The data
sets vary in size and represent diverse domains.

I propose that identifying the features to explore around can be solved using Monte
Carlo reinforcement learning methods [123], where ALEX can learn which feature to ex-
plore around for different links. Using the terminology of reinforcement learning, ALEX
aims at learning from interacting with the environment in order to learn the best action to
take (feature to explore around) in order to maximize the reward (future positive user feed-
back over query answers). The feature is chosen by ALEX using a policy that is iteratively
improved.

ALEX also includes several optimizations that help it to converge faster. These opti-
mizations include reducing the search space of links, partitioning data to exploit parallelism,
using a blacklist to prevent known incorrect links from being proposed, and rolling back
actions to undo actions that result in exploring many incorrect links.

12

Experiments conducted over real-world data sets show that ALEX can improve the
quality of the initial set of candidate links, while not exposing the end-user to a large num-
ber of incorrect answers. The experiments also show that ALEX converges in a reasonable
amount of time and is robust to the changes in parameters values.

The contributions of this chapter are as follows:

• To the best of my knowledge, ALEX is the first system to bridge the gap between
automatic linking of data sets on one side and querying linked data on the other
side by leveraging user feedback to discover new links between entities without prior
knowledge of the data sets or how they were originally linked.

• Analyzing owl:sameAs links between several pairs of linked data sets and identifying
the common and distinctive characteristics of these links.

• Discovering new links based on user feedback over query answers using a reinforce-
ment learning approach, while preserving link precision.

• Proving that this approach is sound in terms of finding an optimal policy for links
exploration.

• Developing optimizations to reduce execution time and converge in fewer steps.

• Demonstrating the validity of this approach by running experiments on large, real-
world, multi-domain data sets.

3.1 Related Work

3.1.1 Automatic Linking of RDF Data Sets

Reducing the semantic gap between different representations of the same information has
been an active topic of research for a long time. The existence of such different repre-
sentations is due to the natural human tendency for different people to have different
perspectives and hence to model problems differently. Research on reducing such a se-
mantic gap spans both ontology alignment (or ontology matching) and entity linking.
Ontology alignment solves the problem of using different vocabularies among data sets
representing the same real-world domain, while entity linking solves the problem of us-
ing different representations for the same real-world entity. There has been extensive

13

work on both ontology alignment [16, 40, 49, 70, 82, 90, 122, 138, 152] and entity link-
ing [76, 78, 80, 103, 105, 112, 113, 122, 135]. This thesis focuses on the latter problem with
the goal of improving the quality of inter-linking between different linked RDF data sets
on the web based on user feedback over query answers. The related work on this topic is
presented next.

Linked RDF data on the web has enabled seamless connections between open data
sets [26]. The idea is to link entities from different data sets that are semantically equiva-
lent to each other. There have been many works on semantic matching of entities, taking
different approaches. The SILK framework [78, 135] uses manually defined mapping rules
that are applied on input data sets. New data sets require new mapping rules. LIMES [103]
also uses manual mapping rules in addition to a supervised learning approach. OBJECT-
COREF [76] uses training data to learn how to link entities. However, this approach
requires having good training data that captures most aspects of the input data sets,
which is difficult in practice. LN2R [112, 113], CODI [105] and ASMOV [80] follow similar
approaches to that of OBJECTCOREF.

PARIS [122] is an iterative ontology alignment/entity matching system, where the
results of the current iteration are carefully utilized for improving the results in the next
iteration. It is fully automatic and does not require any prior information or training.
It also produces better quality links than other approaches. Due to its generality and
superior quality, I use PARIS in this thesis as the automatic linking algorithm to produce
the candidate links that are the starting point for ALEX. However, I emphasize that ALEX
can work with any initial set of candidate links, regardless of how they were generated.

3.1.2 Incorporating Users in Automatic Linking

In the context of linking open data, ZenCrowd [45] utilizes the crowd by forming micro-
tasks using a probabilistic model for manual matching. Its goal is to link traditional web
content to the Linked Open Data (LOD) cloud. In contrast, the goal of this thesis is to
utilize user feedback to improve the quality of links in the LOD cloud to which ZenCrowd
tries to link traditional web pages.

The system in [34] summarizes descriptions of candidate entities by selecting and pre-
senting only a subset of features to a human to confirm that the entities are equivalent.
The selected features are expected to effectively substitute entire entity descriptions to
avoid overloading human users with too much information. One goal of [9] that is related
to ALEX is to refine links in DBpedia by removing incorrect links to external web pages

14

Data set 1 Data set 2

Data sets
Automatic Linking

Data set 1 Data set 2

Linked Data sets

Federated Query
Processing System

User

Query

Answers

Combined
Answers

ALEX

ALEX Links

Exploration Policy

Search Space

Negative
Feedback

Positive
Feedback

Policy Improver

New Links

Exploration Action

Improve Policy

Figure 3.1: Architecture of a federated query system with ALEX.

or resources. Users are shown a caption of the external source and determine if it matches
the entity in DBpedia or not.

In contrast to all the aforementioned approaches, the most distinct feature of ALEX is
that it not only removes incorrect links from the set of candidate links, but also discovers
new links that were not part of this set. In addition, ALEX does not expose the user to the
ontology of the data sets or the details of the linked entities but rather directly improves
the quality of links by utilizing user feedback on the answers to her queries.

3.2 Overview of ALEX

This section presents an end-to-end overview of the architecture of ALEX (shown in Fig-
ure 3.1). ALEX can be integrated in a system that answers queries over multiple linked
RDF data sets, such as Sapphire, which is described in the next chapter. The data sets are
linked using any automatic linking algorithm. They could be hosted anywhere on the web
and be accessible via SPARQL endpoints. The user is able to issue queries over these data
sets and receives answers using a federated query processor, such as FedX [116], which is
used in Sapphire. If a query answer is generated based on a link between two data sets, the

15

user is given a chance to evaluate this answer and provide feedback about which answers
are correct and which are not. Feedback about an answer is interpreted as feedback on the
link that is used to generate the answer. That is, if the answer is correct, then the link is
correct, and if the answer is incorrect, the link is incorrect.

This feedback is sent to ALEX. If the feedback is positive (correct answer), ALEX
uses its exploration policy (referred to as the policy for simplicity) to take an exploration
action (referred to as simply an action). This action is defined as choosing a feature of
the approved link and expanding its score value to be a band of values, then finding new
links that have a feature score for this feature within this band. This search is done over
a pre-computed search space of feature sets, where there is a feature set for every pair
of entities in the two data sets. The newly discovered links are stored in a local RDF
store that is accessible via a SPARQL endpoint. This endpoint is also used in answering
queries just like the endpoints of the queried data sets. Thus, the federated query processor
will automatically incorporate the links discovered by ALEX into query processing, since
these links are stored at one of the endpoints being queried, and federated SPARQL query
processing guarantees incorporating all data (including links) regardless of the endpoint at
which this data is stored.

If the feedback is negative (incorrect answer), then there are two cases: 1. The incorrect
link is in the local RDF store of ALEX, in which case, the link is deleted from the local
store. 2. The incorrect link is in the original data set and ALEX does not have the
authority to remove it. In this case, ALEX uses query rewriting to retrieve all the links
used to compute the query answers. ALEX then looks up each of these links in a blacklist
that it uses to hide links that are known to be incorrect based on past user feedback (more
on the blacklist used in ALEX in Section 3.8). If a link used to find an answer to the
query is found in the blacklist, the query is rewritten using additional FILTER statements
to filter out this blacklisted link. Formally, if the query has any triple ?vi ∨ uj owl:sameAs
?vk ∨ul, where ?vi and ?vk are variables and uj and ul are URIs, ALEX rewrites the query
to retrieve the entities connected by this owl:sameAs link. If this link is blacklisted, the
original query is rewritten to add one (if there is one variable in the triple) or two (if there
are two variables) FILTER statements for such a triple. Each filter states that the variable
in the triple (subject or object) cannot be the (subject or object) URI in the blacklisted
link.

It is worth noting that a user is not required to provide feedback on each query answer;
if no feedback is provided on an answer, this answer will simply not trigger an action by
ALEX. The policy in ALEX is improved after a number of feedback instances is received
in order to have better exploration actions in the future. The details of the ALEX policy
and actions will be discussed in Section 3.6.

16

Data Set Version Domain Number
of Triples

DBpedia 2016-10 Multi-domain 178M
OpenCyc 4.0 Multi-domain 1.2M
Geonames 2.1 Geography 169M
NYTimes 2010-01-13 Media 206K
Linkedmdb 2009-05 Media 6.1M
Drugbank 2014-07-25 Life Sciences 589K
Lexvo 2013-09 Linguistics 704K

UK Learning 2017 Education 3.6K

Table 3.1: Data sets used in the analysis and experiments.

3.3 User Interface

There are two methods to interact with ALEX [57]:

• The user can write a SPARQL query for ALEX to answer. ALEX can answer
SPARQL queries that involve multiple data sets and return the answers to the user,
who can provide feedback over any returned answer. Figure 3.2 shows an example
of this method. The figure shows an example query that is interested in Barack
Obama’s party affiliation and the New York Times news pages about him. A user
can click on any of the returned URIs to see the corresponding entity. After return-
ing the answer, ALEX asks the user for her feedback about whether the answer is
correct.

• ALEX can explicitly show the user current existing candidate links. The user can
choose an entity and see the links to this entity one at a time, approving or rejecting
each link. Alternately, ALEX can show the user one link at a time at random, regard-
less of the linked entities. The user can view the two entities from the different data
sets and decide whether they represent the same real-world entity or not. Figure 3.3
shows an example of this method.

17

Figure 3.2: Issuing SPARQL queries and giving feedback over the returned answer.

18

Figure 3.3: Showing the entities that are connected with an owl:sameAs link. A user can
explicitly approve or reject the link.

19

Data Set Pair Number of Links
DBpedia - NYTimes 11289
DBpedia - OpenCyc 41040
DBpedia - Linkedmdb 29575

DBpedia - Lexvo 4365
DBpedia - Drugbank 3824
DBpedia - Geonames 430819

DBpedia - UK Learning 215
Geonames - NYTimes 1788
Geonames - Linkedmdb 247

Geonames - Lexvo 249
OpenCyc - Umbel 56195

Table 3.2: Pairs of data sets used in the analysis and experiments.

3.4 Analysis of the owl:sameAs Links in the LOD Cloud

This section presents an analysis of the owl:sameAs links between pairs of data sets from
the LOD cloud. This analysis aims at understanding the characteristics of pairs of entities
from two different data sets that are linked by an owl:sameAs link. This will help in
choosing the right strategy for exploring and discovering new links between pairs of data
sets as will be discussed in Section 3.6. First, the data sets used in the analysis are
described. Then, all the links between the data set pairs are analyzed to find the features
that can be used to identify any two entities as being the same. Finally, I discuss how the
analysis findings can inform how new links are discovered.

3.4.1 Data Sets Used in the Analysis

The analysis uses heterogeneous data sets that span different domains from the LOD cloud.
The data sets used are shown in Table 3.1. Two of the data sets are multi-domain (DBpedia
and OpenCyc). DBpedia contains structured data extracted fromWikipedia, and OpenCyc
contains parts of the Cyc knowledge base of everyday knowledge. Both of these data sets
cover multiple domains, and are in the center of the Linked Open Data cloud, with many
links to other data sets. Geonames is a geographical database that covers all countries and
contains over eleven million place names. NYTimes contains data about locations, people,
and organizations. Linkedmdb is an open semantic web database for movies. Drugbank

20

is a repository of almost 5000 FDA-approved small molecule and biotech drugs. Lexvo
contains data about human languages. UK Learning Providers is a data set about UK
universities. Some pairs of data sets are already linked (shown in Table 3.2). These pairs
of data sets are used in the analysis of existing owl:sameAs links in this section, and in
the evaluation in Section 3.9.

3.4.2 Analysis of owl:sameAs Links

Features

Consider two entities E1 = {(p11, o11), (p12, o12), . . . , (p1n, o1n)}, and E2 = {(p21, o21),
(p22, o22), . . . , (p2m, o2m)}, where E1 has n pairs of (predicate, object), and E2 has m pairs.
An example entity is {(name, “Mohamed El Shorbagy”), (birth year, 1991), (age, 27)}.
A feature is the pair (p1i, p2j), where p1i is a predicate of one entity from the first data
set, and p2j is a predicate of another entity from the second data set. The feature means
that there is a correspondence between p1i and p2j. The value of the feature measures the
degree of correspondence.

Link Representation

If there is a link between entities E1 and E2, the features of this link are all the pairs
(p1i, p2j) where p1i is a predicate of E1 and p2j is a predicate of E2. Every feature of a
link is assigned a score in the range [0, 1], which is the similarity score between the two
objects associated with the predicates of the feature, p1i and p2j. Recall from Section 2.1
that the object in an RDF triple can be either a literal or a URI (U ∪ L). If both objects
are literals, the similarity score for the feature (p1i, p2j) is score = sim(o1i, o2j). ALEX
uses a generic similarity function that takes into account the type of the attributes to be
compared (string, integer, float, date, etc.). This function is presented in Appendix A. If
both objects are URIs, all objects associated with these URIs are retrieved. These objects
are referred to as second layer objects. In this case, the similarity score for the feature is
the maximum similarity score between all pairs of second layer objects. Formally, if the
two objects are URIs u1 and u2, a SPARQL query is issued to find the set of literal objects
associated with u1 and u2, termed l1 and l2, respectively. The score for the feature (p1i, p2j)
is score = MAX(sim(l1k, l2m)). If only one object is a URI and the other is a literal, the
score is score =MAX(sim(o1i, l2m)) or score =MAX(sim(l1k, o2j)). The justification for
usingMAX to choose among possible scores is presented in the next paragraph. Note that
if the set l1 or l2 is empty, then any score involving computing a similarity with this set is

21

defined to be zero; ALEX does not retrieve third or higher layer objects, that is, objects
associated with URIs that are themselves second layer objects. The justification for using
MAX to choose among possible scores is presented in the next paragraph. Note that if
the set l1 or l2 is empty, then any score involving computing a similarity with this set is
defined to be zero; ALEX does not retrieve third or higher layer objects, that is, objects
associated with URIs that are themselves second layer objects.

For any link, if the first entity has n triples (i.e., there are n triples in the data with
the URI of this entity as the subject, and with different predicates and objects that relate
to this entity), and the second entity has m triples, an n×m similarity matrix is created
for the link, where the values of the item at row i and column j is the similarity score
between the ith predicate of the first entity and the jth predicate of the second entity,
computed as explained earlier. If the similarity score is less than a threshold θ, the matrix
item is set to 0. This similarity matrix is then reduced to a feature set by choosing the
maximum value for each row in the similarity matrix if n > m or each column if m > n.
The reason for using the maximum value is that the goal is finding the pair of predicates
that most predicates correspond to each other. For example, if the first entity has the
predicates {name, home phone, work phone, address, date of birth, email} and the second
entity has the predicates {label, job title, date joined, phone, salary}, it is desired that the
name and label correspond to each other rather than to any other predicate. Using the
maximum similarity value will ensure that this happens. If we are looking for the predicate
to associate with name, using the maximum similarity value will ensure that we choose
label since the similarity between name and label will be higher than than the similarity
between name and any other predicate, say, phone.

It is worth noting that, according to our model of defining the feature set, it is not
required that one predicate from one entity corresponds to exactly one predicate from
another entity. Depending on the maximum score, it could happen that a predicate from
one entity makes a feature with multiple predicates from another entity. In our example,
we could see a feature (home phone, phone) and another feature (work phone, phone).
Figure 3.4 shows how the feature set is generated for any link.

Distinctive Features

In this section, the aim is to find the distinctive features, which are features that can be
used to identify two entities as being the same. A feature is considered distinctive if it
can be used to accurately classify the pairs of entities that correspond to it as being the
same (i.e., an owl:sameAs link exists between the entities) or not the same (i.e., no link
exists). To use a feature to classify a pair of entities as being the same or not the same

22

Sim(o11,o21) Sim(o11,o22) . . . Sim(o11,o2m‐1) Sim(o11,o2m)
Sim(o12,o21) Sim(o12,o22) . . . Sim(o12,o2m‐1) Sim(o12,o2m)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Sim(o1n‐1,o21) Sim(o1n‐1,o22) . . . Sim(o1n‐1,o2m‐1) Sim(o1n‐1,o2m)

Sim(o1n,o21) Sim(o1n,o22) . . . Sim(o1n,o2m‐1) Sim(o1n,o2m)

E1

E2

E1, E2 Score1 Score2 ScoreMAX(n,m)‐1 ScoreMAX(n,m)

MAX scores

Figure 3.4: Generating a feature set for any two entities E1 and E2 by constructing a
similarity matrix then reducing it to a feature set.

(i.e., having an owl:sameAs link or not), the score of this feature is computed. If the
feature score is greater than a cutoff value γ, the entities are classified as the same. If
the feature score is less than γ, the entities are classified as not the same. The value of γ
that maximizes classification accuracy is found, and if the accuracy is above 90%, then the
feature is identified as a distinctive feature.

This definition of distinctive features requires formalizing the notion of “maximizing
classification accuracy”. The classification accuracy is defined in terms of true positives tp
(correct links identified as correct), true negatives tn (incorrect links identified as incorrect),
false positives fp (incorrect links identified as correct), and false negatives fn (correct links
identified as incorrect). These accuracy measures are functions of γ. Equation 3.1 defines
the optimization problem for maximizing classification accuracy in terms of these accuracy
measures. The γ that maximizes classification accuracy for a distinctive feature is called
the distinctive score.

23

maximize
γ

|tp|+ |tn|
|tp|+ |tn|+ |fp|+ |fn|

subject to
|tp|+ |tn|

|tp|+ |tn|+ |fp|+ |fn|
> 0.9,

1 ≥ γ ≥ 0

(3.1)

All distinctive features and their distinctive scores in the eleven pairs of data sets in
Table 3.2 are found. Figure 3.5 shows the total number of features and the number of
distinctive features (note that the y-axis of the figure is in log scale). The figure shows
that the percentage of distinctive features ranges from 1.7% to 12.7% of the total number
of features. Appendix B shows these distinctive features.

One may want to consider the following simple approach for finding the distinctive
score: A static, high value of γ can be chosen. For example, set γ to 0.8, and classify
any feature with a score above 0.8 as a correct link and any feature with a score below
0.8 as an incorrect link. The analysis shows that this simple approach does not yield
high classification accuracy. Figure 3.6 shows the average distinctive score that solves the
optimization problem in Equation 3.1 for all the distinctive features in Figure 3.5, and the
average feature score for correct links for the distinctive features. The error bars show the
standard deviation of the distribution of scores. The figure shows that approaches that
rely only on high similarity scores of features to determine if two entities are the same
will not achieve the best possible accuracy for finding correct links. Neither the average
distinctive score nor the average correct link score are particularly high. The large error
bars also show that there is a high variance in both the distinctive score and the feature
score for correct links among different pairs of data sets, which shows that identifying the
distinctive score automatically is a challenging task.

This can also be highlighted with a sample of different patterns of distinctive feature
scores, as shown in Figure 3.7. Each graph in Figure 3.7 plots the feature scores for one
distinctive feature connecting pairs of entities in two data sets. Each plot has one point for
each link between entities in the two data sets, and an equal number of points for incorrect
links. Each point represents the feature score for a specific pair of entities. Blue points are
feature scores for correct links for the considered distinctive feature, and orange points are
feature scores for incorrect links for the same feature. The incorrect links are randomly
generated. The x-axis represents an arbitrary ordering of links and the y-axis represents
the feature scores.

The patterns in Figure 3.7 show that using a high value of the feature score to indicate
that two entities are the same may work in some cases. In Figures 3.7(a), 3.7(b), and 3.7(c),

24

1

10

100

1000

10000

N
u
m
b
er
 o
f
Fe
at
u
re
s
(l
o
g
sc
al
e)

Total Features Distinctive Features

Figure 3.5: The total number of features and number of distinctive features for each pair
of data set.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Avg. Distinctive Score Avg. Correct Link Score

Fe
at
ur
e
Sc
or
e

Figure 3.6: The average distinctive score and the average correct link score. The error bars
represent the standard deviation.

25

it may be possible to set a threshold score around, say, 0.8 and get high classification
accuracy. However, in Figures 3.7(d), 3.7(e), and 3.7(f), a value of 0.8 would be too high.
For these plots, a static threshold value would need to be 0.5 to 0.6, which is too low for
other plots such as Figure 3.7(b). Figures 3.7(g), 3.7(h), and 3.7(i) show cases in which
it is not simple to find an accurate distinctive score, yet finding such a score is critical
for classification accuracy. Figures 3.7(h) and 3.7(i) show that in some features, higher
similarity scores do not necessarily mean that more correct links can be found. For example,
if the linking approach chooses a similarity threshold of 0.8 to find correct links, the feature
in Figure 3.7(i) will not be identified as a distinctive feature. Some other patterns show
that there are bands of scores at which most correct links exist. Figure 3.7(j) shows that
almost all correct links have a score that is around 0.6 for this feature. Figure 3.7(k) shows
that there are two bands of score (around 0.6 and 0.75). Figure 3.7(l) also shows two
bands. However, they are wider in range, the first being [0.5, 0.7] and the second being
[0.9, 1].

The observations in this section define the goals of ALEX: 1. Among all the features in a
feature space of a pair of data sets, ALEX should identify the distinctive features. 2. ALEX
should discover the correct links that have feature scores above the distinctive score for the
distinctive features. Section 3.6 will show how ALEX discovers new links based on these
two goals. But first, the next section presents some background on reinforcement learning.

3.5 Background on Reinforcement Learning

As explained in the previous section, ALEX needs to: (a) identify the distinctive features
that can classify two entities as equivalent, and (b) identify the score of this feature that
distinguishes between correct and incorrect links. This is modelled as a reinforcement
learning problem, in which ALEX learns which features and scores to use to find correct
links. This section gives an overview of reinforcement learning. The next section builds on
this overview and presents the details of ALEX.

In reinforcement learning [123], the learner and decision maker is called the agent.
Everything else outside of the agent is considered to be the environment. A reinforcement
learning system consists of four main components:

• Policy : The policy defines how a reinforcement learning agent interacts with the
environment at a given state. It can be viewed as the mapping from an environ-
ment state to an action taken by the agent. The policy can be as simple as a
lookup table, or it can involve extensive computations. It also can be either de-

26

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Correct Incorrect

(a) Linkedmdb-Geonames

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Correct Incorrect

(b) OpenCyc-Umbel

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Correct Incorrect

(c) DBpedia-Linkedmdb

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

correct incorrect

(d) DBpedia-Lexvo

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

correct incorrect

(e) DBpedia-Linkedmdb

0

0.2

0.4

0.6

0.8

1

Correct Incorrect

(f) DBpedia-Drugbank

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

correct incorrect

(g) DBpedia-OpenCyc

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

correct incorrect

(h) DBpedia-Linkedmdb

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

correct incorrect

(i) DBpedia-Linkedmdb

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Correct Incorrect

(j) DBpedia-Drugbank

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Correct Incorrect

(k) DBpedia-Drugbank

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

correct incorrect

(l) DBpedia-Lexvo

Figure 3.7: Patterns of feature scores for a sample of distinctive features. The x-axis is an
arbitrary ordering of links and the y-axis is the similarity score value.

27

terministic or stochastic. In ALEX, a stochastic policy is used. For example, con-
sider a user providing positive feedback on the link (E1, E2), where E1, and E2

are entities. The policy π might state that when this link is encountered, explore
around the feature (E1.label, E2.name) with probability 0.8, and around the fea-
ture (E1.birth, E2.birthDate) with probability 0.2. Formally, π((E1, E2), (E1.label,
E2.name)) = 0.8 and π((E1, E2), (E1.birth, E2.birthDate)) = 0.2. When an action is
chosen, say the one that has higher probability, then π ((E1, E2)) = (E1.label, E2.name).
• Reward Function: The reward function defines the goal of the reinforcement learner. It

can be viewed as a mapping from a state (or a state-action pair) to a reward. The goal
of the agent is to maximize the total reward throughout its dynamic interactions with
the environment. In ALEX, positive feedback results in positive reward (pReward),
and negative feedback results in negative reward (nReward). For example, assume
that positive feedback over the link (E1, E2) resulted in the exploration of 5 links
{link1, . . . , link5}. Assume that positive feedback comes over link1 and link5, negative
feedback comes over link3, and no feedback is received over link2 and link4. In this
case, the reward is R(E1, E2) = 2× pReward− nReward.
• Value Function: The value function defines what is good in the long run. A value of

a state can be viewed as the total reward that can be collected from this state taking
into account the states that are likely to follow and the rewards available from those
states. The major difference between the reward function and the value functions is
that the first indicates what is good in an immediate sense (next reward), whereas the
second indicates the long-term value of a state (total rewards that can be collected in
the future starting from the current state). The reward of a state may be low but its
value can be high because other states that yield high rewards can be reached from this
state.
• Environment Model (optional): This model simulates the behaviour of the environment.

For example, given a state and an action, the model can determine which state is next
and the reward of the action. The model is used in planning because it enables the
agent to determine which action to take without experiencing the state. However, there
may be cases where a model is not available. In this case, the only way to determine
the next state and reward given a state and action is by actually performing the action
in the environment. In ALEX, the environment model is unknown because it is not
possible to know in advance what feedback users will provide.

Reinforcement learning differs from other branches of machine learning in that the
learning agent is not told what actions to take. The agent learns over time how to act
by experiencing the return it gets from interacting with the dynamic environment. Rein-
forcement learning is more suitable than supervised learning [100] for interactive problems

28

ALEX
ALEX Links

Exploration Policy

Search Space

Positive
Feedback Policy Improver

New Links

Exploration Action

Improve Policy

Negative
Feedback

Episode Collector

Policy Evaluation

Episode
Completed

State‐Action Value

Figure 3.8: Detailed view of the components of ALEX.

where it is impractical to obtain examples of the desired behaviours to use as training data
that are correct and representative of most situations in the environment. The reinforce-
ment learning agent learns how to act by trying different actions at different states and
aiming to maximize the expected return at those states [123]. The challenge that faces the
learning agent is finding a balance between the need to explore as many states as possible
while exploiting the current knowledge to maximize the total reward. Also, reinforcement
learning needs a way to evaluate the policy used to take actions in order to improve it. In
ALEX, a Monte Carlo method is used to evaluate the policy through returns from interac-
tions with the environment. This is a suitable approach in situations like ours where the
model of the environment is unknown.

3.6 Discovering New Links in ALEX

This section describes how ALEX models the link discovery problem as a reinforcement
learning problem, takes actions to discover new links, and learns which features and feature
scores result in finding more correct links.

Each link in ALEX represents a state, and ALEX takes an action starting from this state
after receiving user feedback. The action, in the case of positive feedback, can be described
as choosing a feature and using this feature to find new links based on their feature score

29

for this feature. In the case of negative feedback, the incorrect link is removed from the
set of candidate links. The given feedback is also translated into a reward in ALEX. This
reward is positive in the case of an approved link (positive feedback), and negative in the
case of a rejected one (negative feedback). The value of the reward can be the same for
positive and negative feedback, or negative feedback can be penalized more.

ALEX works on a pair of data sets, and it explores links in a space of feature sets for the
two data sets. This space is populated in a pre-processing step, with a feature set for every
pair of entities in the two data sets. Initially, ALEX chooses arbitrary actions whenever
a state is encountered because there is no prior knowledge of which actions are better.
Rewards are collected for each state-action pair encountered, and are aggregated to estimate
the value of the state-action pair. This is called policy evaluation. Policy evaluation takes
place until sufficient feedback is collected, e.g., until 1000 feedback instances are collected.
This is called a feedback episode. At the end of an episode, policy improvement takes
place. Policy improvement modifies the policy so that actions that maximize the reward
are taken most of the time, while assigning a low but non-zero probability to other actions
in order to ensure continuous exploration.

These last two steps of policy evaluation and policy improvement are repeated until
convergence. ALEX converges when the set of candidate links does not change after an
episode of policy evaluation/policy improvement or when a maximum number of episodes is
reached. ALEX can also use a more relaxed convergence condition and stop if the change
in the set of candidate links is less than 5%. The details of the reinforcement learning
approach used by ALEX are presented next.

3.6.1 States in ALEX

In a general reinforcement learning problem, the agent and the environment interact at
every discrete time step, t = 0, 1, 2, At each time step t, the agent perceives the state
of the environment st ∈ S, where S is the set of all states in the environment. The agent
then takes an action at ∈ A(st), where A(st) is the set of all actions available at the state
st. As a result of the action taken, the agent receives a reward rt+1 and a new state st+1 is
reached. The agent’s action is determined by the policy πt where πt(s, a) is the probability
that at = a at st = s. In ALEX, the state is defined by the link that was approved
or rejected by a user in a feedback instance. The state is represented by the feature set
consisting of pairs of attributes of the two entities linked by this link (recall Section 3.4.2).

30

3.6.2 Actions in ALEX

Given a state st, ALEX takes an action at that is based on a policy πt. The environment
(the user in our case) then responds with a reward rt+1. The ultimate goal of ALEX is to
improve the policy πt so that the maximum total reward is collected.

The action of ALEX when it receives positive feedback can be viewed as exploring an
area surrounding the current state (the link between two entities) in a particular direction
(one feature of the feature set). Once ALEX has chosen a feature f of the approved link
to use for exploration, an important question that needs to be answered is how to use the
feature score of f to find new links. A feature set exists for every pair of entities in the
data, and any pair of entities that has feature f in their feature set is a potential candidate
for a new link. Whether or not ALEX creates a link between these two entities depends
on their feature score of f . It was shown in Section 3.4 that it is not accurate to use a
static distinctive score and assume that a link is correct if its feature score is above this
distinctive score. It was also shown that feature scores for correct links sometimes occur in
bands. Based on these observations, ALEX uses the following approach to find new links:
A new link is created if its feature score on f falls within a band around the feature score
of the approved link. That is, ALEX explores around feature f in some exploration band.

The simplest way to set the exploration band is to use a static step size α for the band.
So if the exploration feature f has a score s, the exploration band would be s ± α. This
is the approach used in [56]. In this case, given a state represented by a feature set sf
of n features, the action a is also a feature set af of n features with a single non-zero
feature that represents the step size by which ALEX should explore to discover new links.
Formally, ALEX finds all the links that have similarity value between sf and sf ± af . For
example, consider the feature set sf(E1, E2) ={((label, name), 0.8), ((birth, year), 0.6),
((age, year), 0.4)}. The first element of the feature set means that the predicate label
from the first entity maps to the predicate name from the second entity, and the similarity
between the object values is 0.8. A possible action can be represented by the action feature
set af(E1, E2) ={((label, name), 0.05), ((birth, year), 0), ((age, year), 0))}, which means
that links that have a similarity score between attributes label and name in the range
[0.75, 0.85] should be added to the set of candidate links for future queries and possible
feedback opportunities.

It was shown in Section 3.4 that different patterns exist for the distinctive scores of dif-
ferent distinctive features. With a static step size for the exploration band, ALEX explores
the new links in these different patterns through sets of narrow (potentially interleaving)
exploration bands. ALEX implicitly finds the distinctive score by learning to explore bands
with more correct links in them, while avoiding bands with incorrect links. The width of

31

these band is defined by the step size (the default value of the step size in the evaluation
in this chapter is 0.05). However, this approach usually needs to explore a large number of
bands to find all the correct links. To reduce the number of explorations required to discover
correct links, ALEX uses dynamic bands. In dynamic bands, the step size increases from
one iteration to the next. The step size αi changes to αi+1 =MIN(1, 2×αi), where i is the
episode number. The band size then changes to [feature_score−α0, feature_score+αi].
Note that the upper bound of the band changes after each episode, while the lower bound
remains the same. This is based on the observations made in Section 3.4 that most links
with feature scores higher than the distinctive score are correct. This means that if explor-
ing around a feature score is estimated to discover more correct links, ALEX should look
for more links with higher scores and still explore with a lower score, but with a narrow
step to avoid discovering incorrect links.

ALEX can sometimes take an action that explores around a feature that has values
that do not distinguish between entities. For example, it can decide to explore around the
feature (rdf:type, rdf:type) which has a categorical value owl:thing. Exploring around this
feature is expected to return a large number of incorrect links because a large number of
different entities share this attribute and value. ALEX can learn that this feature is not
distinctive and avoid exploring around it in the future.

3.6.3 Rewards and Feedback

The goal of ALEX is to maximize the expected return, Rt, defined as the sum of all future
rewards:

Rt = rt+1 + rt+2 + . . .+ rT (3.2)
where T is the final time step. In ALEX, the final time step is when a feedback episode
ends. After that, the policy used during the episode is refined through policy improvement,
and a new episode is started using the new policy.

In ALEX, the reward is the feedback given by the user. The feedback could be positive
(approving a link) or negative (rejecting a link). The value of the reward can be equal in
both cases, or wrong links can be severely penalized by giving them a negative value that
is larger than the positive value used for approved links. In this chapter the same reward
value is used for both positive and negative feedback, since it was found in the experiments
that increasing the penalty for incorrect link does not affect the quality of the discovered
links.

The value of taking an action a at a state s under a policy π, which is called the
action-value function Qπ(s, a) is defined by:

32

Qπ(s, a) = Eπ {Rt|st = s, at = a}

= Eπ

{
T∑

k=t+1

rk|st = s, at = a

}
(3.3)

where Eπ is the expected value given that ALEX follows policy π. A fundamental property
of the value function is that it follows a recursive relationship between the current and
future state-action values:

Qπ(s, a) = Eπ

{
T∑

k=t+1

rk|st = s, at = a

}

= Eπ

{
rt+1 +

T∑
k=t+2

rk|st = s, at = a

}

=
∑
s′

P a
ss′

[
Ra
ss′ + Eπ

{
T∑

k=t+2

rk|st+1 = s′, at = a

}] (3.4)

where P a
ss′ is the probability that the next state is s′ when action a is taken at state s at time

step t: P a
ss′ = Pr{st+1 = s′|st = s, at = a}, and Ra

ss′ is the expected value of the next reward
when taking action a at state s to move to state s′: Ra

ss′ = E{rt+1|st = s, at = a, st+1 = s′}.

The relationship between the action-value of the current state and that of the next
state can be obtained from Equation 3.4 as follows:

Qπ(s, a) =
∑
s′

P a
ss′

[
Ra
ss′ +

∑
a′

π(s′, a′)×

Eπ

{
T∑

k=t+2

rk|st+1 = s′, at+1 = a′

}]

=
∑
s′

P a
ss′

[
Ra
ss′ +

∑
a′

π(s′, a′)Qπ(s′, a′)

] (3.5)

where π(s′, a′) is the probability of choosing action a′ at state s′ according to policy π. In
ALEX, when a positive feedback instance is received over a link (state) s, and an action
a is taken based on a policy π with probability π(s, a), a number of new links (states)
is discovered and added to the set of candidate links. When one of these states s′ is
later visited and feedback (positive or negative) is received over it, the value of Ra

ss′ is

33

then known. It is assumed that all states that are generated by an action a have equal
probability of being visited. Thus, P a

ss′ =
1
|s′| .

A policy π′ is considered to dominate another policy π if and only if Qπ′(s, a) ≥ Qπ(s, a)
for all s ∈ S. Policy π∗ is considered to be an optimal policy if its value function dominates
the value functions of all other policies. There may exist more than one optimal policy.
An optimal policy implies an optimal action-value function:

Q∗(s, a) = maxπ Q
π(s, a) (3.6)

for all s ∈ S. Therefore, Equation 3.5 becomes:
Q∗(s, a) =

∑
s′

P a
ss′ [R

a
ss′ +maxa′Q

∗(s′, a′)] (3.7)

3.6.4 Iterative Improvement

After an episode of feedback is collected, ALEX improves the policy based on the value
function evaluated during the episode. A new episode is then started and the policy
evaluation/policy improvement iterations continue until ALEX converges. Convergence
is defined by the candidate links not changing in an episode of feedback. The details
of evaluating a policy during an episode and improving it at the end of the episode are
presented next.

Monte Carlo Policy Evaluation

The value function can only be evaluated through interactions between ALEX and the
environment (the user and existing links). According to the definition of value in Equa-
tion 3.2, the value of a state or state-action pair can only be known if a user gives feedback
on the current state and future states that follow. Since the value function needs to be
evaluated at the present time without waiting for future feedback, the value function needs
to be estimated according to the current state s, policy π, and action taken a. A Monte
Carlo (MC) method is used for this purpose: to estimate the action-value of each state
visited during each episode, while feedback is collected.

The existence of a state s in an episode is called a visit. ALEX uses a first-visit MC
approach [123] to estimate the action-value function. In the first-visit MC approach, the
average of returns following the first visit to s in which action a was taken is maintained.
This means that if the state-action pair (s, a) is witnessed again during an episode, returns
following that pair will not be considered. For example, if a state s2 results from the
state-action pair (s1, a1), and s2 turns out to be a correct link, a positive reward is added

34

to the return of state-action pair (s1, a1). Now, if from state s2, action a2 is taken and
results in a wrong state s3, a negative reward is added to (s2, a2) and (s1, a1). However,
when state s2 or s3 is encountered again, no reward is added to the updated returns of the
state-action pairs during the current episode. If a state, say s2, is encountered in a future
episode, that would be considered a new first visit. The first-visit MC approach converges
asymptotically to Qπ(s, a) [118].

The MC method requires π to be probabilistic. If π is deterministic rather than prob-
abilistic at a state s, the same action a will always be taken. Thus, many relevant state-
action pairs may never be visited. In such a case, there would be no need for learning how
to choose among actions at any state. To compare the alternatives, the value of almost
all actions from all witnessed states needs to be estimated. ALEX ensures continuous
exploration to avoid this problem.

ALEX gives itself the option of choosing any action at any state. This means that at
any state s ∈ S, and for all actions available in that state a ∈ A(s), π(s, a) > 0. ALEX
achieves this non-zero probability by using an ε-greedy policy so that it mostly chooses a
greedy action that has the maximal estimated action value, but chooses a random action
with low probability ε > 0. In other words, with probability 1 − ε + ε

|A(s)| a greedy
action is taken, and with probability ε− ε

|A(s)| , a non-greedy action is taken. This satisfies
1 ≥ π(s, a) ≥ ε

|A(s)| > 0, which means that no action has zero probability of being selected
by the current policy, thereby ensuring continuous exploration.

Policy Improvement

If the rewards, Ra
ss′ , and the probabilities of moving to states given an action, P a

ss′ , are
known in advance, Equation 3.7 has a unique solution since it is a system of N equations
where N is the number of states in the environment. If the optimal value function is
known, it is straightforward to determine an optimal policy: At any state s, choose the
action that yields the maximum value of Q∗(s, a) in Equation 3.7. In other words, a greedy
policy with respect to the optimal evaluation function is the optimal policy. However, as
explained earlier, the feedback on links and which states can be visited next are unknown.
This means that the reward of the current action will not be known until the user gives
feedback on the links discovered after the current action is taken. Also, the next state
visited is not known in advance.

The previous section explained how a Monte Carlo method can be used to estimate
Qπk for arbitrary probabilistic πk, where k is the iteration number in the cycle of policy
evaluation/policy improvement. Policy improvement is done by changing the policy to a

35

greedy policy with respect to the current value function. For any action-value function Q,
the greedy policy is the one that, for all s ∈ S, chooses the action with the maximal Q
value:

π(s) = argmaxaQ(s, a) (3.8)

Equation 3.8 can be used as the basis for policy improvement as follows:
Qπk(s, πk+1(s)) = Qπk(s, argmaxaQ

πk(s, a))

= maxaQ
πk(s, a)

≥ Qπk(s, πk(s))

(3.9)

where, as explained above, πk+1 is the greedy policy with respect to Qπk . In Section 3.7,
it is proven that πk+1 dominates πk.

3.6.5 Interaction Between Policy Evaluation and Improvement

The value function is repeatedly updated to approximate the actual value of the current
state with respect to the current policy. Also, the policy is repeatedly improved with
respect to the current value function. Iteratively, these two processes cause the policy to
approach optimality, and the value function to approach its actual value.

As discussed in Section 3.6.4, each evaluation step moves the value function Qπk towards
its actual value. The value function converges to its actual value over many steps, at which
point policy improvement can terminate. However, this convergence would require many
feedback episodes. ALEX does not wait for complete policy evaluation before returning
to policy improvement. In fact, policy improvement can start as soon as preliminary
evaluation is done during the first episode. As state-action values become more accurate
by receiving more feedback during future episodes, the policy can be further improved after
each episode of feedback.

Algorithm 1 shows how ALEX alternates between policy evaluation and policy im-
provement on an episode-by-episode basis. While collecting feedback in an episode, policy
evaluation is done by estimating the action-value function Q(s, a) (lines 11 to 22), the
policy is then improved at all states visited in the episode by choosing the greedy action
(line 25).

Algorithm 1 shows how policy improvement is done using an ε-greedy policy. When
ALEX starts, it chooses arbitrary actions for new states visited for the first time or before
the first policy improvement cycle (lines 2 to 8). Lines 24 to 33 show how policy improve-
ment takes place after an episode by assigning the greedy action a probability of 1−ε+ ε

|A(s)|
while non-greedy actions are assigned a probability ε

|A(s)| each (taking a non-greedy action

36

Algorithm 1: ALEX with ε-greedy policy
input : set of states S, set of actions A
output: action-value function Q(s, a), Policy π(s)

1 // Initialize
2 for all s ∈ S do
3 for all a ∈ A(s) do
4 Q(s, a) = undefined;
5 π(s) = arbitrary action;
6 Returns(s, a) = empty list;
7 end
8 end
9 while set of candidate links different from last iteration do

10 // Policy Evaluation
11 while episode not complete do
12 receive feedback on a state s′;
13 if first visit of s′ then
14 append feedback value to all Returns(s, a) that led to s′;
15 end
16 Q(s, a) = AV G(Returns(s, a));
17 if positive feedback then
18 a′ = π(s′);
19 else
20 remove link;
21 end
22 end
23 // Policy Improvement
24 for all states s in episode do
25 a∗ = argmaxaQ(s, a);
26 for all a ∈ A(s) do
27 if a = a∗ then
28 π(s, a) = 1− ε+ ε

|A(s)| ;
29 else
30 π(s, a) = ε

|A(s)| ;
31 end
32 end
33 end
34 end

37

has a total probability of ε− ε
|A(s)|). This is to ensure continuous exploration while at the

same time moving towards a greedy policy. During the next episode, when a state that
exists in the policy is encountered, a greedy action is taken with high probability, while
other actions are explored with low probability.

3.7 Soundness of ALEX

This section presents a proof that: (1) Policy improvement always yields a better policy
unless the policy is already optimal. (2) This property applies for the ε-greedy policy used
in ALEX.

The value function discussed thus far is the action-value function Qπ(s, a), which defines
the expected return at a state s when choosing an action a following some policy π. Another
value function, which is needed in this proof, defines the expected return, V π(s), for a state
s under policy π:

V π(s) = Eπ {Rt|st = s}

= Eπ

{
T∑

k=t+1

rk|st = s

}
(3.10)

This value function is called the state-value function for policy π. It defines the expected
value given that ALEX follows policy π at state s. Similar to Equation 3.5, the value
function of state s can be represented as a recursive relationship with the value function
of the next state, s′:

V π(s) = Eπ

{
T∑

k=t+1

rk|st = s

}

= Eπ

{
rt+1 +

T∑
k=t+2

rk|st = s

}

=
∑
a

π(s, a)
∑
s′

P a
ss′

[
Ra
ss′ + Eπ

{
T∑

k=t+2

rk|st+1 = s′

}]
=
∑
a

π(s, a)
∑
s′

P a
ss′ [R

a
ss′ + V π(s′)]

(3.11)

38

Also, similar to Equation 3.7, the optimality equation for state-value function V ∗ is
given by:

V ∗(s) = maxaQ
π∗(s, a)

= maxaEπ∗ {Rt|st = s, at = a}

= maxa∈A(s)Eπ∗

{
T∑

k=t+1

rk|st = s, at = a

}

= maxa∈A(s)Eπ∗

{
rt+1 +

T∑
k=t+2

rk|st = s, at = a

}
= maxa∈A(s)Eπ∗ {rt+1 + V ∗(st+1)|st = s, at = a}

= maxa∈A(s)
∑
s′

P a
ss′ [R

a
ss′ + V ∗(s′)]

(3.12)

I now turn to proving that policy improvement always yields a better policy. The proof
will use the state-value function that was just defined. For ease of explanation, assume
that the policy is deterministic. However, the concepts discussed here can be applied to
probabilistic policies like the one used by ALEX.

The approach to proving that policy improvement always yields a better policy can be
illustrated with an example: Assume that the policy currently being used is π, and that
for some state s the policy needs to be changed to choose an action π′(s) = a 6= π(s). The
value of the state, given that the policy π is followed, is given by V π(s). The question is
whether it would be better or worse to change the policy so that it always chooses a at
state s. The value of choosing a at s and then continuing for future states following the
original policy π can be given by:

Qπ(s, a) = Eπ {rt+1 + V π(st+1)|st = s, at = a}

=
∑
s′

P a
ss′ [R

a
ss′ + V π(s′)] (3.13)

If it turns out that following policy π′ only at state s (i.e., choosing action a), and then
following policy π for future states gives greater state-value than the value of the state
when following policy π, this situation can be represented by the following inequality:

Qπ(s, π′(s)) ≥ V π(s) (3.14)

I want to show that if Equation 3.14 holds, then always following policy π′ at state s
yields a greater value than following policy π. That is, I want to prove that

V π′(s) ≥ V π(s) (3.15)

39

This can be proved by starting from Equation 3.14 and expanding Qπ(s, π′(s)) using
Equation 3.13:

V π(s) ≤ Qπ(s, π′(s))

V π(s) ≤ Eπ′ {rt+1 + V π(st+1)|st = s}
V π(s) ≤ Eπ′ {rt+1 +Qπ(st+1, π

′(st+1))|st = s}
V π(s) ≤ Eπ′ {rt+1 + Eπ′{rt+2 + V π(st+2)}|st = s}
V π(s) ≤ Eπ′ {rt+1 + rt+2 + V π(st+2)|st = s}
V π(s) ≤ Eπ′ {rt+1 + rt+2 + rt+3 + V π(st+3)|st = s}
V π(s) ≤ V π′(s)

(3.16)

So far, it was shown that a change in the policy at a single state to a particular action
affects the state-value of this state, given the policy and the evaluation function. It was
also shown that greedily choosing a policy that increases the action-value function at state
s improves the overall policy. This reasoning can be extended to all states and all possible
actions by selecting the action a that yields the highest Qπ(s, a) at each state s. This is
the greedy policy π′ defined by:

π′(s) = argmaxaQ
π(s, a)

= argmaxaE {rt+1 + V π(st+1)|st = s, at = a}

= argmaxa
∑
s′

P a
ss′ [R

a
ss′ + V π(s′)]

(3.17)

Thus far, it was proved that a greedy policy π′ is as good as, or better than, an arbitrary
policy π. If it is assumed that the greedy policy π′ is as good as, but not better than,
policy π (i.e.,V π′ = V π), this can be expressed as:

V π′(s) = maxaE
{
rt+1 + V π′(st+1)|st = s, at = a

}
= maxa

∑
s′

P a
ss′

[
Ra
ss′ + V π′(s′)

] (3.18)

This equation is the same as the optimality Equation 3.12. Thus, V π′ must be V ∗, and
π and π′ must be the optimal policies. This means that policy improvement must give a
better policy unless the policy is already optimal. This also proves Equation 3.9 because
each πk+1 is uniformly better than πk, or equal to it if both are optimal policies:

Qπk(s, πk+1(s)) ≥ Qπk(s, πk(s))

≥ V πk(s)
(3.19)

To show that policy improvement is sound for the ε-greedy probabilistic policy used by
ALEX, let π′ be the ε-greedy policy. It must be proved that the inequality Qπ(s, π′(s)) ≥

40

V π(s) holds. This can be done by expanding the left-hand side of the inequality as follows:
Qπ(s, π′(s)) =

∑
a

π′(s, a)Qπ(s, a)

=
ε

|A(s)|
∑
a

Qπ(s, a) + (1− ε)maxaQπ(s, a)

≥ ε

|A(s)|
∑
a

Qπ(s, a)+

(1− ε)
∑
a

π(s, a)− ε
|A(s)|

1− ε
Qπ(s, a)

(3.20)

The transition from the equality to the inequality is because the sum of the second
term is a weighted average with non-negative weights summing to one (

∑
a

π(s,a)− ε
|A(s)|

1−ε),
and therefore must be less than or equal to the largest number averaged (maxaQπ(s, a)).

Qπ(s, π′(s)) ≥ ε

|A(s)|
∑
a

Qπ(s, a) +
∑
a

π(s, a)Qπ(s, a)

− ε

|A(s)|
∑
a

Qπ(s, a)

Qπ(s, π′(s)) ≥
∑
a

π(s, a)Qπ(s, a)

Qπ(s, π′(s)) ≥ V π(s)

(3.21)

Equation 3.21 shows that policy improvement is sound for the ε-greedy policy. Using
a greedy policy guarantees improvement in every step except when an optimal policy is
reached. This analysis is independent of how the action-value functions are determined at
each iteration.

3.8 Optimizations to ALEX

This section describes some optimizations incorporated into ALEX to improve execution
time and reduce the number of iterations required for convergence.

3.8.1 Filtering to Reduce the Search Space

ALEX searches in the space of all possible links between entities in two data sets. It
is computationally expensive to: (1) Construct the space of feature sets for each pair of

41

entities from the two data sets. (2) Search for candidate links in this space. It is important
to reduce the search space to eliminate unlikely links since the number of correct links is
considerably small compared to the number of all possible links.

When computing a value for a feature (i.e., a similarity score between two objects
associated with two predicates), ALEX keeps only features whose value is above a certain
threshold θ. Feature values less than θ are set to zero. Feature sets that do not have any
positive values are dropped. The experiments in this chapter use a value of θ = 0.3.

3.8.2 Partitioning the Search Space

The search conducted by ALEX in the space of possible links can be parallelized by parti-
tioning the space into independent partitions that do not require communication. In order
to achieve this, the larger data set is partitioned and feature sets between each partition
and all entities in the smaller data set are generated. Assume the first data set Ds1 is larger
than the second data set Ds2. Ds1 is partitioned into {Ds11 ∪Ds12 ∪ · · · ∪Ds1n}. Feature
sets are generated for each pair {(Ds11, Ds2), (Ds12, Ds2), · · · , (Ds1n, Ds2)}. Feedback can
then be directed to all partitions so that ALEX can take actions and explore new links in
each partition. The different partitions can be independently explored in parallel, either on
different CPU cores of the same machine or on multiple machines in a distributed setting.

ALEX uses a simple partitioning technique that is called equal-size partitioning. Equal-
size partitioning divides the larger data set into equal-sized partitions in a round-robin
fashion. That is, the ith entity is in partition i mod n, where n is the number of parti-
tions. Equal-size partitioning enables parallelism that significantly reduces execution time
without sacrificing the quality of candidate links.

3.8.3 Optimizations for Handling Incorrect Links
The actions taken by ALEX (exploring links that did not exist in the set of candidate
links) lead to fast improvement in recall. However, ALEX can also generate incorrect
links, which reduces precision. Negative feedback would eventually correct these errors
by removing incorrect links. Based on negative feedback, ALEX learns that some action
resulted in worse returns. During policy improvement, ALEX would change the policy so
that this action is chosen only with small probability. However, relying only on policy
improvement to remove incorrect links may result in slow convergence. In order to speed
up convergence, ALEX uses two optimizations to improve precision without waiting for
policy improvement: blacklist and rollback.

42

Blacklist: When negative feedback is received over a link, it is now known that the link
is incorrect, so it is added to a list of incorrect links, which is called the blacklist. The
blacklist is used to prevent links that are known to be incorrect from being returned by
ALEX when exploring links at any state in the future.

Rollback: The probabilistic nature of the ε-greedy policy used by ALEX allows it to
choose incorrect actions at any state to learn how to make better choices when choosing
future actions. Some actions may result in the discovery of a large number of incorrect
links. When this happens, it is a wise choice to rollback and remove the links generated by
such actions. ALEX traces feedback on links to know which state-action pair was used to
generate these links. When a sufficient number of negative feedback instances is received
over links generated by a specific state-action pair, a rollback process is initiated, and all
links generated by this state-action pair are removed. However, links removed without
being marked with negative feedback are not added to the blacklist since they may include
correct links. These links can be discovered later by another state-action pair with a better
average return.

The rollback optimization is particularly useful for handling incorrect feedback due to
errors in the data or errors by the user. It may be possible to refine the feedback so that
ALEX uses only high quality feedback obtained from a large number of users (e.g., using
techniques from [98]). However, feedback is not expected to be 100% correct, regardless of
the measures taken to improve its quality. When incorrect feedback is received by ALEX,
it will take an action that can be rolled-back if future feedback contradicts the incorrect
feedback.

3.9 Experimental Evaluation

3.9.1 Experimental Setup

Data sets: The real data sets shown in Table 3.1 in Section 3.4 are used in the exper-
iments. The linked pairs of data sets are shown in Table 3.2 along with the number of
owl:sameAs links between each pair. These are the pairs used in the experiments.

Initial Set of Links: PARIS [122] is used as the automatic linking algorithm for gener-
ating the initial set of candidate links for ALEX. PARIS was shown to outperform other

43

techniques, and it is not domain specific. PARIS produces links where each link is associ-
ated with a score. In order to find better quality links from PARIS, only links with score
greater than 0.95 are used. Lowering this threshold does not improve recall, but it lowers
precision.

Ground Truth: The data sets used in the experiments in this chapter are part of the
LOD cloud, which means that they are already linked. In these experiments, all existing
links between the data sets are removed and used as the ground truth. In addition, I
randomly inspect samples from the ground truth to remove any incorrect links. PARIS is
then run over the pair of data sets to be linked to discover candidate links, which ALEX
uses as initial candidate links. I manually inspect the initial candidate links generated by
PARIS to find correct links that do not exist in the ground truth. If such links are found,
they are added to the ground truth.

Generating Feedback: A link is randomly chosen out of the set of candidate links and
compared to the ground truth. If the link exists in the ground truth, a positive feedback
instance is returned to ALEX. If the link is incorrect (i.e., does not exist in the ground
truth), a negative feedback instance is returned.

Evaluation Metrics: The efficiency of ALEX is evaluated by comparing the candidate
links it generates to the ground truth. This comparison is performed after each policy
evaluation/policy improvement iteration, i.e., after each episode of feedback. The quality
of candidate links is evaluated using precision P = |C∩G|

|C| , recall R = |C∩G|
|G| , and F-measure

F = 2PR
P+R

, where C is the set of candidate links after each episode, and G is the ground
truth. The execution time that ALEX requires to converge is also measured. The execu-
tion time includes the exploration of new candidate links and improving the policy after
each episode.

Default Settings: The initial step size for defining the exploration band is set to 0.05.
Thus, if a feature has a score of 0.8, ALEX will find links whose feature score is in the
range [0.75, 0.85]. By default, dynamic bands are used for exploration, so the upper bound
of the band increases as explained in Section 3.6. When using a static exploration band,
the step size remains at 0.05. The default episode size is 1000. All the experiments use
equal-size partitioning to partition the space of feature sets into 27 partitions.

44

Execution Environment: ALEX is implemented in Java. The experiments are run on a
shared server running Linux Ubuntu 16.04.3 with 64 Intel Xeon CPU at 2.6 GHz and 256
GB of memory. The memory usage for the largest data sets never exceeded 60 GB.

Section 3.9.2 evaluates the quality of the links discovered by ALEX. Section 3.9.3 eval-
uates the efficiency of ALEX and the effect of the optimizations it employs. Section 3.9.4
evaluates the effect of incorrect feedback on the quality of links. Section 3.9.5 evaluates
the sensitivity of ALEX to change in parameter values.

3.9.2 Quality of Links

I envision ALEX being used in one of two settings: 1. Batch Mode: A service provider
can give users the ability to query multiple, large linked RDF data sets. In this setting,
the service provider collects feedback from many users on a large number of links between
different parts of the data sets. ALEX applies the feedback in batches, using a large episode
size, in order to ensure that there is sufficient feedback on different parts of the data sets.
In this setting, a default episode size of 1000 (e.g., 1000 users providing 1 feedback instance
each) is used. 2. Specific Domains: Individual users can develop applications that target
more specific domains, either small data sets or subsets of large data sets. The user feedback
is focused on a specific domain (e.g., a small part of the DBpedia data set), and she expects
to see quick improvement in link quality based on her feedback. In this setting, a small
episode size of 10 is used. In both settings, a strict rule for convergence is used: ALEX
stops when there is no change at all in the set of candidate links between episodes. The
episode at which fewer than 5% of the links change compared to the previous episode is
also shown. This can be used as a more relaxed convergence rule.

ALEX in Batch Mode

Figure 3.9 shows how ALEX performs in batch mode. The figure shows the quality of
links after each episode (i.e., iteration of policy evaluation/policy improvement). The
figure shows that in most cases, the recall value starts from a low value (i.e., most ground
truth links are not included). This recall value is significantly improved after the first
episode. This means that a large number of links have been discovered and added to the
set of candidate links after only one episode. In some iterations, the precision is hurt by
adding some incorrect links to the set of candidate links. However, ALEX recovers fast
and keeps improving both precision and recall until it converges. The vertical green line
in this and subsequent figures shows the episode at which the number of changed links

45

from the previous episode is less than 5%. For example, in Figure 3.9(a), this relaxed
convergence happens after 5 episodes in this experiment, while full convergence (i.e., no
change in links) happens after 8 episodes. An exception to this pattern is Figure 3.9(e),
where PARIS is able to generate a set of initial candidate links with relatively good recall
but with bad precision. The figure shows how ALEX performs in this case. The figure
shows that the automatically generated links have a low starting precision value (less than
0.3), and high recall value (0.95). ALEX is able to significantly improve the precision value
after three episodes. The recall value is also improved. ALEX converges after 4 episodes
in this experiment (3 episodes with the relaxed condition), reaching an F-measure of 0.97.
Figures 3.9(g) and 3.9(h) shows the case when ALEX starts with an output with higher
precision. After the first episode, the precision drops before recovering in later episodes
until convergence.

ALEX for Specific Domains

For this setting, the following pairs of data sets are used: (DBpedia, UK Learning Providers),
(Geonames, Linkedmdb), and (Geonames, Lexvo). In addition, two subsets of DBpedia
and OpenCyc about NBA basketball players are extracted and used with NYTimes. These
pairs are specific domain data sets and are linked by a small number of owl:sameAs links.

Figure 3.10(a) shows the performance of ALEX between DBpedia and the UK Learning
Providers data set. The figure shows that ALEX achieves very good quality of links and
converges in 3 episodes (i.e., significant improvement after 10 feedback instance, and full
convergence after 30). Figures 3.10(b) and 3.10(c) show similar behaviour where ALEX
converges after only 2 iterations. There are 93 links in the ground truth of DBpedia -
NYTimes (NBA basketball players), and 35 for OpenCyc - NYTimes (NBA basketball
players). Figures 3.10(d) and 3.10(e) show that ALEX significantly improves the quality
of links for these data sets after one iteration and converges after just two iteration.

Finding Distinctive Features

One question that relates to the quality of the links discovered by ALEX is: Does ALEX
identify distinctive features? Recall that all the distinctive features were identified in
Section 3.4. It is possible to check the policy of ALEX to see if it explores around these
distinctive features. Specifically, when ALEX converges, if a distinctive feature is a feature
that ALEX chooses with high probability for any state, then this means that ALEX has
identified this feature as a distinctive one. This is desirable since it should improve the

46

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 2 4 6 8 10

Precision Recall F‐Measure

(a) DBpedia - NYTimes

0

0.2

0.4

0.6

0.8

1

0 5 10 15

Precision Recall F‐Measure

(b) DBpedia - OpenCyc

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12

Precision Recall F‐Measure

(c) DBpedia - Linkedmdb

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4

Precision Recall F‐Measure

(d) DBpedia - Lexvo

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

Precision Recall F‐Measure

(e) DBpedia - Drugbank

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 5 10 15 20 25

Precision Recall F‐Measure

(f) DBpedia - Geonames

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4

Precision Recall F‐Measure

(g) Geonames - NYTimes

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

Precision Recall F‐Measure

(h) OpenCyc - Umbel

Figure 3.9: Quality of links for the batch mode setting. The x-axis is the episode number
and the y-axis is the quality value. 47

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4

Precision Recall F‐Measure

(a) DBpedia - UK Learning Providers

0

0.2

0.4

0.6

0.8

1

0 1 2 3

Precision Recall F‐Measure

(b) Geonames - Linkedmdb

0

0.2

0.4

0.6

0.8

1

0 1 2 3

Precision Recall F‐Measure

(c) Geonames - Lexvo

0

0.2

0.4

0.6

0.8

1

0 1 2 3

Precision Recall F‐Measure

(d) DBpedia (NBA) - NYTimes

0

0.2

0.4

0.6

0.8

1

0 1 2 3

Precision Recall F‐Measure

(e) OpenCyc (NBA) - NYTimes

Figure 3.10: Quality of links for the specific domain setting. The x-axis is the episode
number and the y-axis is the quality value.

48

0

5

10

15

20

25

30

Number of Distinctive Features Number of Distinctive Features Identified by ALEX

Figure 3.11: Number of distinctive features identified by ALEX.

quality of the discovered links. Formally, if a′ is a distinctive feature, then ALEX is said
to identify it if ∃s ∈ S|π(s) = a′. Figure 3.11 shows the number of distinctive features
identified by ALEX. The figure shows that ALEX is able to identify almost 87% of the
distinctive features in the data set pairs, which is one of the reasons ALEX identifies high
quality links and converges fast.

3.9.3 Efficiency of ALEX

This section investigates the efficiency (i.e., running time) of ALEX, and the effect of the
different optimizations to speed up convergence.

An important factor affecting convergence is having dynamic exploration bands com-
pared to the static bands used in [56]. Table 3.3 shows each data set pair with the number
of episodes required for ALEX to converge under two settings: (1) using a static band
with step size 0.05, as in [56], and (2) using a dynamic band that grows as described in
Section 3.6. The table also shows the saving as a percentage. The table shows that using
a dynamic exploration band leads to convergence with 25% to 60% less feedback, with an
average improvement of 39.3%.

Next, the optimizations proposed in Section 3.8 are evaluated. For the following exper-
iments, the DBpedia and NYTimes data sets are used. These data sets are challenging for

49

Data Set Pair No. of Episodes No. of Episodes Feedback Saved
(Static Band) (Dynamic Band)

DBpedia - NYTimes 14 8 43%
DBpedia - OpenCyc 20 14 30%
DBpedia - Linkedmdb 18 11 39%

DBpedia - Lexvo 5 3 40%
DBpedia - Drugbank 10 4 60%
DBpedia - Geonames 45 20 56%

DBpedia - UK Learning 4 3 25%
Geonames - NYTimes 5 3 40%
Geonames - Linkedmdb 3 2 33%

Geonames - Lexvo 3 2 33%
OpenCyc - Umbel 9 6 33%

Table 3.3: Savings due to using a dynamic exploration band compared to a static band.

ALEX since they contain data from more heterogeneous domains than the rest of the data
sets. The default episode size is similar to ALEX in batch mode (1000 feedback instances
per episode).

Filtering to Reduce the Search Space: Figure 3.12 shows the total number of links
that can be generated between the first partition of the DBpedia data set and the whole
data set of NYTimes, the number of links after filtering using a threshold θ = 0.3, and the
number of ground truth links in this partition (note that the y-axis is in log scale). The
figure shows that filtering is highly effective and reduces the search space by 95%. Ground
truth links represent only 0.2% of the filtered links, demonstrating the efficiency of ALEX,
which is able to discover correct links in such a large space.

Blacklist: Figure 3.13 shows a comparison between ALEX with and without the black-
list optimization. Figure 3.13(a) shows that using a blacklist gives a slight improvement in
F-measure over not using it. Figure 3.13(b) shows that using a blacklist significantly de-
creases the fraction of negative feedback that the user provides on incorrect links between
the data sets. Using a blacklist does not affect the execution time of ALEX. Intuitively,
a black list is useful because when a user provides negative feedback on a link she should
not need to provide this feedback again.

Rollback: ALEX learns by interacting with the environment. This means that it can
sometimes make wrong decisions. These wrong decisions can result in exploring a large
number of incorrect candidate links, significantly reducing the quality of the discovered

50

1

10

100

1000

10000

100000

1000000

10000000

Total Links Filtered Space Ground Truth

N
um

be
r o

f L
in
ks
 (l
og

 sc
al
e)

Figure 3.12: Comparing number of links: total possible links vs. filtered search space vs.
ground truth.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10
Episode Number

Blacklist No Blacklist

(a) F-measure

0

5

10

15

20

25

30

35

0 2 4 6 8 10

Pe
rce

nt
ag
e o

f N
eg
at
ive

 Fe
ed

ba
ck

Episode Number

Blacklist No Blacklist

(b) Negative feedback

Figure 3.13: Effect of the blacklist: (a) F-measure, and (b) negative feedback.

51

links. If rollback is not used, ALEX can recover from wrong decisions only very slowly.
Figure 3.14 shows the importance of the rollback optimization. Figure 3.14(a) shows the
quality measures of ALEX without using the rollback optimization. This figure should be
contrasted to Figure 3.9(a), which shows ALEX with rollback (the default). The figure
shows that after the first episode, precision drops to a very low value. The figure also shows
that it is hard to recover from the wrong decisions made during the first episode. After
100 episodes, which is the maximum number of iterations allowed by ALEX, precision is
a little over 0.3. Figure 3.14(a) shows the overall quality of all partitions. If the partitions
are examined independently, some partitions are found to be able to recover from wrong
decisions made by ALEX, while others are not. Figure 3.14(b) shows an example of a
partition that is able to recover from the wrong decisions and converges in 40 episodes.
The same partition converges in 7 episodes when rollback is applied. However, another
partition, shown in Figure 3.14(c), cannot recover from wrong decisions.

Execution Time: In the experiment with DBpedia and NYTimes shown in Fig-
ure 3.9(a), ALEX finishes execution in 84 minutes, which is the execution time of the
slowest partition. This is approximately 10 minutes per episode. The average execution
time of all partitions is approximately 55minutes. In the specific domain experiment shown
in Figure 3.10(a), ALEX finishes in approximately 4 seconds. This is approximately 1.3
second per episode (10 feedback instances). The faster convergence in the specific domain
setting is because the data sets and the amount of feedback are smaller. Thus, in batch
mode ALEX takes a few minutes per episode, while in interactive mode it takes a few
seconds. This is acceptable efficiency for the application scenarios envisioned for ALEX.

3.9.4 Effect of Incorrect Feedback

In this chapter, it is assumed that user feedback is always correct. However, in real-life
scenarios, users may not agree on the correctness of query answers. Therefore, incorrect
feedback items may be encountered. In order to evaluate ALEX in this context, random
incorrect feedback items are generated such that 10% of the feedback items received by
ALEX are incorrect. ALEX is evaluated with 10% incorrect feedback on the DBpedia -
NYTimes data sets, using the default episode size of 1000. Figure 3.15 shows the precision,
recall, and F-measure for ALEX with 10% incorrect feedback, and the corresponding values
when all feedback is correct (from Figure 3.9(a)). The recall value in Figure 3.15(b) does
not vary much, demonstrating that the reinforcement learning techniques used by ALEX
are robust to incorrect feedback. The precision values shown in Figure 3.15(a) are slightly
worse when there is incorrect feedback, and this also affects the F-measure in Figure 3.15(c).
ALEX improves precision by removing incorrect links from the set of candidate links, and

52

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 20 40 60 80 100 120

Precision Recall F‐Measure

(a) Quality without rollback

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35

Precision Recall F‐Measure

(b) A partition that converges

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120

Precision Recall F‐Measure

(c) A partition that does not converge

Figure 3.14: Effect of rollback: (a) quality without rollback, (b) a partition that converges,
and (c) a partition that does not converge.

53

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11

Correct Feedback 10% Incorrect Feedback

(a) Precision

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11

Correct Feedback 10% Incorrect Feedback

(b) Recall

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11

Correct Feedback 10% Incorrect Feedback

(c) F-measure

Figure 3.15: ALEX with correct feedback and with 10% incorrect feedback.

these incorrect links can be removed only when negative feedback is received over them.
When there is incorrect feedback, a constant stream of positive feedback is received over
incorrect links, so these incorrect links stay in the set of candidate links. Nevertheless, the
degradation in precision is relatively small, and ALEX is able to produce good results even
in the presence of incorrect feedback.

3.9.5 Sensitivity of ALEX to Parameter Values

Step Size: ALEX uses a dynamic step size, which doubles the upper bound of the
exploration band after each episode (termed the double step approach). In addition to
comparing a static step size to using a dynamic step size, another approach to dynamic

54

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Episode Size 500 Episode Size 1000 Episode Size 1500

Figure 3.16: F-measure for ALEX with different episode sizes.

step sizing is also evaluated. In this approach, the step size extends the upper bound
with more conservative increases. Specifically, the step size αi changes according to
αi+1 = MIN(1, αi + α0), where i is the episode number. The band size then changes
to [feature_score − α0, feature_score + αi]. This approach is termed the incremental
step approach. An experiment on the DBpedia and NYTimes data sets shows that both
the incremental step and double step approaches achieve slightly better quality of links
compared to the static step approach. More importantly, they converge in fewer episodes:
the double step, incremental step, and static step approaches converged in 8, 10, and 14
episodes, respectively. This validates the choice of using the double step approach.

Episode Size: Like changing the step size, changing the episode size slightly affects the
quality of the discovered links. Figure 3.16 shows a comparison of ALEX using an episode
size of 500, 1000 (default), and 1500 on the DBpedia and NYTimes data sets. During each
episode, policy evaluation uses the current policy to take action after every feedback item.
At the end of an episode, the policy is improved for the next episode. Figure 3.16 shows the
F-measure for the three episode sizes. The F-measures are very close to each other, with
episode sizes 1000 and 1500 slightly outperforming episode size 500. A larger episode size
results in ALEX taking fewer episodes to converge, since each episode has more feedback.
ALEX converges in 16, 8, and 7 episodes for episode size 500, 1000, and 1500, respectively.

The experiments in this section show that ALEX is sensitive to changes in the values of
its parameters. That is, the parameters have a noticeable effect on performance. However,
the sensitivity is not so high as to make ALEX unstable and reliant on highly accurate
parameter settings: the difference between the best case and the worst case performance
is not too high, and reasonable choices of parameter values work well.

55

3.10 Conclusion and Future Work

This chapter presented ALEX, a system that utilizes user feedback on queries over linked
data to remove incorrect links and discover new links that did not exist between the data
sets. When a user provides positive feedback on a link, ALEX finds new links that are
similar to this link. This exploration is conducted by taking one pair of attributes from
the two data sets and exploring around the similarity value between these two attributes.
ALEX uses a probabilistic policy to choose the attributes to explore around. This policy
is learned and improved using a Monte Carlo reinforcement learning approach. Using this
approach, ALEX learns how to find new links as the user continues giving feedback on query
answers. ALEX uses several optimizations to speed up convergence. The experiments with
real world data sets show the effectiveness and efficiency of ALEX.

ALEX uses syntactic approaches that are heavily guided by user feedback to find new
correct links. When working with RDF data, it is possible to use semantic approaches
that reason about the relationships between entities. Thus, a promising direction for fu-
ture work is to investigate using semantic approaches to infer new correct links based on
existing links and user feedback. For example, it may be possible to represent links as
sets of axioms and functional dependencies, and to use logical inference on these sets to
find new links while being guided by user feedback. Another direction for future work is
to investigate using statistical or machine learning approaches to find new links. It may
also be possible to extend ALEX to treat feedback from different users differently, for ex-
ample, to give higher weight to feedback from users who are known to be credible and
reliable. An interesting dimension for future work relates to the types of links that are
explored. ALEX focuses on the links between individual entities, specifically owl:sameAs.
Another (less commonly used) type of link between individual entities is owl:differentFrom.
Thus, a possible direction for future work is to extend ALEX to find owl:differentFrom
links based on user feedback. It is also possible to investigate a completely new direction
for finding links, namely finding links between RDF classes. There are many types of
links between RDF classes such as rdfs:subClassOf, owl:equivalentClass, owl:disjointWith,
rdfs:subPropertyOf, owl:equivalentProperty, owl:inverseOf, owl:FunctionalProperty, and
owl:InverseFunctionalProperty. An interesting direction for future work is to find these
types of links based on user feedback, probably using a semantic (i.e., reasoning) rather
than syntactic approach.

I conclude by noting that this chapter did not elaborate on how the user issues queries
over multiple data sets from the LOD cloud. The problem of issuing such queries is far from
trivial because it requires the user to have full knowledge of the structure and values of
the queried data sets. This level of knowledge is not easy in practice. In the next chapter,

56

I further discuss the problem and its challenges, and present Sapphire as a solution to this
problem.

57

Chapter 4

Sapphire: Querying RDF Data Made
Simple

As discussed earlier, querying multiple linked RDF data sets can be very useful to answer
complex queries. Chapter 3 discussed utilizing user feedback over query answers to improve
the quality of owl:sameAs links between the queried data sets. The assumption was that
the user can compose SPARQL queries on the data as needed, which is often not an easy
task. This chapter discusses the challenges of querying heterogeneous RDF data sets and
describes how these challenges can be overcome using Sapphire [59], a tool that helps
non-expert users to write syntactically and semantically correct SPARQL queries.

Sapphire targets technically knowledgeable users and enables them to query an RDF
data set without requiring detailed prior knowledge of this data set. For example, pro-
grammers who can use Sapphire to gain knowledge of a new data set used in their work.
Another example is a biologist who can use Sapphire to quickly and easily query hetero-
geneous RDF data sets about diseases, their pathophysiology, and drug-drug interactions.
Sapphire provides an interface that allows users to compose SPARQL queries against the
SPARQL endpoints of one or more RDF data source. Through this interface, Sapphire
guides the user towards the SPARQL query that satisfies her information needs. Sapphire
achieves this in two ways that both rely on a predictive user model that is built in an ini-
tialization phase. First, while a user is typing a query, Sapphire interactively provides her
with data-driven suggestions to complete the predicates and literals in the query, similar to
the auto-complete capability in many user interfaces. Second, when a user completes the
query and submits it for execution, Sapphire suggests ways to modify the query into one
that may be better suited to the needs of the user. For example, if the user query returns
no answers, Sapphire would attempt to modify it into a query that does return answers.

58

Recall from Chapter 1 that answering questions over RDF data generally follows one of
two approaches: (a) natural language queries, and (b) structured querying using SPARQL.
Sapphire’s query completion and query suggestion modules rely on natural language tech-
niques. Thus, in the spectrum of approaches for querying RDF, Sapphire bridges the gap
between the simple but ambiguous natural language approaches on the one hand, and the
powerful but cumbersome SPARQL on the other. The novelty of Sapphire comes from
the need to balance multiple conflicting goals: Sapphire must provide high quality rec-
ommendations that actually help the user to find the information that she needs, it must
have fast response time since it is interactive, it must run on a reasonably sized machine
without placing excessive demands on the machine’s resources, and it must not overload
the SPARQL endpoints that it queries. These design goals require judicious design choices
which are presented in this chapter.

The contributions of this chapter are as follows:

• Summarizing the queried endpoints to collect concise, important data that is utilized
by Sapphire.

• The predictive user model which is at the heart of Sapphire and includes two modules:
query completion and query suggestion. This predictive user model helps the user
while writing the SPARQL query by providing suggestions to complete the query,
and after the query is issued by suggesting changes that can be made to the query
to get answers that the user may be interested in.

• An extensive evaluation of Sapphire based on performance experiments and a user
study. The evaluation demonstrates that Sapphire is significantly more effective
than competing approaches at finding the answers to user queries, and it achieves
interactive performance.

4.1 Related Work

4.1.1 Approaches to Querying RDF Data

The goal of Sapphire is to help users construct structured queries on RDF data without
having full knowledge of the queried data sets. The prior work on this problem generally
falls into three categories:

59

1. Natural language approaches, where a query is described using natural language.

2. Approximate structured queries, where the query posed by the user does not have to
be exactly matched with the queried data sets.

3. Query by example approaches that construct structured queries based on examples
of answers provided by the user.

Following is a discussion of the related work for these three approaches.

4.1.2 Natural Language Approaches to Querying RDF Data

Natural language approaches are simple for end-users and easy to use [85]. There has
been a significant amount of research on querying information using keywords in relational
databases [10, 20, 24, 36, 74, 75, 115, 147]. For RDF data, several prior works create
structured queries based on natural language approaches [30, 41, 52, 64, 86, 91, 129, 142,
148, 151]. Each of these works focuses on one or more specific query templates, and uses
keyword search or natural language questions to construct these templates and fill in the
placeholders they contain. All of these approaches suffer from two limitations compared to
Sapphire: (1) Their expressiveness is limited to specific query templates, and (2) inferring
query structure, predicates, and literals based only on natural language is inherently am-
biguous. In contrast, Sapphire can construct any SPARQL query, and it removes ambiguity
by involving the user directly in query composition.

In this chapter, Sapphire is compared to QAKiS [30] and KBQA [41] as representatives
of the state of the art in natural language approaches. QAKiS [30] is a question answering
system over RDF that automatically extracts from Wikipedia different ways of expressing
relations in natural language (e.g., “a bridge spans a river” and “a bridge crosses a river”
express the same relation). These equivalent expressions are used to match fragments of
a natural language question and construct the equivalent SPARQL query. KBQA [41]
is a more recent question answering system that focuses on factoid questions. KBQA
learns question templates from a large Q&A corpus (e.g., Yahoo! Answers), and learns
mappings from these templates to RDF predicates in the queried data set. The templates
and mappings are then used to answer user questions.

4.1.3 Approximate Structured Queries on RDF Data

This line of work goes beyond the fixed query templates used by natural language ap-
proaches, enabling the user to express approximate structured queries. That is, the

60

query posed by the user does not have to be exactly matched with the queried RDF
data [88, 87, 145]. These approaches are still limited in the query structure that they
support, and they require the user to know the vocabulary and the approximate schema
of the queried data sets. In contrast, Sapphire enables the user to compose any SPARQL
query without prior knowledge of the queried data sets.

In this chapter, Sapphire is compared to S4 [150], a recent system that was shown to
outperform other approximate query approaches. S4 summarizes and indexes the queried
data set based on the RDF entity types. It maintains a graph of the relationships between
RDF entity types based on the relationships between instances of these types. Queries are
rewritten based on this graph. S4 assumes that the user can issue queries using correct
predicates and instance URIs in the data set, but possibly not with the correct query
structure.

4.1.4 Querying By Example

In AIDE [48], the user selects a relational database and a set of attributes that are of interest
to her. AIDE shows the user sample tuples and expects positive or negative feedback of
whether the tuples are interesting or not. Based on this user feedback, AIDE predicts what
other tuples may be interesting. For RDF data, [89] requires the user to specify examples
of data that should be in the query answer and creates a SPARQL query based on these
examples. This approach requires the user to know enough about the data to specify
example answers, and can only create SPARQL queries of limited complexity. Similarly,
SPARQLByE [14, 47] infers the SPARQL query that best suits the user’s needs based on
a set of example answers she provides. A key limitation of this approach is that the user
needs to know a set of examples that satisfy her query, which is often not practical. For
example, to answer the query “How many people live in New York?”, the user should know
the precise population of some cities to provide as examples, which can be impractical.
In contrast, Sapphire helps the user directly construct and refine a SPARQL query rather
than indirectly inferring the query from example answers. This chapter compares Sapphire
to SPARQLByE and shows that Sapphire is more expressive.

4.2 Sapphire Architecture and Challenges

This section presents the overall architecture of Sapphire, and an overview of the different
design choices and challenges that must be addressed in order to implement a useful and

61

SPARQL
Endpoint

SPARQL
Endpoint

SPARQL
Endpoint

Query
Completion

Cached Predicates
and Literals

Query Suggestion

Federated Query Processor

Query Terms

Term Suggestions

User

Query

Answers

Query

Query Suggestions

Client Sapphire Server Web

Predictive User Model

Figure 4.1: Architecture of Sapphire.

efficient system. Figure 4.1 shows the architecture of Sapphire. Sapphire runs as a server
that sits between the user and the SPARQL endpoints for one or more RDF data sets on
the web. Sapphire accesses the endpoints through a federated query processor (e.g., [109]
or FedX [116]). Sapphire uses FedX [116], a widely-used federated query processor, but
any other federated query processor can be used.

The core of Sapphire is the Predictive User Model (PUM), which helps the user express
her information needs using SPARQL queries. The PUM relies on information about the
data sets being queried. Before querying an endpoint, the user must register this endpoint
with the Sapphire server, and the server goes through an initialization step in which it
caches important data from this endpoint. One challenge that must be addressed by
Sapphire is which data from an endpoint to cache, and how to retrieve this data without
overloading the endpoint.

While the user is composing a query, the query terms are forwarded to the Query
Completion Module (QCM) as they are typed by the user. The QCM interactively provides
the user with suggestions to complete the terms in her query based on the data cached
during initialization. A question that must be answered when designing the QCM is how
to provide interactive response time even for the large scale of data in the LOD cloud.

After composing a syntactically correct query, the federated query processor executes
the query and returns answers. Simultaneously, the Query Suggestion Module (QSM)
suggests changes to the query to help the user find the answers she is looking for. The goal
of the QSM is to suggest queries that are similar to the one issued by the user, but different
enough to present her with useful alternatives that may help her satisfy her information
needs. These suggestions span two directions: 1. Finding alternative literals and predicates
to the ones used in the query. 2. Relaxing the structure of the issued query to approximately

62

Query suggestion and
query processor exe-
cutes automatically if all
query triples are valid.

All variables are automatically included in the selection by de-
fault. A user can hide unnecessary columns if desired.

A user can update
a query triple and
execute the updated
query using this
option.

Query modifiers, such as group by, order by, limit, etc, can
be added here if desired.

Figure 4.2: User interface showing a suggestion to modify the current query which returned
to answers.

match the issued query with candidate patterns in the data set. Query suggestions are
provided for all queries, and it is up to the user to accept these suggestions if the returned
answers do not satisfy her information needs. The QSM poses several interesting research
questions, such as which literals and predicates to replace in the query and how to find
replacement terms. Also, what does it mean to relax the structure of a query and how
to find the relaxed structure efficiently. The way the different requirements are addressed
and challenges in Sapphire is described in the next three sections. The user interface is
discussed in Section 4.3, then how initialization happens for a new endpoint is presented
in Section 4.5, and the PUM is described in Section 4.6.

4.3 User Interface of Sapphire

Sapphire has a web-based user interface that was demonstrated in [59]. This interface
is shown in Figure 4.2. The interface presents a text box for each part of a SPARQL
query. While the user is typing query terms, the QCM provides suggestions to complete
these terms as shown in Figure 4.3. After the user inputs a query, the query is validated
and executed. Whenever a query is executed, the QSM tries to find alternatives to the
query that was constructed by the user. Figure 4.2 shows an example of how the QSM
suggests changes to the executed query. In this example, the user wants to find all people
with the surname “Kennedys” (in plural form). However, no answers were found using
this surname. The QSM suggests a modification that will result in finding 1,051 answers

63

Figure 4.3: Auto-complete suggestions using the QCM.

Controls the visibility
of columns.

Prepare a printable version.

Search capability
allows users to
filter results using
keyword search.

Sort answers by any column.

Figure 4.4: The answer table after applying the query suggestion in Figure 4.2. In this
example, the 1,051 answers to the query are filtered via a keyword search on “john”, and
the filtered answers are ordered by the “person” column.

64

(at the time of writing), by changing “Kennedys” to “Kennedy”. If the user accepts this
suggestion and updates the query, the answers to the new query (already executed) are
displayed in the answer table (Figure 4.4). New suggestions are now displayed to the user
in case these answers still do not satisfy her information needs. The query alternatives are
shown to the user in the form of suggestions to change one term at a time. For example,
one suggestion could be “In the triple (subject, predicateX, object), did you mean
predicateY, instead of predicateX? There are N answers available.”. This approach
avoids showing the user a completely rewritten SPARQL query in one step, which would
make the suggestions difficult to understand, especially for large and complex queries. The
only exception is when the QSM suggests queries that are different in structure than the
issued query. This specific type of query suggestion is discussed in detail in Section 4.6.2.

The suggested queries are executed in the background using the federated query pro-
cessor and answers are prefetched so that when the user decides to choose one of the
alternatives, the query is not re-executed, and the answers are displayed almost instan-
taneously. When the answers to a query are displayed to the user, she has the ability
to manipulate them in the answer table, as shown in Figure 4.4. Supported operations
include the following: the user can search the answer table using a keyword search box,
order the answers by any column, show and hide columns, and drag and drop answers from
the answer table to the query text boxes for additional queries.

4.4 SPARQL Features Not Supported by Sapphire

Sapphire supports commonly used SPARQL features. A list of the main SPARQL features
not supported by Sapphire is as follows:

1. Group Graph Patterns: In this type of patterns, the query consists of multiple basic
graph patterns. This also limits Sapphire in using other keywords that are based on
multiple basic graph patterns in one query, such as OPTIONAL, UNION, EXISTS,
NOT EXISTS, MINUS. Supporting this type of patterns requires primarily changes
in the Sapphire user interface. The changes to the predictive user model are expected
to be minimal.

2. Property Paths: A property path is a possible route through a graph between two
graph nodes. A trivial case is a property path of length exactly 1, which is a triple
pattern. The ends of the path may be RDF terms or variables. Variables cannot
be used as part of the path itself, only the ends. The problem with property path

65

queries is that they assume that the user has prior knowledge of the vocabulary of
the queried data sets, and enough knowledge of regular expressions. Adding support
for this type of queries is part of the future work of Sapphire.

3. Binding: The BIND keyword allows a value to be assigned to a variable from a basic
graph pattern or property path expression. Sapphire can support this by extending
the user interface.

4. Subqueries: Subqueries are a way to embed SPARQL queries within other queries,
for example, to limit the number of results from some sub-expression within the
query. Supporting such queries requires extending the user interface and the query
suggestion module of Sapphire to accommodate simultaneous multi-level suggestions
(from innermost query to the outermost query). This is left as future work.

4.5 Initialization for a New Endpoint

This section describes the initialization step in which Sapphire retrieves data from a newly
registered SPARQL endpoint representing a new RDF data set. Specifically, the section
discusses: 1. Which data from the endpoint to cache? 2. How is this data retrieved? 3. How
is it indexed for efficient access by the PUM?

4.5.1 Caching Data from a New Endpoint

The data cached by Sapphire from the endpoints plays a significant role in helping the user
write a query that describes her information needs. The design of Sapphire assumes that
it is simpler and more intuitive for users to express their information needs using keywords
rather than using URIs. Therefore, the focus of the Sapphire PUM is on mapping keywords
entered by the user in her query to RDF predicates (represented by URIs) and literals in
the data set.

Thus, Sapphire needs to cache RDF predicates and literals from a data set so that
these predicates and literals can subsequently be matched to keywords in the user query.
Which predicates and literals to cache is a challenging question. The choice of data to
cache cannot rely on statistical knowledge of the queried data sets or the query logs, since
such knowledge is not available. Sapphire, therefore, relies on heuristics based on common
characteristics of RDF data sets and SPARQL queries.

66

The first heuristic is based on the observation that the number of distinct predicates in
a data set is typically much smaller than the number of distinct literals. For example, at
the time of writing, DBpedia has approximately 3K distinct predicates compared to 70M
distinct literals. Therefore, Sapphire caches all the predicates in a data set.

Given the typically large number of literals in a data set, Sapphire uses heuristics to
limit the number of literals that it caches. First, Sapphire assumes that very long literals
are not likely to be used in queries. Thus, Sapphire only caches literals below a certain
length (in this chapter, 80 characters is used as the limit). Second, Sapphire assumes that
the user is interested only in a certain language and allows the user to restrict the language
of the cached literals (in this chapter, only English literals are cached).

Following the aforementioned heuristics reduces the number of cached literals. However,
the number of literals that satisfy these heuristics will likely be too large to retrieve from
the endpoint using a single SPARQL query. Such a query would be a long-running query,
and most endpoints impose a timeout limit on queries to avoid overloading their computing
resources. Thus, this query is decomposed into multiple queries that are each within the
timeout limit. Furthermore, the entire initialization process is supposed to complete within
a reasonable amount of time. The design point in Sapphire is for the initialization time
to be on the order of hours, which is reasonable since the initialization process happens
only once for each endpoint. The queries that Sapphire uses to retrieve literals from an
endpoint for caching are discussed next.

Sapphire divides the data set based on the predicates and the class hierarchy defined
by RDF schema (RDFS) [3]. RDFS defines classes that serve as data types for differ-
ent entities, and organizes the classes into a hierarchy based on the subClassOf relation.
For example, MovieDirector and Politician are two classes that are both subclasses of
Person. Sapphire issues a SPARQL query to retrieve all classes and their subclasses from
the endpoint. It also issues a query to retrieve all RDF predicates associated with literals,
ordered by the numbers of literals associated with each predicate. These are short queries
that are not expected to time out. Sapphire then iterates through the predicates associated
with literals, from most frequent to least frequent. For each predicate, Sapphire navigates
through the class hierarchy from root to leaves. At each class of the hierarchy, Sapphire
creates a query to retrieve literals associated with the current predicate and current class,
and that are below the threshold length and in the target language. To increase the like-
lihood that this query will succeed, it is decomposed into multiple queries using SPARQL
pagination techniques (OFFSET and LIMIT). If this query succeeds, Sapphire moves to
the next sibling in the class hierarchy. If this query times out, Sapphire navigates down to
the next level of the class hierarchy, which contains smaller classes, and issues the query.
This process continues until all the literals are retrieved. Sapphire allows the user to set a

67

limit on the number of queries to issue to an endpoint and stops when this limit is reached.
Since Sapphire orders predicates by frequency, it prioritizes caching the literals associated
with frequent predicates.

For the uncommon case of data sets that do not use the class hierarchy of RDFS (about
75% of the data sets in the LOD cloud use RDFS1), Sapphire issues a query to retrieve the
entity types that occur frequently in the data set. Sapphire then issues queries to retrieve
the literals associated with each predicate and each of these entity types, iterating through
the predicates and types from most frequent to least frequent. If there is a limit on the
number of queries, Sapphire stops if this limit is reached. The complete list of queries that
are sent to an endpoint during initialization can be found in Appendix C.

4.5.2 Indexing Cached Data

As discussed earlier, one of the key challenges facing Sapphire is providing suggestions to
the user interactively. These suggestions come from the cached data, so this data must be
indexed in a way that supports fast lookup.

The basic lookup operation for suggesting completions to the user is as follows: given
a string t entered by the user, what strings in the data contain t? I observe that a suffix
tree [139] is ideally suited for this type of lookup, so it is used as an index in Sapphire.
The advantage of a suffix tree is that lookup operations depend only on the size of the
lookup string t and the number of times z that this string occurs in the input, with a time
complexity O(|t|+ z). Therefore, the suffix tree has diverse applications in many domains,
e.g., bioinformatics [97]. The disadvantage of a suffix tree is that it can grow very large,
sometimes over an order of magnitude larger than the size of the input [96].

Given the space consumption of suffix trees, only a subset of the cached data can be
indexed in this tree. Since the number of RDF predicates is relatively small, all predicates
are indexed. The more challenging question is which subset of the literals to index? To
answer this question, the notion of most significant literals is introduced, and Sapphire
indexes only these literals in the suffix tree. A literal is considered significant when the
entity it is associated with occurs frequently in the data set. That is, there are many
incoming edges in the RDF graph pointing to this entity, indicating the entity’s importance.

Definition 1 The significance score of a literal l is S(l) = |{s|(s, p1, o)∧ (o, p2, l)}|, where
(s, pi, o) is an RDF triple.

1http://stats.lod2.eu

68

http://stats.lod2.eu

For example, the literal “New York” is associated with the entity representing this city.
Since this entity is pointed to by many other entities (i.e., occurs as an object in many RDF
triples), the literal “New York” is significant. This definition of significance captures im-
portant classes in the RDF class hierarchy, and also captures important instances (people,
locations, etc.). To identify the significant literals, Sapphire issues queries along the class
hierarchy as it did for retrieving the literals (The queries used to retrieve most significant
literals can be found in Appendix C).

The final issue related to initialization is how to lookup in cached literals not in the
suffix tree. These are called the residual literals in this chapter. Lookup on the residual
literals requires a sequential search, and this may be too slow for interactive response.
To speed up this sequential search, Sapphire organizes the literals into bins of residual
literals, or residual bins for short, where each bin has all the literals of a given length (i.e.,
bin(literal) = |literal|). As discussed in the next section, the PUM always searches for
strings within a certain range of lengths, so its sequential search will be limited to a few
bins. In addition, the search can be parallelized, with multiple threads simultaneously
scanning the bins. The experiments in Section 4.7 show that this simple organization is
effective at guaranteeing interactive performance.

To illustrate the cost of initialization, it is worth noting that initialization for DBpedia,
one of the largest data sets in the LOD cloud, took 17 hours. In the process, Sapphire issued
approximately 800 SPARQL queries to retrieve literals and 3000 to identify significant
literals, in addition to the few queries that retrieve predicates and the class hierarchy.
Approximately 200 queries timed out. The suffix tree for DBpedia contains 43K strings
(3K predicates and 40K literals) and is 400MB in size. There are around 21M literals
not in the suffix tree, divided among 80 bins. Section 4.7 shows that having even a small
fraction of the literals in the suffix tree benefits performance.

4.6 Predictive User Model

The Predictive User Model (PUM) uses the data cached during initialization to help the
user compose her SPARQL query. The user inputs a query to Sapphire by entering the
triple patterns that describe the structure of the query. As the user types a subject,
predicate, or object in a triple pattern, the PUM invokes the Query Completion Module
(QCM) to provide suggestions for the user to complete the term being typed. When
the user composes a full query and clicks “Run” in the Sapphire user interface, the PUM
passes the query to the federated query processor for execution and also invokes the Query
Suggestion Module (QSM) to suggest changes to the query. The QSM suggests changes to

69

the query based on the structure of potential candidate answers in the data set, in order
to bring the user closer to the query that finds the answer she is looking for. The user
can choose one of the suggestions of the QSM and update the query, and possibly continue
editing it. Editing the query would invoke the QCM again, and the process repeats as
many times as needed by the user. The QCM is presented next, followed by the QSM.

4.6.1 Query Completion Module

The Sapphire user interface is organized so that the user inputs each subject, predicate, or
object of a triple pattern in a separate text box. As the user types a string in one of these
text boxes, the QCM is invoked every time the user types a character in order to provide
auto-complete suggestions for the string being typed. An example is shown in Figure 4.3.
The only exception is if the user enters a variable (i.e., a string starting with ‘?’), in which
case Sapphire makes no suggestions.

Specifically, the problem solved by the QCM is as follows: Given the string t entered
thus far by the user, find k strings in the data that contain t to suggest to the user. In
this chapter, the value k = 10 is used. Figure 4.5 shows how the QCM finds the required
k strings. The term t is looked up in both the suffix tree and the residual bins. Matches in
the suffix tree are returned to the user as soon as they are found. If the search in the suffix
tree returns fewer than k matches, the remaining matches come from the residual bins.
Sapphire assumes that the auto-complete suggestions are most useful if they are not much
longer than the current input string t. Therefore, the QCM only searches bins containing
literals of length |t| to |t| + γ, which reduces the cost of the sequential search. In this
chapter, we use γ = 10. When the search in residual bins completes, the shortest result
literals are returned as part of the k auto-complete suggestions.

To ensure interactive response time, the QCM’s sequential search in the residual bins is
parallelized, utilizing P parallel processes (threads). Typically, P would equal the number
of available cores on the Sapphire server. Each process searches one or more bins, and the
QCM assigns work to processes in a way that balances load, with each process scanning
an equal number of literals. Algorithm 2 shows the details of task assignment.

4.6.2 Query Suggestion Module

The QSM suggests alternative queries that are semantically close to the query issued by
the user. The suggestions of the QSM are particularly important if the query issued by the
user returns no answers, but they can be useful even if the query returns answers. Defining

70

Algorithm 2: Assign Tasks to Processes
input : Bins to Search bins′, Number of Processes P
output: Assigned Task for Each Process

1 Number of literals to search n =
∑|bins′|

i=1 |bins′i|;
2 Process capacity d = n

P
;

3 Process id pid = 0;
4 for i = 1 to |bins′| do
5 Number of literals remaining in bin i j = |bins′i|;
6 while j > 0 do
7 if j < Processpid.d then
8 // Process pid assigned all literals in bin
9 Assign(Processpid, [bins

′
i[0], bins

′
i [|bins′i| − 1]]);

10 Processpid.d = Processpid.d− |bins′i|;
11 j = 0;
12 else
13 // Process pid assigned remaining capacity

Assign(Processpid, [bins
′
i[|bins′i| − j], bins′i[|bins′i| − j + Processpid.d]]);

14 j = j − Processpid.d;
15 Processpid.d = 0;
16 pid = pid+ 1;
17 end
18 end
19 end

71

term t

Search in suffix
tree index

Search in residual bins
(string length |t| to |t| +)

Pick top‐k literals

k suggested literals

t t

n prioritized matches m matches

Figure 4.5: Completing a query term in the QCM.

semantic closeness is an interesting question. In Sapphire, the QSM suggests changes to the
query in two directions: (1) suggesting alternatives to the terms (predicates and literals)
used in the query, and (2) relaxing the structure of the query.

Alternative Query Terms

Algorithm 3 shows how the QSM finds alternatives for predicates and literals in the user
query. The basic idea is to find predicates and literals in the data set that are similar
to the ones in the query or to their synonyms. The synonyms provide knowledge about
how terms are expressed in natural language. For example, “wife” or “husband” can be
expressed as “spouse”. The QSM examines the predicates and literals used in the triple
patterns of the query one at a time. For each predicate p, the QSM first finds the synonyms
of the predicate (line 4). The DBpedia Lemon Lexicon [37, 133] is used to provide these
synonyms. The QSM then finds alternative predicates in the data set whose similarity
score with the original predicate p or its synonyms exceeds a similarity threshold θ (in this
chapter, the value θ = 0.7 is used). In Sapphire, the Jaro-Winkler (JW) similarity [38] is
used to calculate the similarity between strings. JW similarity is based on the minimum
number of single-character transpositions required to change one string into the other,

72

while giving a higher score to strings that match from the beginning. This similarity
measure outperforms other similarity measures in this context. For each literal l, the QSM
considers the bins containing literals of length in the range [|l| − α, |l| + β] (termed bins′

in Algorithm 3). A search operation over these bins is conducted, similar to the search
over bins in the QCM. The difference is that the search to find alternative literals is based
on the JW similarity. All literals that have a similarity score ≥ θ are considered to be
matches. This chapter uses α = 2 and β = 3. The lists of alternative predicates and
literals are sorted based on the JW similarity score. Similar to the QCM, the QSM can
parallelize finding alternative terms among P processes.

A new SPARQL query is constructed for each of the alternative predicates and literals
found by the QSM. Sapphire uses the federated query processor to execute the alternative
queries and suggests the first queries that return answers.

Relaxing Query Structure

If the structure of the graph pattern specified by the user in the query is different from
the structure of the queried data set, the user will not find the desired answer, even if the
predicates and literals in the query match the desired answer in the data set. Therefore,
the QSM suggests changes to relax the structure of the query (i.e., make it less constrained)
based on the structure of the data set.

Figure 4.6 shows a motivating example. The query in this example is syntactically
correct (top left box), and it aims to find books by “Jack Kerouac” that were published by
“Viking Press”. The figure shows part of the graph of the queried data set. The predicates
and literals of the query can be found in the data set, and the matches are shown in the
figure as dotted lines and rectangles. The figure also shows two answers that satisfy the
query requirements, and the path that connects them in bold (“Door Wide Open” and
“On the Road”). These answers will not be found by the query as posed by the user since
the query structure does not match the structure of the data (the dotted matches are not
connected). Relaxing the query structure can solve this problem by bringing the structure
of the query closer to the structure of the data set.

In Sapphire, it is assumed that it is easier for the user to identify correct literals than
to identify correct query structure. Thus, the goal of query relaxation can be defined
as connecting literals in the query (or similar literals found by the JW similarity search)
through valid paths in the graph of the data set. Ideally, the paths should be short and
the algorithm should prefer paths that include the predicates entered by the user as part
of the query. I observe that connecting the literals in the query can be formulated as a

73

Algorithm 3: Suggesting Alternative Query Terms
input : Query q, Predicate Set PR, Literal Bins to Search bins′, Number of

Processes P
output: Alternative Queries Q′

1 for each triple tr in q do
2 for each non-variable element e in tr do
3 if e is a predicate then
4 Synonyms of term S = Lemon.getLexica(e);
5 for Each element s in S do
6 Predicate alternatives pa.add(FindPredicateAlternatives(s, PR, P));
7 end
8 for For each alternative a in pa do
9 Construct a new query q′;

10 Alternative queries for predicates PQ.add(q′);
11 end
12 else
13 Literal alternatives la(e) = FindLiteralAlternatives(e, bins′, P);
14 for For each alternative a in la do
15 Construct a new query q′;
16 Alternative queries for literals LQ.add(q′);
17 end
18 end
19 end
20 end
21 SortBySimilarityScore(PQ);
22 SortBySimilarityScore(LQ);
23 Q′.add(TopQueriesWithAnswer(PQ, k));
24 Q′.add(TopQueriesWithAnswer(LQ, k));
25 return Q′;

74

Jack Kerouac

Viking Press

?book
writer

publisher
Jack Kerouac

name

Big Sur

name

writer

type

movie

label

author

Viking Press

label

publisher

publisher

author name

name

Door Wide Open

On The Road

author

name

Doctor Sax publisher

label

Grove Press

Figure 4.6: Example query and the subgraph from the data set that can be used to answer
this query.

Steiner tree problem [84]. Favouring paths that include certain predicates can be achieved
by modifying the weights on the edges of the graph.

The Steiner tree problem is defined as follows. In any undirected graph G = (V,E),
where V is the set of vertices and E is the set of edges, and each edge eij connecting
vertices (i, j) has a weight wij, the Steiner tree problem is defined as finding a minimum
weight tree that spans a subset of terminal vertices (literals in this case) T ⊂ V . If T = V ,
the problem is reduced to a minimum spanning tree problem. If |T | = 2, the problem is
reduced to a shortest path problem. However, when 2 < |T | < |V |, finding a minimum
weight tree is NP hard.

A weight is associated with each edge in the graph representing the RDF data. These
weights can be inferred by the algorithm and do not need to be materialized. For an edge
representing a predicate that matches one of the predicates in the query, or one of the
predicates identified by the QSM as an alternative for a predicate in the query, this weight
is set to a value wq. For any other edge, the weight is set to a value wdefault > wq. Since
the Steiner tree algorithm aims to find the tree with the minimum overall weight, assigning
weights in this manner favors matching the predicates in the query (or alternatives to these
predicates) over simply finding a tree with a small number of edges.

Since finding the Steiner tree is an NP hard problem, an efficient approximate algo-
rithm needs to be used. Moreover, traditional Steiner tree algorithms, whether exact or

75

approximate, require fast access to any vertex or edge in the graph, whereas in the case of
Sapphire the graph exists on remote endpoints and can be accessed only through SPARQL
queries, which have a non-negligible cost. The algorithm must minimize the number of such
queries. I describe next, (1) the literals to be connected via the Steiner tree algorithm, and
(2) the algorithm used to connect these literals.

The QSM generates alternative query terms for the literals in the query as described
earlier (line 13 in Algorithm 3). Each literal in the query and the alternative terms gener-
ated for it form a group, and the vertices representing these literals in the RDF graph are
referred to as seeds for the QSM to explore the graph. For example, “Viking Press”, “The
Viking Press”, and “The Viking” are all seeds in the same group. The goal of the QSM
query relaxation algorithm is to create a Steiner tree that connects one literal from each
group. It is not useful to connect multiple literals from the same group since these literals
are alternatives to each other and not meant to be used together in the same query.

To connect the literals efficiently, the algorithm expands the graph starting from the
seeds until the groups are all connected, and it attempts to minimize the number of vertices
visited in this expansion. A known Steiner tree approximation algorithm [77] is used and
adopted for this problem (Algorithm 4). The algorithm consists of the following two steps:

1. Connecting seeds: The goal of this step is to find a tree, not necessarily minimal,
that connects all groups. Initially, each seed is a candidate subgraph of the RDF graph.
Following the approximate Steiner tree algorithm in [77], the candidate subgraphs are
expanded using the bi-directional Dijkstra shortest path algorithm [69]. In this algorithm,
seeds from different groups take turns in expansion, in contrast to the regular Dijkstra
shortest path algorithm in which chooses a single source seed from which to start the
expansion. In practice, the bi-directional Dijkstra algorithm visits (expands) fewer vertices
than the regular Dijkstra algorithm, which means fewer SPARQL queries. The expansion
continues until paths are found that connect seeds from all groups.

In the expansion, each vertex v in a candidate subgraph is expanded into a subgraph
subG defined as follows: (1) subG = {(?s, ?p, ?o)|?o = v} if v is a literal, and (2) subG =
{(?s, ?p, ?o)|?s = v∨?o = v} if v is a URI. That is, if the vertex is a literal (initially, all
vertices are literals), the subgraph is expanded by finding all triples that have this literal
as an object since literals can only be objects. Each of these triples introduces a new edge
(the predicate) and vertex (the subject) to the candidate subgraph. If a vertex is a URI,
the subgraph is expanded by finding all triples that have this vertex as a subject or an
object. As in the case of literal vertices, each of these triples introduces a new vertex to
the candidate subgraph (the subject of the triple if the expanded vertex is the object, and
the object if the expanded vertex is the subject). The edge connecting the new vertex to

76

Algorithm 4: Relaxing Query Structure
input : Query q
output: Matching Graphs Gsuggested

1 Literals in query L = q.extractLiterals();
2 for Each literal l in L do
3 Seed group seeds(l) = l∪ Top k − 1 literals from la(l);
4 end
5 Start with empty graph g;
6 while g does not span terminals from all seed groups do
7 Scan vertices using Dijkstra’s bi-directional shortest path algorithm;
8 Select a terminal x not in g that is closest to a vertex in g (initially any literal

from the query);
9 Add to g the shortest path that connects x with g;

10 end
11 // There can be several g subgraphs spanning terminals if
12 // multiple paths with the same weight cost exist
13 for Each g found while connecting seeds do
14 Construct subgraph g′ induced by g in G;
15 Construct minimum spanning tree(s) of g′;
16 while There exist non-terminals of degree 1 from spanning tree(s) do
17 remove non-terminals of degree 1 from this spanning tree;
18 end
19 Add minimum spanning tree(s) to Gsuggested;
20 end
21 Return Gsuggested;

77

the expanded vertex is the predicate of the triple. These expansion steps are expressed as
SPARQL queries executed on the endpoint of the data set.

The algorithm expands candidate subgraphs according to the bi-directional Dijkstra
algorithm until it finds a shortest path that connects two seeds from different groups.
Following the approximate Steiner tree algorithm [77], this path becomes the graph g that
will be used to find the tree connecting all the groups. The expansion of other candidate
subgraphs continues according to the bi-directional Dijkstra algorithm, and whenever the
expansion of a candidate subgraph results in connecting to g a seed from a group that is
not yet part of g, the path that connects this seed to g is added to g. The expansion stops
when there is a set of connected seeds, one from each group. Recall that lower weights are
assigned to the edges that match predicates in the query or similar predicates. This guides
the bi-directional Dijkstra algorithm towards expanding paths that match query predicates
first, and consequently reduces the number of SPARQL queries required to find a tree that
matches the query predicates.

The expansion algorithm has budget for the number of queries that can be used. In
order to remain within the budget, the expansion of sibling vertices that are chosen for
expansion does not start if the number of siblings is larger than the remaining query budget.
This restriction discourages the expansion of vertices with a high degree branching factor
in the hope that this candidate subgraph’s seed can be reached by another seed from a
different group. Sapphire uses a budget of 100 SPARQL queries for graph expansion,
which resulted in a good response time for query suggestion in the experiments. While
expanding the candidate subgraphs, the results of the expansion are memoized so that if a
vertex is encountered more than once during expansion, the results will be obtained from
the memoized data structure without issuing a new SPARQL query.

Figure 4.7 shows how the vertices in the example are expanded starting from the seeds
in the query. Common vertices between candidate subgraphs are lightly shaded. All the
edges have a cost of wdefault except for “writer” and “publisher”, which have a cost of wq.
Therefore, “writer” is chosen to be expanded in Step a.3. However, this vertex will not
be further expanded because the expansion did not result in any common vertices with
the subgraph of the other literal in the query. Therefore, it is not possible that further
expansion will help finding a shorter path than the one already found.

2. Constructing the minimum tree: After the expansion step, a graph G consisting
of the union of all expansions is constructed. Following the approximate Steiner tree
algorithm [77], for each g found during expansion, a subgraph g′ is constructed. This
subgraph is the graph induced by g in G. That is, g′ is a graph whose vertices are the
same as g and whose edges are the edges in G such that both ends of the edge are vertices

78

Jack Kerouac
name

Viking Press

label

Jack Kerouac
name

x

writer
authorauthor

author

Viking Press

label

publisher

publisher

x

Big Sur

name

type

a.1 a.2 a.3

b.1 b.2

No more expansions

b.3

Figure 4.7: The expansion steps in the process of relaxing query structure.

in g. Next, a minimum spanning tree is constructed for subgraph g′. Multiple minimum
spanning trees may exist and be generated in this step. Finally, all non-terminal vertices
that have a degree of 1 are repeatedly deleted from the minimum spanning tree(s) since
they cannot be part of the Steiner tree. There could be several Steiner trees with the
same total edge weight. Each tree is an alternative query suggested to the user. The
approximation ratio of this algorithm is known to be 2 − 2/s [77], where s is the number
of seeds in the query.

Performance: Unlike the QCM, which should have sub-second latency to provide
suggestions while the user types, the QSM can have a latency of a few seconds. That
is, after the user submits a query, she will see alternative, complete, and syntactically
correct suggested SPARQL queries after waiting a few seconds. In querying the LOD
cloud using SPARQL, a query will likely have a small number of literals (in the user study,
the maximum number of literals in a query was 3). The algorithm is fast enough for such
problem sizes to have a QSM response time of less than 10 seconds on average.

4.7 Experimental Evaluation

Sapphire is evaluated along the following dimensions: 1. A user study in which participants
answer questions using a natural language QA system and Sapphire (Section 4.7.1). 2. A

79

quantitative comparison with recent natural language, approximate query, and query-by-
example systems (Section 4.7.2). 3. Analyzing the response time of the QCM and QSM
modules (Section 4.7.3).

Sapphire is implemented in Java. It runs as a web application over a web server.
The user interacts with Sapphire through a web browser as described in [59]. A publicly
available implementation of the suffix tree construction algorithm [128] is used, FedX [116]
is used as the federated query processor, and the Lemon Lexicon for DBpedia2 is used to
find synonyms of literals and predicates. This lexicon can also be used for data sets other
than DBpedia. DBpedia is the data set used in all the experiments in this section, and
Sapphire interacts with it via its SPARQL endpoint3. DBpedia is a good evaluation data
set because it is large and it is the central and most connected multi-domain data set in
the LOD cloud4. The experiments are run on a machine with an 8-core Intel i7 CPU at
2.6 GHz and 8GB of memory. The memory usage of Sapphire to query DBpedia never
exceeds 4GB.

4.7.1 User Study

User Study Setup

The most important question related to Sapphire is whether it actually helps users find
answers in RDF data sets. To answer this question, I conducted a user study in which
users are presented with a set of questions they need to answer using both Sapphire and
QAKiS [30], a natural language question answering system that performs well compared
to the other natural language systems (see Section 4.7.2).

The questions in the study are a subset of the query set from the Schema-agnostic
Queries Semantic Web Challenge [4]. These queries are questions over DBpedia derived
from the Question Answering over Linked Data (QALD) competition5. 35 questions were
chosen and the four authors of [59] independently labeled each question as easy, medium,
or difficult. Out of the 35 questions, the authors of [59] all agreed on the difficulty level
of 27 questions. These questions are the ones used in the user study, and are presented in
Appendix D.

2http://github.com/ag-sc/lemon.dbpedia
3http://dbpedia.org/sparql
4http://lod-cloud.net
5http://qald.sebastianwalter.org

80

http://github.com/ag-sc/lemon.dbpedia
http://dbpedia.org/sparql
http://lod-cloud.net
http://qald.sebastianwalter.org

0

20

40

60

80

100

Easy Medium Difficult

Su
cc
es
s R

at
e

Difficulty Level

QAKiS Sapphire

Figure 4.8: Success rate of answering questions.

The participants in the user study were 16 users who have a computer science back-
ground but are not familiar with RDF or SPARQL. A standard tutorial was given to the
participants by two of the authors of [59]. The participants were first introduced to the
basic concept of describing their information needs in triples. Then they were introduced
to Sapphire’s user interface and shown the fields they will be using to type in the query
terms (refer to Figure 4.2). A sample query is issued by the tutorial instructor using both
QAKiS and Sapphire to show the participants how both systems are used. This tutorial
was approximately 15 minutes long. Each participant was then given 10 questions (4 easy,
3 medium, and 3 difficult). The questions were randomly assigned to participants per cate-
gory. The participants were asked to find answers to all the questions using both Sapphire
and QAKiS. Since the two systems are fundamentally different in the way they are used,
using one system to find an answer should have minimal effect on how the other system is
used. However, the system the user used first for every question is alternated. For example,
if the participant answers one question using Sapphire first then QAKiS, the next question
is answered using QAKiS first then Sapphire. One question from the easy category was
used in a tutorial prior to the study to demonstrate the two systems to the users (the
same question for all participants). During the study, the first question a participant tried
(from the easy category) was used as a warm-up question to familiarize the user with the
two systems. The data collected for this first question is dropped from the results. Screen
recording was used to capture the sessions of all participants.

Quantitative Results

I first investigate whether Sapphire helped users find answers to their assigned questions,
and how it compares to QAKiS. A total of 48 questions in each category were given to

81

0

20

40

60

80

100

Easy Medium Difficult

Pe
rc
en

ta
ge
 o
f Q

ue
sti
on

s
An

sw
er
ed

Difficulty Level

QAKiS Sapphire

Figure 4.9: Percentage of questions answered by at least one participant.

0

1

2

3

4

5

6

Easy Medium Difficult

Nu
mb

er
of

At
tem

pt
s

Difficulty Level

QAKiS Sapphire

Figure 4.10: Average number of attempts before finding an answer.

the participants in this study (16 participants × 3 questions per category, excluding the
first warm-up question). First, the success rate in answering these questions is evaluated.
That is, of the questions given to a user, what fraction was answered correctly? Figure 4.8
shows the success rate of finding answers for the 48 questions in each category using
Sapphire and QAKiS. The bars in the figure show the average success rate, averaged
over the 16 participants. The 95% confidence interval is reported to demonstrate that
the findings are consistent among all participants. In this experiment and all subsequent
experiments, whenever a noticeable difference between Sapphire and QAKiS was observed,
the p-value was calculated and in all cases it was found to be less than the significance level
(0.05), which indicates that these differences are statistically significant. The figure shows
that Sapphire is superior to QAKiS in the medium and difficult categories, while both
systems perform the same for the easy category. Participants found answers for over 80%
of the medium difficulty questions using Sapphire, compared to around 50% using QAKiS.
The gap widens for the difficult category, where participants answered almost 80% of the

82

0

1

2

3

4

5

6

7

Easy Medium Difficult

Av
er
ag
e T

im
e S

pe
nt
 o
n
Qu

es
tio

ns

(M
in
ut
es
)

Difficulty Level

QAKiS Sapphire

Figure 4.11: Average time spent on answered queries.

questions using Sapphire and only 33% using QAKiS.

The success rate does not tell the full story since some questions are easier than others
and some users are better at answering questions than others, regardless of the difficulty
category or the system used. Another way to compare the two systems is to see, for every
question, whether that question was answered by any participant. Figure 4.9 shows the
percentage of questions answered by at least one participant using both systems. The
figure shows that every question was answered by at least one participant using Sapphire,
while QAKiS could find answers for only 63% of the questions in the medium category and
33% in the difficult category.

Figure 4.10 shows the average number of attempts the participants went through before
finding an answer in each category. An attempt is counted when a participant clicks “Run”
to issue a query. Sapphire requires slightly more attempts than QAKiS, but the numbers
are comparable and not statistically significant (p-value > 0.05). This demonstrates that
Sapphire is not overly difficult to use despite the need to describe a query in a structured
format. Note that attempts are counted only for the questions that were answered correctly.
Participants gave up on finding an answer for a question after 3 to 4 attempts when using
QAKiS, and after 3 to 5 attempts when using Sapphire.

Sapphire does require more time to use than QAKiS, as demonstrated in Figure 4.11,
which shows the time the participants spent on questions from each category. The figure
only shows the time spent on questions that were answered successfully. The figure shows
that participants spent more time using Sapphire than QAKiS for all difficulty categories.
This is expected due to the fundamentally different approach of describing a question
in Sapphire. A participant spends more time to describe the question as a set of triple
patterns, and to examine Sapphire’s suggestions and choose from them. This additional
effort is justified by Sapphire’s ability to find answers to more questions.

83

In summary, the user study shows that Sapphire is more effective than QAKiS at
answering medium and difficult questions. The cost of this effectiveness is more time spent
in answering the questions.

Qualitative Results

After each session, the participants are surveyed about their experience using Sapphire and
how it compares to QAKiS. The comments received are consistent across participants: At
first, they find it difficult to express the question using triple patterns (due to the lack of
experience in RDF) but are still able to answer the questions. However, when they get
used to this style of querying, Sapphire becomes much easier to use. They also agree that
Sapphire is much more helpful than QAKiS in answering more difficult questions.

Another observation from viewing the recorded sessions is that different participants
answering the same question sometimes take different approaches and use different terms,
but end up with the same SPARQL query. In other cases, different participants end up
with different queries to find the same answer. For example, some participants rank results
by a condition and select the correct answers while others include the condition in the triple
patterns of the query. This demonstrates the flexibility and effectiveness of Sapphire.

The logs of the user study indicate that participants used the suggestions of the QSM
in over 90% of the questions. Users utilized alternative predicates in 28% of the questions,
alternative literals in 17% of the questions, and relaxed query structure in 67% of the
questions. This demonstrates the crucial role the QSM plays in guiding the user towards
correctly describing her questions.

For another qualitative perspective on Sapphire, two SPARQL experts were recruited,
one with no experience in querying DBpedia and the other with three years of experi-
ence. The two participants were asked to write SPARQL queries to find answers to the
48 questions used in the user study, with and without Sapphire. Without Sapphire, i.e.,
interacting directly with the SPARQL endpoint of DBpedia, the first participant was un-
able to answer any of the questions because he did not know how the DBpedia URIs are
represented and what kind of vocabulary is used in it. When using Sapphire, he was able
to find answers to most questions. The participant with three years experience in DBpedia
answered most questions. Sapphire did help him answer the questions he failed to find
answers for when using DBpedia’s SPARQL endpoint. Both experts agreed on Sapphire’s
value in helping users to write SPARQL queries against data sources they are less familiar
with and expressed interest in using Sapphire for their future projects.

84

#pro % #cor #par R R∗ P P ∗ F1 F1
∗

Xser [141] 42 84% 26 7 0.52 0.66 0.62 0.79 0.57 0.72
APEQ [132] 26 52% 8 5 0.16 0.26 0.31 0.50 0.21 0.34

QAnswer [111] 37 74% 9 4 0.18 0.26 0.24 0.35 0.21 0.30
SemGraphQA [17] 31 62% 7 3 0.14 0.20 0.23 0.32 0.17 0.25

YodaQA [132] 33 40% 8 2 0.16 0.20 0.24 0.30 0.19 0.24
QAKiS [30] 40 80% 14 9 0.28 0.46 0.35 0.58 0.31 0.51
KBQA [41] 8 16% 8 0 0.16 0.16 1.0 1.0 0.28 0.28
S4 [150] 26 52% 16 5 0.32 0.42 0.62 0.81 0.42 0.55

SPARQLByE [47] 7 14% 4 0 0.08 0.08 0.57 0.57 0.14 0.14
Sapphire 43 86% 43 0 0.86 0.86 1.0 1.0 0.92 0.92

Table 4.1: Comparing systems using questions from QALD-5.

4.7.2 Comparison to Other Systems

In this section, Sapphire is compared to other state of the art systems for querying RDF
data. Sapphire is compared to the systems participating in the QALD-5 competition [132].
Sapphire is also compared using the same questions to (a) QAKiS, which is used in the
user study, (b) the more recent natural language QA system KBQA [41], (c) the recent
approximate query matching system S4 [150], and (d) the recent query-by-example system
SPARQLByE [47]. The performance numbers of the systems that participated in QALD-5
are from [132] and the numbers for KBQA are from [41]. The QAKiS and SPARQLByE
systems are publicly available, so I ran them and obtained their performance numbers for
this experiment. I implemented S4 to obtain its performance numbers for the experiment.

QAKiS is a natural language QA system, and in this experiment, up to 3 attempts are
allowed for each question. In these attempts, I do not change the query terms using my
knowledge of the vocabulary. For example, the question “What is the revenue of IBM?”
can be paraphrased in a different attempt as “IBM’s revenue”, but would not be changed
to “IBM’s income”.

S4 constructs a summary graph of the data in on offline step, and accepts SPARQL
queries that it rewrites to match the structure of the data based on the summary graph.
S4 expects the predicates and literals to be correct, so I use Sapphire to find predicates and
literals that exist in DBpedia when constructing the SPARQL query for S4. I compose the
SPARQL query for S4 based on the question in QALD-5, restricting myself to the terms
in the question. S4 rewrites the query and I execute the rewritten query using FedX.

SPARQLByE requires the user to provide example answers. The system attempts to

85

learn the commonalities between these answers and capture them in a SPARQL query. The
answers of this SPARQL query are presented to the user as additional candidate answers,
and the user can mark them as correct or incorrect. SPARQLByE requires at least two
sample answers so it is used in this experiment for questions that have three answers or
more in their gold standard result. Two answers from the gold standard result are used
as inputs to SPARQLByE, and I provide feedback to the system until it finds the correct
query or cannot learn any more (i.e., cannot modify the query).

When using Sapphire, I only used terms from the question to enter the query, as I did
with other systems. I then use Sapphire’s suggestions to complete and modify the query
until an answer is found. I do not use my knowledge of the vocabulary to change the terms
or query structure.

The systems are evaluated using the following performance measures [41, 132]: 1. The
number of questions that are processed and for which answers are found (#pro). 2. The
number of questions whose answers are correct (#cor, referred to in [41, 132] as#ri) 3. The
number of questions whose answers are partially correct (#par). In addition, the following
recall and precision measures are computed, where #total is the total number of questions
in the question set: Recall defined as R = #cor

#total
, partial recall defined as R∗ = #cor+#par

#total
,

precision defined as P = #cor
#pro

, partial precision defined as P ∗ = #cor+#par
#pro

, F1 defined as
2. P.R
P+R

, and F1
∗ defined as 2. P ∗.R∗

P ∗+R∗
. The value of #total is 45 in this experiment, since this

is the number of questions in QALD-5.

Table 4.1 shows the performance of the different systems. The table shows that Sapphire
outperforms all other systems on all measures. Natural language QA systems suffer from
low precision due to the challenge of inferring the structure and terms of a SPARQL query
from the natural language formulation of the question. This challenge is not faced by
Sapphire, which helps the user to directly construct SPARQL queries. Therefore, Sapphire
has a precision of 1.0 for the questions it is able to answer. Among the natural language
systems, KBQA has precision of 1.0 like Sapphire, but it has much lower recall. This
is because KBQA focuses only on factoid questions. If only the factoid questions are
considered, KBQA achieves a recall of 0.67, still lower than Sapphire. S4, while lower in
performance than Sapphire, performs better than other systems. SPARQLByE has much
lower recall than other systems because it cannot answer most of the questions.

The table justifies the choice of QAKiS as a representative QA system in the user study.
Other than Xser and S4, QAKiS is the best performing system after Sapphire in terms of
recall and F-measure. Xser is not publicly available. S4 requires exact knowledge of the
literals and URIs in the queried data set, which is deemed too difficult for a user study.

86

4.7.3 Sapphire Response Time

The performance of the QCM is studied first. It is important for the QCM to provide
auto-complete suggestions with very low response time in order to guarantee an interactive
experience for users. Two components contribute to the response time of the QCM: the
lookup in the suffix tree, and the sequential search in the bins of literals (the residual
bins). The total response time of these two components is, on average, 0.16 seconds when
including 40K significant literals in the suffix tree and using 8 cores for the sequential
search in the residual bins. This response time is low enough to provide a good interactive
experience.

The two components of this response time are studied in more detail. A lookup op-
eration in the suffix tree takes approximately 0.25 milliseconds, regardless of the number
of literals that are indexed. This response time is certainly low enough for an interactive
user experience. Recall that matches in the suffix tree are returned immediately to the
user before the search in the bins of literals begins. Thus, having a hit (match) in the
suffix tree greatly enhances the interactive experience, since the user sees auto-complete
suggestions very quickly. Even if these suggestions are not chosen by the user, they still
give an impression of a responsive system. Therefore, a higher hit ratio in the suffix tree
is better for interactive response of the QCM. The hit ratio (fraction of query terms for
which a match is found in the suffix tree) depends on the number of literals included in
the suffix tree. The experiments show that even with only 40K literals in the suffix tree, a
hit ratio of 50% is achieved.

The second component of the QCM response time is the sequential search in the literal
bins. Recall that the bins to be searched are filtered based on the length of the term
entered by the user. It was found that, on average, this filtering eliminates 46% of the
literals to be searched. The search in the residual bins takes 0.6 seconds when using 1 core,
and 0.16 seconds when using 8 cores. The takeaway of this experiment is that the QCM
can provide interactive response time by utilizing more cores.

The discussion now turns to the performance of the QSM. The QSM spends around
10 seconds on average before returning suggestions to the user. This is acceptable since
the QSM does not interact with the user while she is typing. Instead, the user waits for
suggestions from the QSM, and a 10-second wait is reasonable.

87

4.8 Conclusion and Future Work

This chapter introduced Sapphire, a tool that helps users construct SPARQL queries that
find the answers they need in RDF data sets. Sapphire caches data from the data sets to
be queried and uses this cached data to suggest completions for SPARQL queries as the
user is entering them, and modifications to these queries after they are executed. Sapphire
was found to be effective at helping users with no prior knowledge of the queried data sets
to answer complex questions that other systems fail to answer. As such, Sapphire is a
valuable tool for querying the LOD cloud.

As future work, it is possible to extend Sapphire to cover more SPARQL keywords
(address the limitations presented in Section 4.4). It is also possible to explore new UI
models that make Sapphire more interactive and usable. This includes summarizing the
queried schemas and showing suggestions to the user prior to typing the queries, and
continuous user-guided filtering of the query answers of the query composed thus far.

In the next chapter, the focus is shifted from RDF data to relational data. The focus
is still on involving users in data integration, and specifically on improving the quality
of automatically generated mediated schemas and mappings based on user feedback over
query answers.

88

Chapter 5

UFeed: Refining Relational Web Data
Integration Based on User Feedback

The previous two chapters focused on RDF data. This chapter shifts the focus to integrat-
ing relational (i.e., table structured) data on the web. Recall from Chapter 1 that there is
a large number of relational data sources on the web, such as web forms, web tables, and
online spreadsheets. Users can benefit from the ability to simultaneously query several of
these data sources, so it is useful to have a unified interface to these data sources in the
form of a mediated schema that represents the attributes in the data sources, along with
semantic mappings between the schemas of the data sources and the mediated schema.

Given the scale and semantic heterogeneity of web data, a pay-as-you-go approach to
data integration is suitable. Pay-as-you-go data integration involves two phases: setup and
refinement. In the setup phase, the system creates: (1) a mediated schema or possibly sev-
eral schemas, and (2) mappings between the schemas of the data sources and the mediated
schema(s). Since setup is done fully automatically in a best-effort fashion, the mediated
schema and mapping need to be refined as they are used. Refining the mediated schema
and mapping is the focus of this chapter.

This chapter presents UFeed [58], a pay-as-you-go data integration system that refines
the mediated schema and mappings based solely on feedback that a user provides on the
answers to her queries that use the mediated schema and mappings. This is in contrast to
most prior work, in which refinement is decoupled from the querying process. Instead of
fixing mistakes in the schema and mappings by inferring the correct action from feedback
on query answers, most prior work presents the user with these mistakes and asks her to
fix them, or requires the user to provide further input in addition to her feedback on query

89

answers. One important feature of UFeed is that it is, to the best of my knowledge, the first
system that fixes both the mediated schema and the mappings based on user feedback over
query answers. UFeed accepts as input a mediated schema and mappings between each
source schema and this mediated schema. UFeed does not make any assumptions about
the techniques used to create the initial mediated schema and mappings in the setup phase.

In enabling the user to issue queries against the mediated schema, UFeed follows a
philosophy that it is better to isolate the user from the details of the mediated schema and
mappings, and not to assume that the user has background knowledge about all available
data sources. Therefore, UFeed does not require the user to issue her queries on the
mediated schema. Instead, UFeed allows the user to issue her query on an individual data
source of her choice whose schema she is familiar with, similar to prior work [42]. UFeed
maps the query on this data source to a query on the mediated schema and on other data
sources. When query answers are shown to the user, she can mark any answer tuple as
“correct” or “incorrect”. The query itself and this feedback trigger refinement operations in
UFeed.

The main contribution of UFeed is to propose a set of well-defined refinement operations
that are triggered by the user’s interactions with the system. These refinement operations
modify the mediated schema and mappings with the goal of improving the quality of query
answers. Modifying the mediated schema and mappings presents several challenges: Which
source attributes should be part of the mediated schema? What causes an answer to be
incorrect (error in the mediated schema and mappings or error in the data)? What if a
feedback instance provided by the user is incorrect? UFeed addresses these challenges in
its definition of the refinement operations and how they are triggered. Next, an example
of the problems that UFeed must tackle in its refinement is presented. This is used as a
running example throughout the chapter.

Example 1 Consider the following source schemas:
S1(county, state, country, region)
S2(country name, gdp per capita, region)
S3(country, region)
S4(name, gdp per capita ppp, region)

Figure 5.1 shows the gold standard G for integrating the four data sources (i.e., the
correct mediated schema, which I created manually), and a mediated schema M that can be
the output of some automatic data integration approach. The mediated schema M differs
from the gold standard in that it includes the attribute “county” in the mediated attribute as

90

state
country name

country
name

gdp per capita

gdp per capita ppp

region

Gold
Standard

county

M

gdp per capita ppp
gdp per capita

county
country name

countrystate

nameregion

Figure 5.1: The gold standard G for integrating schemas S1, S2, S3, and S4 in Example 1,
and a possible mediated schema M .

{country name, country}, which is supposed to represent the concept “name of a country”.
The attribute “name” also represents the same concept but it is not part of the same me-
diated attribute. The mediated schema also combines “gdp per capita” and “gdp per capita
ppp”. The first represents nominal GDP while the second represents GDP at purchase
power parity. These two concepts are related, but distinct, so they should not be part of
the same mediated attribute. Figure 5.2 shows the mapping of each source schema to both
the mediated schema and the gold standard. When a query is issued against the mediated
schema M , the returned answers can have correct answers, missing answers, and/or in-
correct answers. For example, when selecting states in a region, all answers are expected
to be correct and complete since there are no mistakes in the “state” or “region” attributes
in M . However, errors can occur when selecting countries in a region. For example, if a
query is issued where the mediated attributes {name} and {region} are chosen, this query
will return only a subset of the correct answers because no answers will be returned using
the attribute “country” from S1 and S3, or the attribute “country name” from S2. If the
query uses the mediated attributes {county, country name, country} and {region}, it will
return some correct answers based on the source attributes “country” and “country name”,
but it will also return incorrect answers based on the source attribute “county”. Moreover,
the answers from the data source S4 with the attribute “name” will be missing.

The goal of UFeed is to address problems such as the ones presented in the previous
example. UFeed collects user feedback on the answers to queries and refines the mediated
schema and mappings until they are correct.

91

Mapping Attribute Mappings

Map1 county {county, country name, country}
state {state}

region {region}

Map1
G county {county}

state {state}
country {country, country name, name}

region {region}

Map2 country name {county, country name, country}
gdp per capita {gdp per capita ppp, gdp per capita}

region {region}

Map2
G country name {country, country name, name}

gdp per capita {gdp per capita}
region {region}

Map3 country {county, country name, country}
region {region}

Map3
G country {country, country name, name}

region {region}

Map4 name {name}
gdp per capita ppp {gdp per capita ppp, gdp per capita}

region {region}

Map4
G name {country, country name, name}

gdp per capita ppp {gdp per capita ppp}
region {region}

Figure 5.2: The mappings to the mediated schema M and to the gold standard G.

92

The contributions of this chapter are as follows:

• Refining both the mediated schema and the mappings based solely on feedback given
by non-expert users on the answers to their queries.

• Defining a set of complete operations that refine automatically generated mediated
schemas and mappings, and describing how these operations are triggered based on
feedback on query answers.

• Proving that the UFeed operations can transform any automatically-generated medi-
ated schema and mappings to a gold standard that is the output of manual integration
of data sources.

• Evaluating UFeed on real web data sources and showing that it improves the quality
of query answers.

5.1 Related Work

5.1.1 Schema Matching and Mapping

Data integration aims at automatically creating a unified mediated schema for a set of data
sources and generating mappings between these data sources and the mediated schema.
There has been a lot of work on mediated schema creation where the focus was on the-
oretical aspects of merging schemas [99, 107]. Schema matching and mapping have been
extensively studied in the literature [19, 23, 110], and the state of the art is that many
matching decisions can be made automatically. Proposed approaches to the problem of
schema matching and mapping can be roughly categorized into four categories: 1. Schema-
based approaches perform matchings using the meta-data associated with the data sources
(e.g., Clio [106]). 2. Instance-based approaches determine the similarity between schema
elements based on the similarity between their instances [83, 92]. 3. Hybrid approaches
use a combination of the two aforementioned approaches such as LSD [50], Cupid [93], and
COMA [49]. 4. Usage-based approaches exploit usage information, such as query logs [62]
and search click logs [102]. Whenever ambiguity arises in schema matching, involvement of
an experienced user (e.g., a data architect) is required. To account for the uncertainty faced
by data integration systems due to this ambiguity, probabilistic models of data integration
have emerged [42, 43, 52, 53, 94]. The contributions of UFeed start after the mediated
schema and mappings are created, since UFeed accepts as input a mediated schema and

93

mappings between each source schema and this mediated schema. UFeed does not make
any assumptions about the techniques used to create the initial mediated schema and map-
pings, and can work with any technique for schema matching and mapping. In particular,
it can work with deterministic or probabilistic mediated schemas.

5.1.2 Incorporating Users and User Feedback in Data Integration
Systems

Involving users in various tasks related to data integration has been studied in the lit-
erature. This spans different data integration problems like entity matching and schema
matching and mapping.

Entity Matching

In the Crowd ER system [140], users are asked to confirm or reject entity matches. However,
due to the large number of questions that can be asked, the system is more concerned with
sorting the questions to choose the questions that need to be answered first (questions that
are more challenging to computers). The Corleone [68] system outsources the entire entity
matching workflow to the crowd, including blocking and matching.

Schema Matching and Mapping

In [8], user feedback is used in an iterative exploratory process to guide the system towards
the best data sources for the user, and the best mediated schema for these sources. In [35],
a debugger for understanding and exploring schema mappings is introduced. This debugger
computes, and displays the relationships between source and target schemas. Muse [11]
refines partially correct mappings generated by an automatic matcher, and asks the user
to debug them by examining user-proposed examples.

Some work has been done on verifying automatic decisions during the process of schema
matching and mapping. In [81], a large set of candidate matches can be generated using
schema matching techniques. These matches need to be confirmed by the user. The
candidate matches are sorted based on their importance (i.e., if they are involved in more
queries or associated with more data). A user is asked to confirm a match with a “yes”
or “no” question. A similar approach has also been proposed in [98, 140, 149]. In [29],
the system provides functionality for checking a set of mappings to choose the ones that

94

represent better transformations from a source schema to a target schema. The step of
verifying schema mappings is done as part of setting up the data integration system. This
results in a significant up-front cost [66].

The work described in the previous paragraph requires the user to provide feedback on
the schema. Another research direction focuses on different variations of the idea of utilizing
feedback that the user provides on the answers to her queries. In [144], user feedback is
obtained over the answers to a keyword search-based data integration query. The feedback
is represented as a constraint over the ordering of the returned answers, or as identification
of good or bad answers. The feedback is then utilized to improve the ordering of answers
to future queries. The system in [33] relies on writing manual rules to perform information
extraction or information integration operations. The output view of these operations is
then subject to feedback from the user in the form of inserting, editing, or deleting data.
This feedback is then reflected on the original data sources and propagated to other views.
In the Q system [124, 125, 144], keywords are used to match terms in tuples within the
data tables. Foreign keys within the database are used to discover “join paths” through
tables, and query results consist of different ways of combining the matched tuples. The
queries are ranked according to a cost model and feedback over answers is used to adjust
the weights on the edges of the graph to rerank the queries. Other approaches [12, 108]
require the user to specify samples of data mapped from a source schema to a target schema
in order to generate the mappings between these schemas.

The work closest to UFeed is [18], where the focus is on refining alternative mappings in
a pay-as-you-go fashion. The mediated schema is assumed to be correct, and the user issues
a query along with constraints over the required precision and recall to limit the number of
mappings used to answer the query. The user can give feedback over the returned answers
so that the mappings can be annotated with an estimate of their precision and recall. These
estimates are used in future queries to refine and select the mappings that would return
the level of precision and recall desired by the user. UFeed refines not only the mappings,
but also the mediated schema, without overburdening the user with specifying constraints
on the quality of query answers. As a comparison to [18], the experimental evaluation in
this chapter shows that refining the mappings alone is not sufficient to find high-quality
answers to the user’s queries.

In contrast to these approaches, UFeed refines the mediated schema and mappings
incrementally, relying solely on user queries and feedback on query answers. UFeed infers
the parts of the mediated schema and mappings that need to be modified by relying on
user queries and feedback on query answers, while shielding the user from the details of the
matching and mapping process. UFeed is also agnostic to the degree of confidence the data
integration system has about its matches because user feedback is used to directly change

95

the mediated schema and mappings, regardless of whether the data integration system is
certain or uncertain about them.

5.2 Preliminaries on Relational Data Integration

This section defines the concepts used by UFeed and provides some required preliminary
information on relational data integration.

5.2.1 Schema Matching and Mapping

Source Schema: UFeed focuses on the integration of web tables, which usually have
simple schemas that do not adhere to explicit data types or integrity constraints. Thus, a
source schema consists of a set of attribute names.

Definition 2 A source schema S that has n source attributes is defined by: S = {a1, . . . , an}.

For q source schemas, the set of all source attributes in these schemas is A = attr(S1)∪
· · · ∪ attr(Sq).

Mediated Attribute: A mediated attribute mA is a grouping of source attributes
from different source schemas. Source attributes in a mediated attribute should represent
the same real-world concept.

Definition 3 A mediated attribute is defined by: mA = {Si.ax, . . . , Sj.ay|∀i, j, i 6= j}.

Mediated Schema: In this chapter, one mediated schema is generated for a number
of data sources belonging to the same domain. This approach is known as holistic schema
matching [121], in contrast to approaches that perform pairwise matching between a pair
of schemas. Holistic schema matching is the appropriate approach for web data integration
because a large number of data sources needs to be covered by one mediated schema.

Definition 4 A mediated schema M is defined by: M = {mA1, . . . ,mAm}, where m is
the number of mediated attributes in the mediated schema.

Mapping: The mapping from any data source to the mediated schema is represented
by a set of correspondences, each between a source attribute and a mediated attribute.

96

Definition 5 A mappingMapi between source schema Si and the mediated schemaM is
defined by: Mapi = {aj → mAk|j ∈ [1, |Si|] , k ∈ [1, |M|]}.

The process of generating a mediated schema holistically and generating mappings
between each source schema and the mediated schema is referred to in this chapter as
holistic data integration.

5.2.2 Probabilistic Mediated Schemas and Mappings

UFeed can work with mediated schemas and mappings generated through holistic or prob-
abilistic data integration. The probabilistic model of data integration [42, 52] reflects the
uncertainty faced by automatic approaches when integrating heterogeneous data sources.
A probabilistic mediated schema can possibly consist of several mediated schemas, each
of which is associated with a probability that reflects how likely the mediated schema
represents the domain of the data sources.

Definition 6 A probabilistic mediated schema PM with p mediated schemas is defined
by: PM = {(M1, P r(M1)), . . . , (Mp, P r(Mp)))}, where Pr(Mi) is the probability that
mediated schemaMi is the correct one.

In [42], the aforementioned uncertainty is captured through the similarity score thresh-
olds. If the similarity between two source attributes is high enough (larger than a thresh-
old), the two attributes are connected with a certain edge. If the similarity is too low
(below another threshold), the two attributes are not connected. If the similarity is be-
tween the high and low thresholds, the two attributes are connected with an uncertain
edge. A mediated schema is created for each subset of uncertain edges.

The mediated schemas should be assigned probabilities that reflect how well they rep-
resent the domain of the data sources. In [42], the probabilities are assigned to mediated
schemas based on a definition of consistency of the mediated schema. A mediated schema
Mi is consistent with a source schema Sj if there is no pair of source attributes in Sj that
is in the same mediated attribute in Mi. The probability of any mediated schema is the
number of source schemas it is consistent with divided by the total number of consistencies
counted.

Similarly, a probabilistic mapping is defined between each source schema Si and me-
diated schemas Mj. The probabilistic mapping can possibly consist of several mappings
each of which is associated with a probability.

97

Definition 7 A probabilistic mapping PMapij is defined by: PMapij =
{(Map1, P r(Map1)), . . . , (Mapl, P r(Mapl))}, where l ≥ 1 is the number of map-
pings between source schema Si and mediated schemaMj.

In [42], finding the possible mappings and assigning probabilities to them is represented
as an optimization problem. The goal of the optimization problem is to find mappings and
assign probabilities that are based on the similarity between source attributes and mediated
attributes with the goal of maximizing their entropy. Formally, the goal is to maximize∑l

k=1−pk log pk subject to:
1. ∀k ∈ [1, l] , 0 < pk < 1. Where l is the number of all possible mappings. The probability
of any mapping is between 0 and 1.
2.
∑l

k=1 pk = 1. The sum of all probabilities of all mappings from a data source to a
mediated schema is 1.
3. ∀i, j,

∑
k∈[1,l],(i,j)∈mk pk = pi,j. Where pi,j =

∑
a∈mAj

sim(ai,a)

|mAj | is the weighted correspon-
dence between source attribute ai and mediated attribute mAj.

When queries are issued against the probabilistic mediated schema, answer tuples are
computed from each possible mediated schema, and a probability is computed for each
answer tuple. An answer tuple from a data source using a specific mapping is assigned
the probability of this mapping. It is possible that a tuple is generated using multiple
mappings from the same data source that have different probabilities. The probability
of a tuple that is generated from one data source using multiple mappings is given by
p =

∑k
i=1 Pr(t|Mi) ∗ Pr(Mi), where Pr(t|Mi) is the probability of the mapping from the

source to the mediated schema Mi which is used to find the tuple t, and Pr(Mi) is the
probability of the mediated schema. If tuple t can be generated from d data sources and
has a probability pi for data source i, its final probability is Pr(t) = 1 −

∏d
i=1(1 − pi)

because it is assumed that the mappings from different data sources are independent of
each other. This model is referred to in this chapter as probabilistic data integration.

5.2.3 Answering Queries over Relational Mediated Schemas

The focus in this chapter is on select-project (SP) queries using a SQL-like syntax. Sup-
porting joins and more complex queries is left as future work. A query has a SELECT
clause and a WHERE clause. There is no FROM clause because queries are issued over
all data sources. This type of queries conforms with prior work [42].

As mentioned earlier, the philosophy in UFeed is to isolate the user as much as possible
from the details of the mediated schema and mappings, since the focus is on users who

98

are not experts and who may not have detailed knowledge about the semantics of all
queried data sources. Thus, UFeed adopts the following two-step model for querying the
data sources: First, the user writes a query over one source schema Si. The query over
the source schema is rewritten to a query over the mediated schema. This is done by
replacing each source attribute with the mediated attribute it maps to according to the
schema mapping of this data source. If it is not possible to replace all source attributes
in the query with mediated attributes, the query is issued only over the data source it
is composed over. Formally, the user issues a query over a source schema Si using the
source attributes Si.a ⊆ Si, where using an overline denotes a set. This query Q(Si.a) is
rewritten to be issued over the mediated schema M using the following rule: Q(Si.a) →
Q(M′)|∀Si.aj ∈ Si.a∃(Si.aj → M′.mAx) ∈ Mapi, where M′ ⊆ M, |M′| = |Si.a|, and
M′.mAx is a mediated attribute inM′.

Second, once a query over the mediated schema is obtained, the query is rewritten
using the appropriate mappings so that it can be issued over all relevant data sources. For
each source schema, if there is a source attribute that maps to a mediated attribute in the
query, the query is rewritten so that the source attribute replaces the mediated attribute
in the SELECT or WHERE clause. The query is rewritten for all data sources that are
represented in the mediated attributes in the query. Formally, the query over the mediated
schema that was obtained from the previous step Q(M′) is rewritten to be issued over
any source schema Sy according to the following rule: Q(M′) → Q(Sy.a)|∀M′.mAx ∈
M′∃(Sy.al → M′.mAx) ∈ Mapy, where |M′| = |Sy.a|. The answers to the rewritten
queries over all source schemas that satify this rule are combined using a union operation.

5.3 Refinement in UFeed

This section presents how UFeed accepts and stores user feedback and the operations
triggered by this feedback. In using feedback to refine the mediated schema and mappings,
UFeed has to address the following challenges:

1. Which source attributes should be in the mediated schema? Typically, data inte-
gration systems do not include all attributes from all data sources in the mediated
schema. Doing so would make the mediated schema too large and semantically in-
coherent, and would make the mappings too complex and difficult to use. Choosing
source attributes based on their frequency in the data sources has been used in prior
work [42]. Whether this or some other method is used, the choice of attributes will
not be perfect. Desired attributes may be excluded, and undesired ones may exist in

99

the mediated schema. Even if a suitable frequency threshold is found for a specific
domain, this threshold may be different for other domains.

2. What happens if UFeed receives conflicting feedback or performs incorrect refine-
ment? One way to ensure correct feedback is to use feedback that is aggregated from
multiple users over a period of time [51, 98]. However, even with this type of feed-
back aggregation, some of the feedback used by UFeed may be incorrect and result in
incorrect refinements. UFeed needs to correct its mistakes based on future instances
of correct feedback.

3. How should UFeed respond when the user marks a tuple in a query answer as incor-
rect? Is the answer incorrect because of an incorrect grouping of source attributes
in a mediated attribute, an incorrect mapping from a source attribute to a mediated
attribute, or because the data in the data source is incorrect? UFeed should pinpoint
the origin of an error using only feedback over query answers.

4. How to adapt mappings to changes in the mediated schema? As the mediated schema
is refined, some of the mappings are invalidated and some new ones need to be
generated. UFeed should solve this problem without being dependent on the specific
algorithm used to generate the mappings.

5.3.1 Attribute Correspondence and Answer Association

When a user issues a query and receives answer tuples, she can mark any of the answer
tuples as “correct” (positive feedback) or “incorrect” (negative feedback). This is referred
to as a feedback instance. Note that the user is not required to provide feedback on all
answer tuples. She can choose as many or as few answer tuples as she wants to mark as
“correct” or “incorrect”.

Each feedback instance updates two in-memory data structures used by UFeed: the
attribute correspondence set and the answer association set. An attribute correspondence
links a source attributed used in the original query to a source attribute from another
data source used in the rewritten query. This link means that the two source attributes
represent the same concept. For example, a query over source schema S3 from Example 1 is
SELECT country WHERE region = North America. The query uses the attribute country
which is rewritten to country name when issuing the query over S2 using the mappings in
Figure 5.2. If feedback is received over an answer tuple based on this rewritten query, the
attribute correspondence entry (country, country name) is created and associated with the

100

type of feedback received (positive or negative). The attribute correspondence set stores
all the attribute correspondences inferred from feedback that is received by UFeed.

An answer association links a value in an answer tuple to the source attribute in the
rewritten query that this value comes from. For example, (country name, “USA”) is an
answer association. The answer association set stores all the answer associations derived
from user feedback.

The attribute correspondence set and answer association set capture all the feedback
received by UFeed in a way that allows the system to refine the mediated schema and
mappings based on this feedback.

5.3.2 UFeed Operations

UFeed defines a set of abstract and independent operations that target several kinds of flaws
in the mediated schema and mappings. The operations address adding/removing source
attributes to/from the mediated schema, modifying mappings, and merging/splitting me-
diated attributes. This section describes these operations and how they are triggered.

Inject

The Inject operation overcomes the problem of missing source attributes in the mediated
schema by adding source attributes required by the user to the mediated schema. As
discussed in Section 5.2.3, queries are formulated over one of the source schemas. Querying
an attribute that exists in a source schema but not in the mediated schema is a sufficient
indication that this attribute is important to the user and needs to be injected in the
mediated schema. This triggers the Inject operation. The main question for Inject is
which mediated attribute the new source attribute should join. UFeed uses a minimum
distance classifier to answer this question. The minimum distance classifier chooses the
mediated attribute that has the source attribute that is most similar to the newly added
source attribute (i.e., nearest neighbor [39]). Other types of classifiers can also be used [54].
A threshold α is introduced so that a source attribute is not forced to join a mediated
attribute to which it has a relatively low similarity. A value α = 0.8 is used in this chapter.
If the new source attribute cannot join any existing mediated attribute, it is placed in
a new mediated attribute that contains only this source attribute. Thus, Inject can be
defined as follows:

Definition 8 If the current set of source attributes in the mediated schema is A′ =
attr′(S1) ∪ attr′(S2) ∪ . . . ∪ attr′(Sq), where attr′(Si) is the set of source attributes of

101

data source Si that contribute to the mediated schema. Inject(Si.a) performs two steps:
1. A′ ← A′ ∪ {Si.a}, and 2. mAi ← mAi ∪ {Si.a} for mAi with the highest similarity to
Si.a greater than α OR mA|M|+1 ← {Si.a} if no mAi has similarity to Si.a greater than α.

Confirm

The Confirm operation is triggered when the user marks an answer tuple “correct”. Since
the answer tuple is correct, this means that the data, the mediated attributes, and map-
pings used to generate this tuple are correct. The correctness of the data is recorded in the
answer association set, and the correctness of the mappings is recorded in the attribute cor-
respondence set. In UFeed, there are two kinds of confirmations: definite confirmations and
tentative confirmations. A definite confirmation is applied to the attribute correspondences
and answer associations that are directly touched by the user feedback instance. A tenta-
tive confirmation is applied to the answer associations that are indirectly touched by this
feedback instance. For example, consider the query SELECT country WHERE region =
North America over S3. This query is rewritten based on Map1 in Figure 5.2 to be issued
over S1. The rewritten query is SELECT county WHERE region = North America. The
same query is also rewritten based on Map2 to be issued over S2. The rewritten query is
SELECT country name WHERE region = North America. The answers are shown in
Figure 5.3. Giving positive feedback over the answer “Canada” leads to the creation of the
attribute correspondences (S3.country, S2.country name) and (S3.region, S2.region), and
the answer associations (S2.country name, “Canada”) and (S2.region, “North America”).
There are also answer associations for the source attributes from S3, but they are omitted
for the clarity of the example. The aforementioned confirmations are all definite, since they
are based directly on the tuple “Canada” over which the user provided positive feedback.
Definite confirmations are represented in the figure by a solid green line. Other answer
tuples that are generated by the same rewritten query are given tentative confirmations,
represented by a dotted green line in the figure. Assigning tentative confirmations is based
on the reasoning that the positive feedback provided by the user indicates that the value of
the source attribute on which this feedback was given is correct, and this source attribute
is indeed an instance of the mediated attribute. Other values of the source attribute are
likely to be correct, so they should be confirmed. However, there may be errors in the data
resulting in some of these values being incorrect. Therefore, the confirmation remains a
tentative confirmation, and the confirmation of a value becomes definite only if the user
explicitly provides positive feedback on this value.

The Confirm operation aims at protecting source attributes in the mediated attributes
from being affected by other operations that alter the mediated schema, in particular, the

102

SELECT country
WHERE region = North America

country schema
Canada S2,S3
Mexico S2,S3
USA S2,S3

Albany S1
Allegany S1

.

.
S1

S3.country, S2.country name

S2.country name, “Canada”

S2.country name, “Mexico”

S2.country name, “USA”

S3.region, S2.region

S2.region, “North America”

AC

AA

Figure 5.3: Positive feedback over an answer tuple and the resulting attribute correspon-
dences (AC) and answer associations (AA).

Split and Blacklist operations that will be discussed next.

Split and Blacklist

When negative feedback is received over an answer tuple, this means that either the data is
incorrect or the mediated schema and mappings are incorrect. In particular, one or more
attribute values in the source tuple may be incorrect, or the source attribute does not
represent the same concept as the mediated attribute it is part of. Since there is no simple
way to distinguish between these two causes of negative feedback, UFeed faces uncertainty
about the action to take in response to such feedback. This uncertainty can be resolved
when UFeed receives further feedback. UFeed records the attribute correspondences and
answer associations created for this feedback instance. The attribute correspondences and
answer associations for this feedback instance are linked together for future investigation
based on future feedback. Figure 5.4 shows the uncertainty faced by UFeed when negative
feedback is received over the answer “Albany”. UFeed does not know if the answer is
incorrect because country and county should not be in the same mediated attribute, or
because “Albany” is not a county. The attribute correspondence and answer association
are linked together as shown in the figure (represented by a dotted red line).

Now, consider the query: SELECT county WHERE region = North America and its
answers in Figure 5.5. Assume that positive feedback is received over “Allegany”. As
explained earlier, a definite confirmation is applied to (S1.county, “Allegany”). Note that no
attribute correspondence is added because this answer tuple comes from the source schema
over which the query is issued. Tentative confirmations are applied to the remaining answer

103

S3.country, S1.county

S1.county, “Albany”

country schema
Canada S2,S3
Mexico S2,S3
USA S2,S3

Albany S1
Allegany S1

.

.
S1

?

SELECT country
WHERE region = North America

S3.country, S2.country name

S2.country name, “Canada”

S2.country name, “Mexico”

S2.country name, “USA”

S3.region, S2.region

S2.region, “North America”

AC

AA

AC

AA

Figure 5.4: Negative feedback over an answer tuple and the resulting linking of the attribute
correspondence (AC) and answer association (AA) to which the feedback applies. Attribute
correspondences and answer associations from the previous query are shown above the blue
dotted line.

SELECT county
WHERE region = North America

S1.county, “Allegany”

S1.county, “Albany”

S1.county, “Bronx”

S1.county, “Yuba”

.

S3.country, S1.county

S1.county, “Albany”

S3.country, S2.country name

S2.country name, “Canada”

S2.country name, “Mexico”

S2.country name, “USA”

S3.region, S2.region

S2.region, “North America”

AC

AA

AC

AA

AA

county schema

Canada S2,S3

Mexico S2,S3

USA S2,S3

Albany S1

Allegany S1

.

.
S1

Figure 5.5: Positive feedback over an answer tuple to a query asking for counties in North
America.

104

associations as explained earlier. However, the answer association (S1.county, “Albany”) has
been previously linked to a negative feedback instance. Conflicting feedback, as explained
later in this section, results in updating the status of the entry to “unknown” (represented
by a black dotted line), that is, neither correct nor incorrect. With this update, UFeed
concludes that the reason for the negative feedback received in Figure 5.4 is that county
should not be in the same mediated attribute as country (because county is the source
attribute used to generate the answer “Albany”). This triggers the Split operation, which
splits the source attribute used in the rewritten query from the mediated attribute it is
part of, and forms a new mediated attribute that only contains this one source attribute.
In this example, county is removed from the mediated attribute {county, country name,
country} and the new mediated attribute {county} is added to the mediated schema. If the
split source attribute is the only member of a mediated attribute, the mediated attribute
is also removed. If the split source attribute does not exist in the mediated attribute, the
correspondence between the source attribute and the mediated attribute in the mapping
used to answer the query is removed. Thus, the Split operation is defined as:

Definition 9 If Si.a is a source attribute, where Si.a ∈ A′, Split(Si.a,mAx) performs
three possible actions:

Remove(mAx),A′ ← A′ − {Si.a}
if Si.a ∈ mAx AND |mAx| = 1

OR 1. mAx ← mAx − Si.a 2. mA|M|+1 ← {Si.a}
if Si.a ∈ mAx AND |mAx| > 1

OR Remove(Si.a→ mAx)

if Si.a /∈ mAx

UFeed uses the following heuristic: When the user provides negative feedback indicating
that an answer tuple is incorrect, UFeed assumes that there is only one mistake that
caused this answer tuple to be incorrect. This can be a mistake in the mediated schema
or mappings, or it can be erroneous data. If it happens that multiple mistakes cause an
answer tuple to be incorrect, UFeed will fix the mistakes one by one based on multiple
instances of negative feedback.

To illustrate another way UFeed identifies the cause of negative feedback, assume that
instead of giving positive feedback over “Allegany”, the user provides negative feedback
over “Albany”, as shown in Figure 5.6. This feedback is incorrect since “Albany” is in fact a
county, but it serves the example. In this case, UFeed does not face uncertainty about the
reason for this negative feedback because this answer tuple is generated from one source

105

SELECT county
WHERE region = North America

S3.country, S1.county

S1.county, “Albany”

S3.country, S2.country name

S2.country name, “Canada”

S2.country name, “Mexico”

S2.country name, “USA”

S3.region, S2.region

S2.region, “North America”

S1.county, “Albany”

AC

AA

AC

AA

AA

county schema

Canada S2,S3

Mexico S2,S3

USA S2,S3

Albany S1

Allegany S1

.

.
S1

Figure 5.6: Negative feedback over an answer tuple to a query asking for counties in North
America.

(S1), without using any mappings. UFeed knows now that “Albany” is erroneous data in
the data source. This triggers the Blacklist operation. This operation maintains a blacklist
that keeps track of incorrect answer associations in the answer association set. The blacklist
is used in the query answering process to remove erroneous data from query answers. In the
example, the blacklist removes “Albany” from future answers. This negative feedback also
updates the status of the attribute correspondence (S3.country, S1.county) to “unknown”
until future feedback indicates it is incorrect.

Merge

TheMerge operation is triggered when two or more answer associations share the data value
while having different source attributes. For example, consider the query in Figure 5.7,
which finds countries and their “gdp per capita purchase power parity” values in North
America. Assume this query is issued after the query in Figure 5.3. Receiving positive
feedback over the answer tuple (“Canada”, “45553”) results in definite confirmation of the
answer associations (S4.name, “Canada”) and (S4.gdp per capita ppp, “45553”). However,
the answer association (S2.country name, “Canada”) exists and was confirmed by the user.
This triggers the Merge operation, which merges the two mediated attributes that contain
the two source attributes in the answer associations are in. TheMerge operation is triggered
when two answer associations that share the data value are confirmed with definite or
tentative confirmation.

106

SELECT name, gdp per capita ppp
WHERE region = North America

name gdp per
capita ppp

schema

Canada 45553 S4
Mexico 17534 S4
USA 55805 S4

S3.country, S2.country name

S2.country name, “Canada”

S2.country name, “Mexico”

S2.country name, “USA”

S3.region, S2.region

S2.region, “North America”

S4.name, “Canada”

S4.gdp per capita ppp,
“45553”

AC

AA

AA

Figure 5.7: Positive feedback that results in triggering the Merge operation.

Definition 10 If Si.a and Sj.b are two source attributes, where Si.a, Sj.b ∈ A′,
Merge(Si.a, Sj.b) performs two steps: 1. mAi ← mAi ∪ mAj|Si.a ∈ mAi, Sj.b ∈ mAj.
2. Remove(mAj).

Adapt

The Adapt operation updates the mappings whenever the mediated schema is changed by
other UFeed operations. It is an essential operation for maintaining semantic coherence
as the mediated schema changes. Formally, when a mediated schemaM is changed into a
new mediated schema M′ via any of the aforementioned UFeed operations, the mapping
Mapi for any source schema Si that is affected by the changes should evolve into Map′i
that maps Si toM′.

The UFeed operations that trigger the Adapt operation are: Inject, Split, and Merge
because these are the operations that make changes to the set of attributes in the mediated
schema A and their groupings into mediated attributes.

Mapping adaptation after Inject : The Inject operation introduces a new source
attribute to the set of source attributes in the mediated schema. This change in the
mediated schema will require updating the mapping of the source schema that the injected
source attribute is part of. Mapping adaptation in this case is straight forward. Following
Definition 8, if the injected source attribute is Si.ax the new mapping becomes Map′i =
Mapi ∪ (Si.ax → mAj), where Si.ax ∈ mAj ∧ (!∃Si.ay ∈ mAj|x 6= y). This means that
the injected source attribute should map to the mediated attribute it is injected in, unless

107

another source attribute from the same source schema is in this mediated attribute. In the
latter case, no mapping is generated because it is assumed that no two source attributes
in a table should represent the same real-world concept.

Mapping adaptation after Split : Definition 9 has three different cases for the Split
operation. Different mapping adaptations apply in each case.

Remove(Si.a→ mAx)

OR Si.a→ mA|M |+1

OR No Action

For the first case, where the source attribute and the mediated attribute are removed,
the correspondence to the mediated attribute is also removed. For the second case, where
one source attribute is split from the mediated attribute, the split source attribute maps
to the new mediated attribute that only contains the split source attribute. The third case
removes the mapping, so no adaptation is needed.

Mapping adaptation after Merge: When two mediated attributes are merged ac-
cording to Definition 10, the mappings from any source attribute to any of the merged
mediated attributes should be updated. Following Definition 10, mappings to the medi-
ated attribute mAi do not need to be updated. Only mappings to the mediated attribute
mAj should be changed to map to mAi.

5.3.3 Applying UFeed Operations to Probabilistic Mediated
Schemas and Mappings

As noted earlier, UFeed operations can be applied on probabilistic mediated schemas and
mappings. The challenge in this case is that there are several mediated schemas, each with
an associated probability. UFeed uses a simple solution to address this challenge: it deals
with each mediated schema independently, as if it were the output of a holistic schema
matching system. Whenever two mediated schemas are equivalent (have the exact same
grouping of source attributes), one is removed. The ultimate goal of schema refinement in
this case is for the probabilistic mediated schema to converge to a single (non-probabilistic)
mediated schema.

Calculating probabilities for mediated schemas and mappings in UFeed is dependent
on the details of the probabilistic data integration approach. UFeed should incorporate
the probability calculation method in order to update the probabilities as the probabilistic
mediated schema and mappings are refined. This chapter uses the probability calculation
method of [42], which was discussed in Section 5.2.2.

108

5.3.4 Handling Incorrect Feedback

UFeed expects incorrect feedback to be rare, but it can cancel the effects of such feedback
through future correct feedback. UFeed does not know that a feedback instance is incorrect.
However, it makes changes to the mediated schema and mappings based on one feedback
instance at a time, and the changes that it makes are independent of each other. Therefore,
more correct feedback instances will ultimately undo the negative effects caused by incorrect
feedback.

Inject: An incorrect Inject can be fixed using the Split operation. If the injected
source attribute is incorrectly placed in an existing mediated attribute, negative feedback
over answers that are generated using the injected source attribute will split it from the
mediated attribute. If the source attribute forms a mediated attribute on its own, negative
feedback removes this source attribute, and consequently the mediated attribute, from the
mediated schema.

Confirm: When an attribute correspondence is mistakenly given a definite confirma-
tion, the source attribute cannot be split from the mediated attribute. This confirmation
cannot be removed unless a negative feedback is received and it is known that the error
comes from the attribute correspondence and not an answer association. In this case,
the confirmation is removed and the status of the attribute correspondence is updated to
“unknown”.

Split: If a source attribute is mistakenly split due to incorrect feedback, this can
be simply undone by receiving correct feedback that triggers the Merge operation, which
merges the source attribute that was split with the mediated attribute it was split from.
If the Split results in removing the source attribute from the mediated schema, this will
require the user to query the removed source attribute to trigger an Inject operation to
add it to the mediated schema.

Blacklist: To avoid blacklisting a value that may be correct due to incorrect feedback,
UFeed uses a second chance technique for this specific operation. The second chance
technique allows a value to be shown to the user after it is identified by UFeed as erroneous.
The vaule is allowed to be shown to the user until another negative feedback is received
over it. At that point, the value is blacklisted for future queries.

Merge: An incorrect merge operation that merges two mediated attributes can be
undone by receiving negative feedback over any of the merged source attributes. This will
trigger a Split operation that will split the mistakenly merged source attribute from the
new mediated attribute.

109

5.4 UFeed Completeness

The gold standard is defined as the mediated schema and mappings designed by a human
expert through manual integration of the data sources. This section proves that UFeed can
transform any automatically generated mediated schema to the gold standard. I decompose
the gold standard of n data sources into the following:

1. Set of Source Attributes AG: This is the set of attributes that is part of the gold
standard mediated schema, not to be confused with A defined in Section 5.2, which is the
union of source attributes in all data sources. If all source attributes are of relevance and
included in the mediated schema, then AG ≡ A. However, in practice, AG ⊆ A.

2. Mediated SchemaMG: The mediated schema consists of several mediated attributes,
each of which is a cluster of one or more source attribute from AG. Formally, MG ={
mA1

G, · · · ,mAkG
}
where k is the number of mediated attributes in the gold standard,

mAi
G ⊆ AG, i ∈ [1, k].

Assume the data integration system generates the corresponding components A′ and
M′, which are then used by UFeed as the starting point for refinement. This section proves
that the UFeed operations can transform A′ andM′ into AG andMG, respectively.

Lemma 5.4.1 Let AG be the set of source attributes in the gold standard mediated schema
MG, and A′ be the set of source attributes of any mediated schema M′. Then A′ can be
transformed into AG using Inject (Definition 8) and Split (Definition 9).

Proof AG can differ from A′ as follows:

1. ∃a ∈ AG, a /∈ A′. That is, a source attribute a exists in the set of source attributes
of the gold standard AG, and a does not exist in the current set of source attributes
A′. According to Definition 8, Inject(a) would transform A′ into A′ ∪ a.

2. ∃b ∈ A′, b /∈ AG. That is, a source attribute b exists in the current set of source
attributes A′, and it does not exist in the set of source attributes of the gold standard
AG. There are two scenarios:

(a) b ∈ mAx, |mAx| > 1. That is, b exists in a mediated attribute mAx that
contains other source attributes. According to Definition 9, Split(b,mAx) ⇒
mA|M′|+1 ← {b}. This will split b from mAx and create the new mediated
attribute mA|M′|+1 = {b}. Then, also according to Definition 9, another Split(b,
mA|M′|+1) will remove mA|M′|+1 which includes b.

110

(b) b ∈ mAx, |mAx| = 1. That is, b exists in a mediated attributemAx that contains
only b. According to Definition 9, Split(b,mAx) will remove mAx which includes
b.

Therefore, A′ can be transformed into AG.

Lemma 5.4.2 LetMG be the gold standard mediated schema of a set of source attributes
AG, andM′ be any mediated schema of a set of source attributes A′. If A′ is transformed
into AG (Lemma 5.4.1), thenM′ can be transformed intoMG using Merge (Definition 10)
and Split (Definition 9).

Proof The lemma can be proven by construction, by describing a sequence of Split
and Merge operations that result in the desired transformation of M′′ to MG. From
Lemma 5.4.1, A′ can be transformed into AG, and AG = {a1, . . . , al}, where l is the num-
ber of source attributes inMG. Whenever a Split or Inject is applied to A′, the operation,
by definition, also changes the mediated schemaM′. Denote byM′′ the schemaM′ after
this transformation, and let M′′ = {mA′′1, . . . ,mA′′q}, where q is the number of mediated
attributes in M′′. Note that since A′ has been transformed to AG, mA′′j ⊆ AG, for all
j ∈ [1, q]. Let all source attributes inM′′ be split from the mediated attribute they are in.
That is, formally, ∀a′′i ∈ mA′′j , where |mA′′j | > 1, Split(a′′i ,mA′′j). This will transformM′′

into a set of single-source-attribute mediated attributes. Formally,M′′ = {{a1}, . . . , {al}}.
For each mediated attributemAiG ∈MG, merge mediated attributes inM′′ to formmAi

G.
Formally, inM′′, ∀ax, ay ∈ mAiG ∈MG, Merge(ax, ay). This leads toM′′ becoming equiv-
alent toMG, which proves the lemma.

Theorem 5.4.3 Let A be the set of source attributes that is the input to any data integra-
tion system, and A′ be the set of source attributes that is part of the mediated schemaM′.
Let AG be the gold standard set of source attributes andMG be the gold standard mediated
schema. A′ and M′ can be transformed into AG and MG, respectively, using the UFeed
operations: Inject, Merge, and Split.

Proof Source attributes can be added and removed from A′ so it can be transformed into
AG using Inject and Split (Lemma 5.4.1). Then, the set of mediated attributes inM′ can
be altered to form the mediated attributes inMG. Therefore,M′ can be transformed into
MG using Merge and Split (Lemma 5.4.2).

111

It is important to note that the transformation of A′ into AG goes hand in hand
with altering the mediated attributes in M′ (i.e., Lemma 5.4.1 is applied together with
Lemma 5.4.2). Also, it is not necessary to do all the splits before merging the source
attributes into mediated attributes. For example, if the gold standard mediated attribute
is {country name, country, name}, and the current related mediated attributes inM′ are
{country, county} and {country name}, it is not necessary to inject name before removing
county and merging country and country name. This means that UFeed can apply its
operations based on the order of feedback it receives from the user.

5.5 User Interface of UFeed

UFeed has a simple user interface that demonstrates the functionality of the system by
applying it on Google Fusion Tables [1]. The user interface uses the probabilistic schema
matching and mapping approach of [42], and the probability computation in Section 5.2.2.
This section overviews the different capabilities provided by this user interface.

5.5.1 Generating Mediated Schemas and Mappings

UFeed gives users the ability to select data sources by searching for tables that belong to
a domain of interest by issuing a keyword search over Google Fusion Tables. A sample of
the results of the search using the keyword “NBA Players” is shown in Figure 5.8. The
user can browse the source schemas and click on any of them to view example tuples from
the table (the figure shows a screenshot after the user has clicked on schema S3). This
browsing step enables the user to decide which schemas should be included when creating
the mediated schema and mappings. The user can also save her selections for future use.

After the user selects the data sources she wishes to integrate, UFeed creates the me-
diated schema and mappings for these sources using any automatic schema matching and
mapping approach. A real deployment of UFeed would not expose web users who are
not necessarily data experts to the mediated schema that is generated by this technique.
However, this user interface allows the user to see the mediated schemas generated by
probabilistic schema mediation, along with their associated probabilities. The user can
also browse the source schemas and click on any source attribute to highlight the medi-
ated attribute that the selected source attribute maps to (if a mapping exists). An initial
mediated schema and the gold standard for some schemas related to the domain of NBA
basketball are shown in Figure 5.9.

112

Figure 5.8: Selecting data sources in UFeed.

Player
Player Name

Name
Year

Points/Game
Points Per Game

Points
Team

(a) Initial Mediated Schema

Player
Player Name

Name
ID

Year

Points/Game
Points Per Game

PPGTeam

Points

NumberPosition
Pos

Games Played

(b) Gold Standard

Figure 5.9: The initial mediated schema vs. the manually created gold standard for the
domain of NBA basketball.

113

Figure 5.10: Answers to the query “SELECT Player, Points/Game WHERE Year = 2014,
Points/Game > 25 ” (Correct answers are in green and incorrect answers are in red).

5.5.2 Query Processing

UFeed allows the user to issue queries over any of the selected data sources. UFeed tries to
find answers to the query in all available data sources using the available mediated schemas
and mappings. Figure 5.10 shows an example query over source schema S1, where the user
is interested in finding the names of NBA players and their points per game score in the 2014
season for players whose score is over 25. To retrieve this information, the user issues the
query: SELECT Player, Points/Game WHERE Year = 2014, Points/Game > 25 (UFeed
uses a comma in the WHERE clause in lieu of the AND keyword). The figure shows that
answers are generated from 3 different data sources: 1. S1 using the mappings Player →
{Player, Player Name, Name} and Points/Game → {Points/Game, Points Per Game,
Points}. 2. S2 using the mappings Player Name → {Player, Player Name, Name} and
Points per game → {Points/Game, Points Per Game, Points}. 3. S5 using the mappings

114

Name → {Player, Player Name, Name} and Points → {Points/Game, Points Per Game,
Points}. When the answers are first shown to the user, the tuples are not highlighted red
or green. The tuples are highlighted only when feedback is given on them. The answers
from different data sources are combined and ranked according to their probabilities. The
answers are shown to the user along with the source schema(s) that they come from.

5.5.3 Feedback and Schema Refinement

The user can select any tuple and mark it as correct or incorrect. As discussed in Sec-
tion 5.3, feedback is represented by the set of attribute correspondences and the set of an-
swer associations. In the example in Figure 5.10, marking the tuple {James Harden, 25.4}
as “correct” will result in giving the tuples values generated using the mapping from S2 with
tentative confirmations (except from the values of the tuple {James Harden, 25.4} which
are given difinite confirmations because the feedback is received directly over this tuple).
Also, the attribute correspondences (S1.Player, S2.Player Name) and (S1.Points/Game,
S2.Points Per Game) are confirmed. These attribute correspondence confirmations mean
that they should not be split from their mediated attributes when future feedback triggers
a Split operation targeting these mediated attributes.

In the same query answer in Figure 5.10, it is clear that a player cannot score 2000 or
more points in a game, so the user can mark any of the last three tuples as “incorrect”.
UFeed faces the uncertainty of identifying why the answer is incorrect. Assume the negative
feedback is received over the tuple {LeBron James, 2089}. The candidate causes are:
(a) the attribute correspondence (S1.Player, S5.Name), (b) the attribute correspondence
(S1.Points/Game, S5.Points), (c) the answer association (S5.Name, LeBron James), or
(d) the answer association (S5.Points, 2089). Assume an earlier query was issued to find
all NBA players (any positive feedback will confirm (a) and tentatively confirm (c)), and
another query for points (positive feedback will either result in difinite or tentative confirm
of (d)). Therefore, UFeed will determine that the reason of the tuple {LeBron James,
2089} being incorrect is (b). This will result in splitting Points from the mediated attribute
{Points/Game, Points Per Game, Points}.

115

Keywords Tables Attributes/Table Total Attributes Tuples/Table Total Tuples
Internet Usage 38 2–230 886 7–261 3826

Movies 20 1–16 117 10–3201 7422
World GDP 12 2–230 839 12–262 4830

Table 5.1: Data sets used in the experiments.

5.6 Experimental Evaluation

5.6.1 Experimental Setup

The experimental evaluation of UFeed was run on a machine with Intel Core i7 CPU at
2.6 GHz and 8 GB of memory. To generate the starting mediated schema and mappings
for UFeed, the techniques in [117] were used for the holistic data integration approach and
the techniques in [42] were used for the probabilistic data integration approach. These two
techniques are the state-of-the-art in holistic and probabilistic data integration.

Data Sources: The data sources for the experiments were extracted from Google Fu-
sion Tables. To find a set of data sources representing a given domain, a keyword search
query is issued using keywords representing the domain on Google Fusion Tables. The top
150 tables returned are considered and manually refined to eliminate redundant or irrele-
vant ones. The refined set of tables was input to the integration algorithms (holistic and
probabilistic) to create the mediated schema(s) and mappings. The mediated schema(s)
and mappings are used to answer queries formulated over any data source by returning
answers from other data sources that can contribute to the answer set (Section 5.2). Ta-
ble 5.1 presents the data used in the experiments. Each row represents one domain, and
the name of the domain is also the keyword used for searching in Google Fusion Tables.

The holistic data integration approach generates one mediated schema and one set
of mappings for each domain. The probabilistic data integration approach generates one
mediated schema for the “Movies” domain, and two mediated schemas for each of the
“World GDP” and “Internet Usage” domains. The number of probabilistic mappings for
each source in the three domains ranged from 0 mappings, where the source does not map
to the mediated schema to 8 different possible mappings from one source to the mediated
schema of the domain.

Gold Standard: For each domain, I manually created a gold standard mediated
schema and the corresponding mapping for each data source. When used, the gold standard
returns correct and complete answers to all queries.

116

Queries: For each domain, I manually constructed a set of queries that trigger the
UFeed operations. These queries focus on the parts of the mediated schema that differ from
the gold standard. When the queries are issued before UFeed refines the schema, they can
return incomplete, incorrect, or empty answers. As the UFeed operations are applied, the
quality of the query answers improves. The experiments use these queries because queries
that target parts of the mediated schema that are already the same as the gold standard
will always return complete and correct answers, and thus offer limited opportunities for
testing UFeed. The number of queries in each setting is shown in Table 5.2.

5.6.2 Quality of Query Answers

This section evaluates whether UFeed improves the quality of query answers. To measure
the quality of the current mediated schema (or schemas in the case of probabilistic data
integration) and mappings, the queries are run over both the gold standard and the current
mediated schema and mappings. Assuming the answer set from the gold standard is G and
the answer set from the current mediated schema and mappings used by UFeed is A, the
quality of query answers is measured using: Precision P = |A∩G|

|A| , Recall R = |A∩G|
|G| , and

F-measure F = 2PR
P+R

. The average precision, recall, and F-measure of the answers to all
queries in the set of evaluation queries are computed for each domain. It was noted that
there is no large gap between precision and recall curve. Therefore, only the F-measure is
reported in this section.

In all experiments, feedback is provided to UFeed after each query, and UFeed immedi-
ately refines the mediated schema and mappings based on this feedback so that subsequent
queries get higher quality answers. Feedback is generated by comparing sample answers
from the two answer sets A and G (defined above). However, feedback is not generated
for each tuple in A and G. One tuple is randomly chosen from A and is looked for it in G.
If it exists, a positive feedback instance is generated. If it does not, a negative feedback
instance is generated. After every UFeed operation, all queries in the evaluation set that
were affected by this operation are rerun and the F-measure is recomputed.

The order of the queries run, and consequently the UFeed operations, has some effect
on the quality of the query answers. To take into account the effect of query ordering,
each experiment is rerun 10 times with a different random ordering of the queries and
the average F-measure for the 10 runs is reported along with its 95% confidence interval.
The random orderings are created under some simple ordering constraints. For example,
a source attribute cannot be merged with another source attribute before it is injected in
the mediated schema.

117

Internet Usage Movies World GDP
Holistic 49 32 40

Probabilistic 85 65 74

Table 5.2: Number of queries in the different settings.

UFeed recovers from incorrect feedback by relying on future correct feedback. To evalu-
ate the effectiveness of this approach, UFeed is tested with 10% and 20% incorrect feedback
instances chosen at random and it is shown that UFeed can overcome their effect through
additional correct feedback.

As mentioned earlier, to the best of my knowledge, the only other technique that uses
feedback over query answer tuples is [18]. In that paper, query feedback is used to refine
the mappings but not the mediated schema. To demonstrate that this is not sufficient,
fully correct mappings are generated from the data sources to the automatically generated
mediated schema by manually modifying the results of the automatic mapping. It is
shown that the F-measure obtained using these correct mappings, which is the best that
a technique that only refines the mappings such as [18] can obtain. It is important to
emphasize that UFeed and [18] target different domains. While UFeed targets web tables
that are usually large in numbers and have simple schemas, and therefore require generating
a mediated schema as an interface to access them, as well as mappings (one-to-one) between
each table and the mediated schema, the approach in [18] targets a small number of tables in
a one source schema to one target schema fashion of mapping modification. The approach
of [18] is used here as a comparison point to emphasize the importance of targeting both
mediated schema and mappings in the refinement step of the pay-as-you-go approach to
web data integration. UFeed will not perform well in the domain targeted by [18] due to
the lack of support for complex mappings (1-to-n, n-to-1, or n-to-m).

Figure 5.11 shows the quality of the query answers (F-measure) for the three domains
shown in Table 5.1 for holistic and probabilistic data integration. Since all the queries in
the set of evaluation queries touch parts of the initial mediated schema that differ from
the gold standard, the F-measure starts at a very low value. The figure shows that UFeed
consistently reaches a high value of F-measure (greater than 0.9). As expected, UFeed is
slower to converge when there is incorrect feedback, but the important point to note is
that UFeed converges to the same (high) value of the F-measure even if up to 20% of the
feedback is incorrect. The confidence intervals are narrow, showing that while the order of
queries has some effect on the quality of the results, this effect is small.

The figure shows that having correct mappings (the best for a technique such as [18])
is not sufficient to guarantee high quality answers (the horizontal line in the plots). The

118

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80

F‐
M
e
a
su
re

Queries

Correct Feedback
10% Incorrect Feedback
20% Incorrect Feedback
Correct Mappings

(a) Internet - Holistic

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

F
‐M

e
a
s
u
re

Queries

Correct Feedback

10% Incorrect Feedback

20% Incorrect Feedback

Correct Mappings

(b) Movies - Holistic

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70

F
‐M

e
a
su
re

Queries

Correct Feedback
10% Incorrect Feedback
20% Incorrect Feedback
Correct Mappings

(c) World GDP - Holistic

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120

F‐
M
ea

su
re

Queries

Correct Feedback
10% Incorrect Feedback
20% Incorrect Feedback
Correct Mappings

(d) Internet - Probabilistic

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

F‐
M
e
a
su
re

Queries

Correct Feedback
10% Incorrect Feedback
20% Incorrect Feedback
Correct Mappings

(e) Movies - Probabilistic

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120

F
‐M

e
a
su
re

Queries

Correct Feedback

10% Incorrect Feedback

20% Incorrect Feedback

Correct Mappings

(f) World GDP - Probabilistic

Figure 5.11: Quality of query answers.

119

automatically generated mappings can be refined to map to the correct mediated attribute,
if it exists. However, there are typically mediated attributes that are either a group of
source attributes representing different concepts and incorrectly grouped together (affecting
precision), or an incomplete group that is missing relevant source attributes (affecting
recall).

It is important to note that the user does not need to wait until the mediated schema is
the same as the gold standard to receive benefit from UFeed. Whenever a UFeed operation
is triggered, the answers to the query that triggered this operation are improved. Thus,
there is immediate improvement to the answers that the user is currently interested in.
When there is incorrect feedback, UFeed requires more operations (i.e., more queries) to
converge, but still reaches a high value of F-measure.

5.6.3 Distance to the Gold Standard

Another question to ask is how close the current mediated schema is to the gold standard
mediated schema. Since mediated schema generation can be viewed as a clustering prob-
lem (clustering source attributes into mediated attributes), the F-measure of clustering
output [71, 120] is used to measure the distance between any mediated schema and the
gold standard. This measure is computed as follows: Each mediated attribute represents a
cluster of source attributes. A contingency matrix is constructed for all the clusters in the
gold standard and the current mediated schema. Each cell (cG, cM) in the matrix counts
the number of source attributes that exist in the two clusters, cG in the gold standard and
cM in the current mediated schema. The distance between the current mediated schema
and the gold standard is computed as follows:

1. Precision, recall, and F-measure are computed for each cell (cG, cM), where Precision
(cG, cM) = |(cG,cM)|

|cM |
, Recall(cG, cM) = |(cG,cM)|

|cG|
, and F (cG, cM) = 2PR

P+R
.

2. The F-measure of each gold standard cluster is computed as the maximum value of
all the F-measures for this cluster: F (cG) = max

|cM |
F (cG, cM).

3. The F-measure of the clustering output is computed as the weighted average of the

F-measures of all clusters of the gold standard: F =

∑
|cG|

cG∈C
F (cG)∑
|cG|

cG∈C

.

4. Finally, the distance between the two mediated schemas is computed as Distance =
1− F .

Figure 5.12 shows the distance between the current mediated schema and the gold
standard after each query. The distance is shown for the three domains in the case where

120

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0 10 20 30 40 50

Dis
tan

ce

Queries

Internet Usage Movies World GDP

(a) Holistic

0
0.1
0.2
0.3
0.4
0.5
0.6

0 20 40 60 80

Dis
tan

ce

Queries

Internet Usage Movies World GDP

(b) Probabilistic

Figure 5.12: Distance to the gold standard.

only correct feedback is used. For the probabilistic mediated schema, the mediated schema
with the minimum distance to the gold standard is used. The figure shows that the
distance steadily decreases as queries are issued and the UFeed operations are applied,
which demonstrates the effectiveness and efficiency of UFeed.

5.7 Conclusion and Future Work

This chapter presented UFeed, a system that closes the loop of pay-as-you go relational data
integration on the web by providing mechanisms to improve the quality of the mediated
schema and mappings based on feedback received from the user. A key feature of UFeed
is that it refines both the mediated schema and the mappings from the data sources to
this schema. Another key feature is that the refinement relies solely on the queries issued
by the user and feedback on the answers to these queries, without the need to directly
manipulate the mediated schema or mappings. UFeed refinement is based on a set of well-
defined operations that are proved to be complete. An experimental evaluation with real
data shows that UFeed is effective at improving quality for holistic and probabilistic data
integration.

UFeed opens up several directions for future work. One extension to UFeed is to
handle more complex mappings (1-to-n, n-to-1, or n-to-m). Another extension is to handle
more complex queries, specifically joins, which would require UFeed to rewrite queries over
multiple tables. Another direction for future work is to discover integrity constraints in web
tables (e.g., prmiary keys and foreign keys) and use them in refining the mediated schema

121

and mappings. A longer term direction for futrue work is to explore the possibility of
transforming web relational tables to RDF before integrating them with native RDF data
sets. This will transform the problem of generating a mediated schema and mappings to one
of inferring the equivalence of properties (originally attributes) and instances (originally
tuples) and issuing queries that use entailments to find answers from the RDF graph.

122

Chapter 6

Conclusion and Future Work

6.1 Thesis Conclusion

Due to the recent advances in the field of information extraction, which have helped in
automating the construction and extraction of structured data, the research community
is presented with a significantly large number of heterogeneous structured data sets in
different formats on the web. To unlock the full potential of these data sets, there needs
to be a way of easily accessing them as one unified whole. This goal has been addressed
by numerous works in the area of data integration. An important class of work focuses
on automatic linking of of equivalent entities in heterogeneous RDF data sets. Another
important class of work focuses on automatically creating a mediated schema for web re-
lational tables through schema matching and mapping techniques. A shortcoming of these
automatic data integration techniques is that their output can be incomplete and contain
errors. Therefore, a subsequent step is needed in which the output of these techniques is
refined over time as it is used. This refinement step is based on users interacting with the
output of the data integration techniques and providing feedback. This feedback can then
be used as the basis for refining the data integration output. For systems targeted towards
the web, the users should be expected to be non-expert users.

This thesis focused on the interaction of non-expert users with the output of data
integration systems, and refining this output based on feedback gathered during this in-
teraction. The contributions of the thesis can be summarized as follows:

• Chapter 3 discussed incorporating user feedback over query answers on RDF data
to improve the quality of owl:sameAs links. The chapter presented the ALEX sys-

123

tem, analyzed the owl:sameAs links between pairs of RDF data sets from the linked
open data cloud, discussed my approach of modeling this problem as a reinforcement
learning problem, proved the soundness of this approach, discussed optimizations for
faster convergence, showed the ALEX user interface, and presented an evaluation of
ALEX, showing that it can efficiently learn how to explore the search space to find
new correct links.

• Chapter 4 presented the architecture of Sapphire, how Sapphire initializes its cached
data for a new endpoint through SPARQL queries, how the predictive user model
suggests query completions, and ways to change the query to find better answers, the
Sapphire user interface, and an evaluation of Sapphire based on a user study and a
qualitative and quantitative comparison.

• Chapter 5 discussed the UFeed operations that are triggered by user feedback over
query answers to directly refine the automatically created mediated schema and map-
pings, the proof of how the UFeed oprations could transform any automatically cre-
ated mediated schema to a gold standard mediated schema that can be created by a
data expert, the UFeed user interface, and an evaluation of UFeed.

To recap, the thesis incorporated non-expert users into different aspects of data integra-
tion. One aspect is facilitating the querying process over a large number of interconnected
RDF data sets (Sapphire). The thesis also showed that giving feedback over answers to
queries involving linked entities from different RDF data sets helps in improving the quality
of links between these data sets by removing incorrect links and discovering new correct
links (ALEX). Finally, in the relational model, the thesis showed that giving feedback over
answers to queries involving relational tables helps in refining the mediated schema and
mappings of these tables, and consequently improves the quality of query answers (UFeed).

6.2 Future Work

The contributions of this thesis present some directions for future work. An important
direction for future work in ALEX is confirming the effectiveness of ALEX through a user
study using real applications on the Linked Open Data cloud. Such a study with real users
who may generate incorrect feedback should enable validating the robustness of ALEX
beyond the experiments in this thesis.

As future work for UFeed, it is possible to support more complex schemas and queries.
UFeed currently supports selection queries on single-table schemas, and this covers a large

124

fraction of the use cases on the web. Nevertheless, it would be useful to extend UFeed to
support data sources and mediated schemas that consist of multiple tables. This requires
extending UFeed to support queries with joins, issuing these queries to the data sources
and learning from feedback on their answers.

Looking beyond this thesis at the broad area of data integration, I see that there is an
ever increasing need for integrating large numbers of data sets in different formats (e.g.,
RDF, relational tables, JSON, text, etc.). This thesis has focused on data integration on
the web, but large scale data integration is also seen in the enterprise world in the context
of data lakes, which are repositories of all kinds of data collected from the operation of the
enterprise stored in its raw format. The philosophy of data lakes is to collect as much data
as possible without burdening oneself with imposing structure on the data, and then to
impose structure later, when the data is used (referred to as schema on read).

Large scale data integration on the web and in data lakes raises several challenges
related to the topic of this thesis. One challenge is storing such a massive amount of
heterogeneous data. Another is preprocessing the data for indexing and automatic data
integration. For example, the automatic linking that is done prior to invoking ALEX and
the indexing done by Sapphire may need to be completely different at this larger scale. A
third challenge is identifying the data sets to query; we cannot rely on a federated RDF
query processor as in ALEX and Sapphire since the data is not all RDF. Also, since the
data is not RDF, composing queries needs to be revisited. Finally, user interaction, which
is the major focus of this thesis, may need to be revisited to accommodate data that is
much larger scale and much more heterogeneous. All of these challenges represent rich
areas for future work.

125

References

[1] Google Fusion Tables. http://research.google.com/tables.

[2] RDF 1.1 concepts and abstract syntax. http://www.w3.org/TR/2014/
REC-rdf11-concepts-20140225/.

[3] RDF schema 1.1, http://www.w3.org/TR/rdf-schema/.

[4] Schema-agnostic queries over large-schema databases. http://sites.google.com/
site/eswcsaq2015/.

[5] SPARQL 1.1 query language. http://www.w3.org/TR/sparql11-query/.

[6] Turtle - terse RDF triple language. https://www.w3.org/TeamSubmission/
turtle/.

[7] Andrejs Abele, John P. McCrae, Paul Buitelaar, Anja Jentzsch, and Richard Cyga-
niak. Linking open data cloud diagram. http://lod-cloud.net/. 2017.

[8] Ashraf Aboulnaga and Kareem El Gebaly. µbe: User guided source selection and
schema mediation for internet scale data integration. In Proceedings of the Interna-
tional Conference on Data Engineering (ICDE), 2007.

[9] Maribel Acosta, Amrapali Zaveri, Elena Simperl, Dimitris Kontokostas, Sören Auer,
and Jens Lehmann. Crowdsourcing linked data quality assessment. In Proceedings
of the International Semantic Web Conference (ISWC). 2013.

[10] Sanjay Agrawal, Surajit Chaudhuri, and Gautam Das. DBXplorer: Enabling keyword
search over relational databases. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, 2002.

126

http://research.google.com/tables
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/rdf-schema/
http://sites.google.com/site/eswcsaq2015/
http://sites.google.com/site/eswcsaq2015/
http://www.w3.org/TR/sparql11-query/
https://www.w3.org/TeamSubmission/turtle/
https://www.w3.org/TeamSubmission/turtle/
http://lod-cloud. net/

[11] Bogdan Alexe, Laura Chiticariu, Renée J. Miller, and Wang-Chiew Tan. Muse:
Mapping understanding and design by example. In Proceedings of the International
Conference on Data Engineering (ICDE), 2008.

[12] Bogdan Alexe, Balder ten Cate, Phokion G. Kolaitis, and Wang-Chiew Tan. Design-
ing and refining schema mappings via data examples. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, 2011.

[13] Arvind Arasu, Christopher Ré, and Dan Suciu. Large-scale deduplication with con-
straints using dedupalog. In Proceedings of the International Conference on Data
Engineering (ICDE), 2009.

[14] Marcelo Arenas, Gonzalo I. Diaz, and Egor V. Kostylev. Reverse engineering
SPARQL queries. In Proceedings of the International World Wide Web Conference
(WWW), 2016.

[15] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,
and Zachary Ives. DBpedia: A nucleus for a web of open data. In Proceedings of the
International Semantic Web Conference (ISWC). 2007.

[16] David Aumueller, Hong-Hai Do, Sabine Massmann, and Erhard Rahm. Schema and
ontology matching with COMA++. In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, 2005.

[17] Romain Beaumont, Brigitte Grau, and Anne-Laure Ligozat. SemGraphQA@
QALD5: LIMSI participation at QALD5@ CLEF. In CLEF Working Notes Papers,
2015.

[18] Khalid Belhajjame, NormanW. Paton, Suzanne M. Embury, Alvaro A. A. Fernandes,
and Cornelia Hedeler. Incrementally improving dataspaces based on user feedback.
Information Systems, 38(5), 2013.

[19] Zohra Bellahsene, Angela Bonifati, and Erhard Rahm. Schema matching and map-
ping. Springer, 2011.

[20] Sonia Bergamaschi, Elton Domnori, Francesco Guerra, Raquel Trillo Lado, and Yan-
nis Velegrakis. Keyword search over relational databases: a metadata approach. In
Proceedings of the ACM SIGMOD International Conference on Management of Data,
2011.

127

[21] Tim Berners-Lee. Linked data-design issues. http://www.w3.org/DesignIssues/
LinkedData.html, 2006.

[22] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific
American, 2001.

[23] Philip A. Bernstein, Jayant Madhavan, and Erhard Rahm. Generic schema matching,
ten years later. Proceedings of the VLDB Endowment (PVLDB), 4(11), 2011.

[24] Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe, Soumen Chakrabarti, and
Shashank Sudarshan. Keyword searching and browsing in databases using BANKS.
In Proceedings of the International Conference on Data Engineering (ICDE), 2002.

[25] Indrajit Bhattacharya and Lise Getoor. Collective entity resolution in relational data.
ACM Transactions on Knowledge Discovery from Data (TKDD), 2007.

[26] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data-the story so far.
International Journal on Semantic Web and Information Systems, 5(3), 2009.

[27] Christian Bizer, Tom Heath, Kingsley Idehen, and Tim Berners-Lee. Linked data on
the web. In Proceedings of the International World Wide Web Conference (WWW),
2008.

[28] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Free-
base: a collaboratively created graph database for structuring human knowledge.
In Proceedings of the ACM SIGMOD International Conference on Management of
Data, 2008.

[29] Angela Bonifati, Giansalvatore Mecca, Alessandro Pappalardo, Salvatore Raunich,
and Gianvito Summa. Schema mapping verification: The spicy way. In Proceedings
of the International Conference on Extending Database Technology (EDBT), 2008.

[30] Elena Cabrio, Julien Cojan, Alessio Palmero Aprosio, Bernardo Magnini, Alberto
Lavelli, and Fabien Gandon. QAKiS: an open domain QA system based on relational
patterns. In Proceedings of the International Semantic Web Conference (ISWC),
2012.

[31] Michael J. Cafarella, Alon Halevy, and Nodira Khoussainova. Data integration for
the relational web. Proceedings of the VLDB Endowment (PVLDB), 2(1), 2009.

128

http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html

[32] Michael J. Cafarella, Alon Halevy, Daisy Zhe Wang, Eugene Wu, and Yang Zhang.
WebTables: exploring the power of tables on the web. Proceedings of the VLDB
Endowment (PVLDB), 1(1), 2008.

[33] Xiaoyong Chai, Ba-Quy Vuong, AnHai Doan, and Jeffrey F. Naughton. Efficiently
incorporating user feedback into information extraction and integration programs.
In Proceedings of the ACM SIGMOD International Conference on Management of
Data, 2009.

[34] Gong Cheng, Danyun Xu, and Yuzhong Qu. Summarizing entity descriptions for
effective and efficient human-centered entity linking. In Proceedings of the Interna-
tional Conference on World Wide Web (WWW), 2015.

[35] Laura Chiticariu and Wang-Chiew Tan. Debugging schema mappings with routes.
In Proceedings of the International Conference on Very Large Databases (VLDB),
2006.

[36] Eric Chu, Akanksha Baid, Xiaoyong Chai, AnHai Doan, and Jeffrey Naughton. Com-
bining keyword search and forms for ad hoc querying of databases. In Proceedings of
the ACM SIGMOD International Conference on Management of Data, 2009.

[37] Philipp Cimiano, Christina Unger, and John McCrae. Ontology-based interpretation
of natural language. Synthesis Lectures on Human Language Technologies, 7(2), 2014.

[38] William Cohen, Pradeep Ravikumar, and Stephen Fienberg. A comparison of string
metrics for matching names and records. In KDD workshop on data cleaning and
object consolidation, volume 3, 2003.

[39] Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE Trans-
actions on Information Theory, 13(1), 1967.

[40] Isabel F. Cruz, Flavio Palandri Antonelli, and Cosmin Stroe. Agreementmaker:
efficient matching for large real-world schemas and ontologies. Proceedings of the
VLDB Endowment (PVLDB), 2(2), 2009.

[41] Wanyun Cui, Yanghua Xiao, Haixun Wang, Yangqiu Song, Seung-won Hwang, and
Wei Wang. KBQA: Learning question answering over QA corpora and knowledge
bases. Proceedings of the VLDB Endowment (PVLDB), 10(5), 2017.

[42] Anish Das Sarma, Xin Dong, and Alon Halevy. Bootstrapping pay-as-you-go data
integration systems. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, 2008.

129

[43] Anish Das Sarma, Xin Luna Dong, and Alon Halevy. Uncertainty in data integration.
Managing and Mining Uncertain Data, 2009.

[44] Renaud Delbru, Nickolai Toupikov, Michele Catasta, Giovanni Tummarello, and Ste-
fan Decker. Hierarchical link analysis for ranking web data. In Proceedings of the
European Semantic Web Conference (ESWC), 2010.

[45] Gianluca Demartini, Djellel Eddine Difallah, and Philippe Cudré-Mauroux. Zen-
Crowd: leveraging probabilistic reasoning and crowdsourcing techniques for large-
scale entity linking. In Proceedings of the International World Wide Web Conference
(WWW), 2012.

[46] Elena Demidova, Xuan Zhou, and Wolfgang Nejdl. A probabilistic scheme for
keyword-based incremental query construction. IEEE Transactions on Knowledge
and Data Engineering (TKDE), 24(3), 2012.

[47] Gonzalo Diaz, Marcelo Arenas, and Michael Benedikt. SPARQLByE: Querying RDF
data by example (demo). Proceedings of the VLDB Endowment (PVLDB), 9(13),
2016.

[48] Kyriaki Dimitriadou, Olga Papaemmanouil, and Yanlei Diao. Explore-by-example:
An automatic query steering framework for interactive data exploration. In Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data,
2014.

[49] Hong-Hai Do and Erhard Rahm. COMA: a system for flexible combination of schema
matching approaches. In Proceedings of the International Conference on Very Large
Databases (VLDB), 2002.

[50] AnHai Doan, Pedro Domingos, and Alon Y. Halevy. Reconciling schemas of disparate
data sources: A machine-learning approach. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, 2001.

[51] AnHai Doan and Robert McCann. Building data integration systems: A mass col-
laboration approach. In Proceedings of the Workshop on Information Integration on
the Web, 2003.

[52] Xin Dong and Alon Halevy. Indexing dataspaces. In Proceedings of the ACM SIG-
MOD International Conference on Management of Data, 2007.

130

[53] Xin Luna Dong, Alon Halevy, and Cong Yu. Data integration with uncertainty.
Proceedings of the International Conference on Very Large Data Bases (VLDB),
2007.

[54] Richard O. Duda, David G. Stork, and Peter E. Hart. Pattern classification and
scene analysis. Wiley, 2nd edition, 2000.

[55] Julian Eberius, Maik Thiele, Katrin Braunschweig, and Wolfgang Lehner. Top-k
entity augmentation using consistent set covering. In Proceedings of the International
Conference on Scientific and Statistical Database Management (SSDBM), 2015.

[56] Ahmed El-Roby and Ashraf Aboulnaga. ALEX: Automatic link exploration in linked
data. In Proceedings of the ACM SIGMOD International Conference on Management
of Data, 2015.

[57] Ahmed El-Roby and Ashraf Aboulnaga. ALEX: Automatic link exploration in linked
data (demo). In Proceedings of the IEEE International Conference on Data Engi-
neering (ICDE), 2016.

[58] Ahmed El-Roby and Ashraf Aboulnaga. UFeed: Refining web data integration based
on user feedback. In Proceedings of the ACM on Conference on Information and
Knowledge Management (CIKM), 2017.

[59] Ahmed El-Roby, Khaled Ammar, Ashraf Aboulnaga, and Jimmy Lin. Sapphire:
Querying RDF data made simple (demo). Proceedings of the VLDB Endowment
(PVLDB), 2016.

[60] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S Verykios. Duplicate
record detection: A survey. IEEE Transactions on Knowledge and Data Engineering
(TKDE), 2007.

[61] Hazem Elmeleegy, Jayant Madhavan, and Alon Halevy. Harvesting relational tables
from lists on the web. Proceedings of the VLDB Endowment (PVLDB), 2(1), 2009.

[62] Hazem Elmeleegy, Mourad Ouzzani, and Ahmed K. Elmagarmid. Usage-based
schema matching. In Proceedings of the International Conference on Data Engi-
neering (ICDE), 2008.

[63] Oren Etzioni, Michael Cafarella, Doug Downey, Stanley Kok, Ana-Maria Popescu,
Tal Shaked, Stephen Soderland, Daniel S. Weld, and Alexander Yates. Web-scale
information extraction in KnowItAll (preliminary results). In Proceedings of the
International World Wide Web Conference (WWW), 2004.

131

[64] Anthony Fader, Luke Zettlemoyer, and Oren Etzioni. Open question answering over
curated and extracted knowledge bases. In Proceedings of the ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, 2014.

[65] Alfio Ferrara, Davide Lorusso, and Stefano Montanelli. Automatic identity recogni-
tion in the semantic web. In Proceedings of the International Workshop on Identity
and Reference on the Semantic Web (IRSW), 2008.

[66] Michael Franklin, Alon Halevy, and David Maier. From databases to dataspaces: a
new abstraction for information management. ACM SIGMOD Record, 2005.

[67] George W. Furnas, Thomas K. Landauer, Louis M. Gomez, and Susan T. Dumais.
The vocabulary problem in human-system communication. Communications of the
ACM, 30(11), 1987.

[68] Chaitanya Gokhale, Sanjib Das, AnHai Doan, Jeffrey F. Naughton, Narasimhan
Rampalli, Jude Shavlik, and Xiaojin Zhu. Corleone: Hands-off crowdsourcing for
entity matching. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, 2014.

[69] Andrew V. Goldberg and Renato Fonseca F. Werneck. Computing point-to-point
shortest paths from external memory. In The Algorithm Engineering and Experiments
(ALENEX) and Analytic Algorithmics and Combinatorics (ANALCO), 2005.

[70] Jorge Gracia, Mathieu d’Aquin, and Eduardo Mena. Large scale integration of senses
for the semantic web. In Proceedings of the International World Wide Web Conference
(WWW), 2009.

[71] Maria Halkidi, Yannis Batistakis, and Michalis Vazirgiannis. Cluster validity meth-
ods: part I. ACM Sigmod Record, 31:40–45, 2002.

[72] Bin He and Kevin Chen-Chuan Chang. Statistical schema matching across web
query interfaces. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, 2003.

[73] Bin He, Tao Tao, and Kevin Chen-Chuan Chang. Organizing structured web sources
by query schemas: a clustering approach. In Proceedings of the ACM International
Conference on Information and Knowledge Management (CIKM), 2004.

[74] Hao He, Haixun Wang, Jun Yang, and Philip S. Yu. Blinks: ranked keyword searches
on graphs. In Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, 2007.

132

[75] Vagelis Hristidis and Yannis Papakonstantinou. Discover: Keyword search in re-
lational databases. In Proceedings of the International Conference on Very Large
Databases (VLDB), 2002.

[76] Wei Hu, Jianfeng Chen, and Yuzhong Qu. A self-training approach for resolving
object coreference on the semantic web. In Proceedings of the International World
Wide Web Conference (WWW), 2011.

[77] Frank K. Hwang, Dana S. Richards, and Pawel Winter. The Steiner tree problem,
volume 53. Elsevier, 1992.

[78] Robert Isele and Christian Bizer. Active learning of expressive linkage rules using
genetic programming. Web Semantics: Science, Services and Agents on the World
Wide Web, 23, 2013.

[79] H. V. Jagadish, Adriane Chapman, Aaron Elkiss, Magesh Jayapandian, Yunyao Li,
Arnab Nandi, and Cong Yu. Making database systems usable. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, 2007.

[80] Yves R. Jean-Mary, E. Patrick Shironoshita, and Mansur R. Kabuka. Ontology
matching with semantic verification. Web Semantics: Science, Services and Agents
on the World Wide Web, 7(3), 2009.

[81] Shawn R. Jeffery, Michael J. Franklin, and Alon Y. Halevy. Pay-as-you-go user
feedback for dataspace systems. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, 2008.

[82] Ernesto Jiménez-Ruiz and Bernardo Cuenca Grau. LogMap: Logic-based and scal-
able ontology matching. In Proceedings of the International Semantic Web Conference
(ISWC), 2011.

[83] Jaewoo Kang and Jeffrey F. Naughton. On schema matching with opaque column
names and data values. In Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data, 2003.

[84] Richard M. Karp. Reducibility among combinatorial problems. In Complexity of
computer computations. 1972.

[85] Esther Kaufmann and Abraham Bernstein. How useful are natural language inter-
faces to the semantic web for casual end-users? In Proceedings of the International
Semantic Web Conference (ISWC), 2007.

133

[86] Esther Kaufmann, Abraham Bernstein, and Renato Zumstein. Querix: A natural
language interface to query ontologies based on clarification dialogs. In Proceedings
of the International Semantic Web Conference (ISWC), 2006.

[87] Christoph Kiefer, Abraham Bernstein, and Markus Stocker. The fundamentals of
iSPARQL: A virtual triple approach for similarity-based semantic web tasks. In
Proceedings of the International Semantic Web Conference (ISWC), 2007.

[88] Krys J. Kochut and Maciej Janik. SPARQLeR: Extended SPARQL for semantic
association discovery. In Proceedings of the European Semantic Web Conference
(ESWC), 2007.

[89] Jens Lehmann and Lorenz Bühmann. AutoSPARQL: Let users query your knowledge
base. In Proceedings of the European Semantic Web Conference (ESWC), 2011.

[90] Juanzi Li, Jie Tang, Yi Li, and Qiong Luo. RiMOM: A dynamic multistrategy ontol-
ogy alignment framework. IEEE Transactions on Knowledge and Data Engineering,
21(8), 2009.

[91] Vanessa Lopez, Miriam Fernández, Enrico Motta, and Nico Stieler. PowerAqua:
supporting users in querying and exploring the semantic web. Semantic Web, 3(3),
2011.

[92] Jayant Madhavan, Philip A. Bernstein, AnHai Doan, and Alon Halevy. Corpus-
based schema matching. In Proceedings of the International Conference on Data
Engineering (ICDE), 2005.

[93] Jayant Madhavan, Philip A. Bernstein, and Erhard Rahm. Generic schema matching
with cupid. In Proceedings of the International Conference on Very Large Databases
(VLDB), 2001.

[94] Matteo Magnani, Nikos Rizopoulos, Peter Mc. Brien, and Danilo Montesi. Schema
integration based on uncertain semantic mappings. In Conceptual Modeling–ER.
2005.

[95] Hatem A. Mahmoud and Ashraf Aboulnaga. Schema clustering and retrieval for
multi-domain pay-as-you-go data integration systems. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, 2010.

[96] EssamMansour, Amin Allam, Spiros Skiadopoulos, and Panos Kalnis. ERA: Efficient
serial and parallel suffix tree construction for very long strings. Proceedings of the
VLDB Endowment (PVLDB), 5(1), 2011.

134

[97] Essam Mansour, Ahmed El-Roby, Panos Kalnis, Aron Ahmadia, and Ashraf Aboul-
naga. RACE: A scalable and elastic parallel system for discovering repeats in very
long sequences. Proceedings of the VLDB Endowment (PVLDB), 2013.

[98] Robert McCann, Warren Shen, and AnHai Doan. Matching schemas in online com-
munities: A web 2.0 approach. In Proceedings of the International Conference on
Data Engineering (ICDE), 2008.

[99] Renée J. Miller, Yannis E. Ioannidis, and Raghu Ramakrishnan. The use of in-
formation capacity in schema integration and translation. In Proceedings of the
International Conference on Very Large Databases (VLDB), 1993.

[100] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Ma-
chine Learning. The MIT Press, 2012.

[101] Davide Mottin, Matteo Lissandrini, Yannis Velegrakis, and Themis Palpanas. Ex-
emplar queries: Give me an example of what you need. Proceedings of the VLDB
Endowment (PVLDB), 7(5), 2014.

[102] Arnab Nandi and Philip A. Bernstein. HAMSTER: using search clicklogs for schema
and taxonomy matching. Proceedings of the VLDB Endowment (PVLDB), 2009.

[103] Axel-Cyrille Ngonga Ngomo and Sören Auer. Limes-a time-efficient approach for
large-scale link discovery on the web of data. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), 2011.

[104] Khai Nguyen, Ryutaro Ichise, and Bac Le. Interlinking linked data sources using a
domain-independent system. In The Joint International Semantic Technology Con-
ference, 2012.

[105] Jan Noessner, Mathias Niepert, Christian Meilicke, and Heiner Stuckenschmidt.
Leveraging terminological structure for object reconciliation. In The Semantic Web:
Research and Applications. 2010.

[106] Lucian Popa, Yannis Velegrakis, Mauricio A. Hernández, Renée J. Miller, and Ronald
Fagin. Translating web data. In Proceedings of the International Conference on Very
Large Databases (VLDB), 2002.

[107] Rachel Pottinger and Philip A. Bernstein. Creating a mediated schema based on
initial correspondences. IEEE Data Engineering Bulletin, 2002.

135

[108] Li Qian, Michael J. Cafarella, and H. V. Jagadish. Sample-driven schema mapping.
In Proceedings of the ACM SIGMOD International Conference on Management of
Data, 2012.

[109] Bastian Quilitz and Ulf Leser. Querying distributed RDF data sources with SPARQL.
In Proceedings of the European Semantic Web Conference (ESWC), 2008.

[110] Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic schema
matching. VLDB Journal, 10(4), 2001.

[111] Stefan Ruseti, Alexandru Mirea, Traian Rebedea, and Stefan Trausan-Matu.
Qanswer-enhanced entity matching for question answering over linked data. In CLEF
Working Notes Papers, 2015.

[112] Fatiha Saıs, Nathalie Pernelle, and Marie-Christine Rousset. L2R: a logical method
for reference reconciliation. In Proceedings of the Association for the Advancement
of Artificial Intelligence Conference (AAAI), 2007.

[113] Fatiha Saıs, Nathalie Pernelle, and Marie-Christine Rousset. Combining a logical
and a numerical method for data reconciliation. Journal on Data Semantics, 12(12),
2009.

[114] Khalid Saleem, Zohra Bellahsene, and Ela Hunt. Porsche: Performance oriented
schema mediation. Information Systems, 33(7), 2008.

[115] Mayssam Sayyadian, Hieu LeKhac, AnHai Doan, and Luis Gravano. Efficient key-
word search across heterogeneous relational databases. In Proceedings of the Inter-
national Conference on Data Engineering (ICDE), 2007.

[116] Andreas Schwarte, Peter Haase, Katja Hose, Ralf Schenkel, and Michael Schmidt.
FedX: Optimization techniques for federated query processing on linked data. In
Proceedings of the International Semantic Web Conference (ISWC). 2011.

[117] Len Seligman, Peter Mork, Alon Halevy, Ken Smith, Michael J. Carey, Kuang Chen,
Chris Wolf, Jayant Madhavan, Akshay Kannan, and Doug Burdick. OpenII: an
open source information integration toolkit. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, 2010.

[118] Satinder P. Singh and Richard S. Sutton. Reinforcement learning with replacing
eligibility traces. Machine Learning, 22(1-3), 1996.

136

[119] Dezhao Song and Jeff Heflin. Domain-independent entity coreference for linking
ontology instances. Journal of Data and Information Quality (JDIQ), 4(2), 2013.

[120] Michael Steinbach, George Karypis, and Vipin Kumar. A comparison of document
clustering techniques. In Proceedings of the KDD Workshop on Text Mining, 2000.

[121] Weifeng Su, Jiying Wang, and Frederick Lochovsky. Holistic schema matching for
web query interfaces. In Proceedings of the International Conference on Extending
Database Technology (EDBT), 2006.

[122] Fabian M. Suchanek, Serge Abiteboul, and Pierre Senellart. PARIS: probabilistic
alignment of relations, instances, and schema. Proceedings of the VLDB Endowment
(PVLDB), 5(3), 2011.

[123] Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning.
MIT Press, 1998.

[124] Partha Pratim Talukdar, Zachary G. Ives, and Fernando Pereira. Automatically
incorporating new sources in keyword search-based data integration. In Proceedings
of the ACM SIGMOD International Conference on Management of Data, 2010.

[125] Partha Pratim Talukdar, Marie Jacob, Muhammad Salman Mehmood, Koby Cram-
mer, Zachary G. Ives, Fernando Pereira, and Sudipto Guha. Learning to create data-
integrating queries. Proceedings of the VLDB Endowment (PVLDB), 1(1), 2008.

[126] Giovanni Tummarello, Richard Cyganiak, Michele Catasta, Szymon Danielczyk, Re-
naud Delbru, and Stefan Decker. Sig.ma: Live views on the web of data. Proceedings
of the International World Wide Web Conference (WWW), 2010.

[127] Giovanni Tummarello, Renaud Delbru, and Eyal Oren. Sindice.com: Weaving the
open linked data. In Proceedings of the International Semantic Web Conference and
2nd Asian Semantic Web Conference (ISWC/ASWC), 2007.

[128] E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3), 1995.

[129] Christina Unger, Lorenz Bühmann, Jens Lehmann, Axel-Cyrille Ngonga Ngomo,
Daniel Gerber, and Philipp Cimiano. Template-based question answering over RDF
data. In Proceedings of the International World Wide Web Conference (WWW),
2012.

137

[130] Christina Unger, Philipp Cimiano, Vanessa Lopez, and Enrico Motta. Question
answering over linked data (QALD-1). In Workshop on Question Answering Over
Linked Data (QALD-1), 2011.

[131] Christina Unger, Corina Forascu, Vanessa Lopez, Axel-Cyrille Ngonga Ngomo, Elena
Cabrio, Philipp Cimiano, and Sebastian Walter. Question answering over linked data
(QALD-4). In CLEF Working Notes Papers, 2014.

[132] Christina Unger, Corina Forascu, Vanessa Lopez, Axel-Cyrille Ngonga Ngomo, Elena
Cabrio, Philipp Cimiano, and Sebastian Walter. Question answering over linked data
(QALD-5). In CLEF Working Notes Papers, 2015.

[133] Christina Unger, John McCrae, Sebastian Walter, Sara Winter, and Philipp Cimiano.
A lemon lexicon for DBpedia. In NLP and DBpedia Workshop, 2013.

[134] Julius Volz, Christian Bizer, Martin Gaedke, and Georgi Kobilarov. Discovering and
maintaining links on the web of data. In Proceedings of the International Semantic
Web Conference (ISWC). 2009.

[135] Julius Volz, Christian Bizer, Martin Gaedke, and Georgi Kobilarov. Silk-A link
discovery framework for the web of data. In Proceedings of the Workshop on Linked
Data on the Web (LDOW), 2009.

[136] Haofen Wang, Qiaoling Liu, Thomas Penin, Linyun Fu, Lei Zhang, Thanh Tran,
Yong Yu, and Yue Pan. Semplore: A scalable IR approach to search the web of data.
Web Semantics: Science, Services and Agents on the World Wide Web, 7(3), 2009.

[137] Jiying Wang, Ji-Rong Wen, Fred Lochovsky, and Wei-Ying Ma. Instance-based
schema matching for web databases by domain-specific query probing. In Proceedings
of the International Conference on Very Large Databases (VLDB), 2004.

[138] Zhichun Wang, Xiao Zhang, Lei Hou, Yue Zhao, Juanzi Li, Yu Qi, and Jie Tang.
RiMOM results for OAEI 2010. In Proceedings of the International Conference on
Ontology Matching, 2010.

[139] Peter Weiner. Linear pattern matching algorithms. In Annual Symposium on Switch-
ing and Automata Theory, 1973.

[140] Steven Euijong Whang, Peter Lofgren, and Hector Garcia-Molina. Question selection
for crowd entity resolution. Proceedings of the VLDB Endowment (PVLDB), 6(6),
2013.

138

[141] Kun Xu, Sheng Zhang, Yansong Feng, and Dongyan Zhao. Answering natural lan-
guage questions via phrasal semantic parsing. In CLEF Working Notes Papers, 2014.

[142] Mohamed Yahya, Klaus Berberich, Shady Elbassuoni, and Gerhard Weikum. Robust
question answering over the web of linked data. In Proceedings of the ACM Interna-
tional Conference on Information and Knowledge Management (CIKM), 2013.

[143] Mohamed Yakout, Kris Ganjam, Kaushik Chakrabarti, and Surajit Chaudhuri. In-
fogather: entity augmentation and attribute discovery by holistic matching with web
tables. In Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data, 2012.

[144] Zhepeng Yan, Nan Zheng, Zachary G. Ives, Partha Pratim Talukdar, and Cong
Yu. Actively soliciting feedback for query answers in keyword search-based data
integration. Proceedings of the VLDB Endowment (PVLDB), 6(3), 2013.

[145] Shengqi Yang, Yinghui Wu, Huan Sun, and Xifeng Yan. Schemaless and structureless
graph querying. Proceedings of the VLDB Endowment (PVLDB), 7(7), 2014.

[146] Cong Yu and Lucian Popa. Semantic adaptation of schema mappings when schemas
evolve. In VLDBProceedings of the International Conference on Very Large Databases
(VLDB), 2005.

[147] Jeffrey Xu Yu, Lu Qin, and Lijun Chang. Keyword search in relational databases:
A survey. IEEE Data Engineering Bulletin, 33(1), 2010.

[148] Gideon Zenz, Xuan Zhou, Enrico Minack, Wolf Siberski, and Wolfgang Nejdl. From
keywords to semantic queries-Incremental query construction on the semantic web.
Web Semantics: Science, Services and Agents on the World Wide Web, 7(3), 2009.

[149] Chen Jason Zhang, Lei Chen, H.V. Jagadish, and Chen Caleb Cao. Reducing uncer-
tainty of schema matching via crowdsourcing. Proceedings of the VLDB Endowment
(PVLDB), 6(9), 2013.

[150] Weiguo Zheng, Lei Zou, Wei Peng, Xifeng Yan, Shaoxu Song, and Dongyan Zhao.
Semantic SPARQL similarity search over RDF knowledge graphs. Proceedings of the
VLDB Endowment (PVLDB), 9(11), 2016.

[151] Qi Zhou, Chong Wang, Miao Xiong, Haofen Wang, and Yong Yu. Spark: Adapting
keyword query to semantic search. In Proceedings of the International Semantic Web
Conference (ISWC), 2007.

139

[152] Erkang Zhu, Ken Q. Pu, Fatemeh Nargesian, and Renée J Miller. Interactive naviga-
tion of open data linkages. Proceedings of the VLDB Endowment (PVLDB), 10(12),
2017.

140

APPENDICES

141

Appendix A

Similarity Function used in ALEX

In ALEX, a generic similarity function that depends on the data types of the compared
values is used. The data types supported by the similarity function are strings, dates,
and numbers (integers, floats, doubles, etc.). If the data types encountered are not sup-
ported, they are treated as strings. The following sections show how the similarity score
is calculated depending on the data type.

A.1 Similarity Scores for Strings

To compare strings, the Jaro-Winkler similarity score [38] is used. This similarity function
is based on the number of transpositions between two input strings while favoring strings
matching from the beginning.

First, the Jaro similarity is explained, then I show how matches from the beginning
of the matched strings are favored in Jaro-Winkler similarity. The Jaro similarity simjaro

between two input strings s1 and s2 is defined as:

simjaro(s1, s2) =

{
0 if m = 0
1
3

(
m
s1
+ m

s2
+ m−t

m

)
otherwise

(A.1)

where m is the number of character matches and t is half the number of transpositions.
The number of matches is counted only if the distance between the matching characters
is within

⌊
max(|s1|,|s2|)

2

⌋
. The transpositions are the matches of characters but in different

positions between the two strings.

142

The Jaro-Winkler similarity differs in that it adds a prefix scale p that favors strings
matching from the beginning until a specified prefix length l. Formally, the Jaro-Winkler
distance is defined by:

simjaro−winkler(s1, s2) = simjaro(s1, s2) + lp(1− simjaro(s1, s2)) (A.2)
Where l is the length of common prefix between s1 and s2 up to 4 characters, and p is the
prefix scale. In this thesis, the value p = 0.1 is used.

A.2 Similarity Score for Dates

The date similarity score is based on the number of days between the two compared dates,
which is used as an absolute difference value that is normalized later to obtain a value
between 0 and 1. The normalization step is based on the minimum and maximum number
of days encountered as a difference between two dates in the step of generating the search
space of feature sets. Formally, the similarity function is defined as:

Similarity(d1, d2) = 1− DiffDays(d1, d2)−MINdays

MAXdays −MINdays

(A.3)

Where DiffDays is the function that returns the number of days between two input
dates, MINdays is the minimum number of days encountered as a difference between two
dates in the feature sets generation step, and MAXdays is the maximum number of days
encountered. Note that these values of MINdays and MAXdays are computed per feature.
For example, the MINdays and MAXdays values for a feature (date of birth, birth date)
are different than the minimum and maximum values for another feature (date published,
established on).

A.3 Similarity Score for Numbers

In ALEX, numbers are compared in a similar fashion to the comparison of dates. The
similarity function is defined as:

Similarity(n1, n2) = 1− ABS(n1, n2)−MINN

MAXN −MINN

(A.4)

Where ABS is a function that returns the absolute difference between the two numbers,
MINN is the minimum absolute difference between any two numbers, and MAXN is the
maximum absolute difference. Again, these minimum and maximum values are per feature.

143

Appendix B

Distinctive Features Found in the
Analysis of Links

This appendix lists the distinctive features identified in the analysis of owl:sameAs links
in Section 3.4. The features are listed for every pair of data sets used in the analysis.

1. DBpedia - Drugbank:

(a) http://xmlns.com/foaf/0.1/depiction –
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/synonym

(b) http://www.w3.org/2000/01/rdf-schema#label –
http://www4.wiwiss.fu-berlin.de/diseasome/resource/diseasome/name

(c) http://dbpedia.org/property/drugbank –
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/primaryAccessionNo

(d) http://dbpedia.org/ontology/drugbank –
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/limsDrugId

(e) http://dbpedia.org/property/drugbank –
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/limsDrugId

(f) http://dbpedia.org/property/inchikey –
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/inchiKey

(g) http://dbpedia.org/ontology/drugbank –
http://xmlns.com/foaf/0.1/page

144

http://xmlns.com/foaf/0.1/depiction
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/synonym
http://www.w3.org/2000/01/rdf-schema#label
http://www4.wiwiss.fu-berlin.de/diseasome/resource/diseasome/name
http://dbpedia.org/property/drugbank
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/primaryAccessionNo
http://dbpedia.org/ontology/drugbank
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/limsDrugId
http://dbpedia.org/property/drugbank
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/limsDrugId
http://dbpedia.org/property/inchikey
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/inchiKey
http://dbpedia.org/ontology/drugbank
http://xmlns.com/foaf/0.1/page

(h) http://dbpedia.org/ontology/drugbank –
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/primaryAccessionNo

(i) http://xmlns.com/foaf/0.1/depiction –
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/genericName

(j) http://dbpedia.org/ontology/thumbnail –
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/synonym

(k) http://dbpedia.org/property/stdinchikey –
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/inchiKey

(l) http://dbpedia.org/ontology/atcSuffix –
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/atcCode

(m) http://dbpedia.org/property/drugbank –
http://xmlns.com/foaf/0.1/page

(n) http://dbpedia.org/property/atcSuffix –
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/atcCode

(o) http://dbpedia.org/property/name –
http://www4.wiwiss.fu-berlin.de/diseasome/resource/diseasome/name

(p) http://xmlns.com/foaf/0.1/depiction –
http://xmlns.com/foaf/0.1/page

(q) http://dbpedia.org/ontology/thumbnail –
http://xmlns.com/foaf/0.1/page

(r) http://xmlns.com/foaf/0.1/name –
http://www.w3.org/2000/01/rdf-schema#label

(s) http://xmlns.com/foaf/0.1/name –
http://www4.wiwiss.fu-berlin.de/diseasome/resource/diseasome/name

(t) http://www.w3.org/2000/01/rdf-schema#label –
http://xmlns.com/foaf/0.1/page

(u) http://dbpedia.org/ontology/atcPrefix –
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/atcCode

(v) http://www.w3.org/2000/01/rdf-schema#label –
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/genericName

(w) http://dbpedia.org/property/atcPrefix –
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/atcCode

145

http://dbpedia.org/ontology/drugbank
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/primaryAccessionNo
http://xmlns.com/foaf/0.1/depiction
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/genericName
http://dbpedia.org/ontology/thumbnail
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/synonym
http://dbpedia.org/property/stdinchikey
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/inchiKey
http://dbpedia.org/ontology/atcSuffix
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/atcCode
http://dbpedia.org/property/drugbank
http://xmlns.com/foaf/0.1/page
http://dbpedia.org/property/atcSuffix
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/atcCode
http://dbpedia.org/property/name
http://www4.wiwiss.fu-berlin.de/diseasome/resource/diseasome/name
http://xmlns.com/foaf/0.1/depiction
http://xmlns.com/foaf/0.1/page
http://dbpedia.org/ontology/thumbnail
http://xmlns.com/foaf/0.1/page
http://xmlns.com/foaf/0.1/name
http://www.w3.org/2000/01/rdf-schema#label
http://xmlns.com/foaf/0.1/name
http://www4.wiwiss.fu-berlin.de/diseasome/resource/diseasome/name
http://www.w3.org/2000/01/rdf-schema#label
http://xmlns.com/foaf/0.1/page
http://dbpedia.org/ontology/atcPrefix
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/atcCode
http://www.w3.org/2000/01/rdf-schema#label
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/genericName
http://dbpedia.org/property/atcPrefix
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/atcCode

(x) http://dbpedia.org/ontology/thumbnail –
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/genericName

(y) http://dbpedia.org/ontology/iupacName –
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/chemicalIupacName

(z) http://www.w3.org/2000/01/rdf-schema#label –
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/synonym

2. DBpedia - Lexvo:

(a) http://dbpedia.org/property/iso –
http://lexvo.org/ontology#iso639P3PCode

(b) http://xmlns.com/foaf/0.1/name –
http://lexvo.org/ontology#label

(c) http://www.w3.org/2000/01/rdf-schema#label –
http://www.w3.org/2008/05/skos#prefLabel

(d) http://www.w3.org/2000/01/rdf-schema#label –
http://lexvo.org/ontology#label

(e) http://dbpedia.org/property/glottorefname –
http://lexvo.org/ontology#label

(f) http://dbpedia.org/property/glottorefname –
http://www.w3.org/2008/05/skos#prefLabel

(g) http://www.w3.org/2000/01/rdf-schema#label –
http://www.w3.org/2000/01/rdf-schema#label

(h) http://xmlns.com/foaf/0.1/name –
http://www.w3.org/2008/05/skos#prefLabel

(i) http://dbpedia.org/property/glotto –
http://lexvo.org/ontology#nearlySameAs

(j) http://dbpedia.org/property/name –
http://www.w3.org/2008/05/skos#prefLabel

(k) http://xmlns.com/foaf/0.1/name –
http://www.w3.org/2000/01/rdf-schema#label

(l) http://dbpedia.org/property/name –
http://lexvo.org/ontology#label

146

http://dbpedia.org/ontology/thumbnail
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/genericName
http://dbpedia.org/ontology/iupacName
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/chemicalIupacName
http://www.w3.org/2000/01/rdf-schema#label
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/synonym
http://dbpedia.org/property/iso
http://lexvo.org/ontology#iso639P3PCode
http://xmlns.com/foaf/0.1/name
http://lexvo.org/ontology#label
http://www.w3.org/2000/01/rdf-schema#label
http://www.w3.org/2008/05/skos#prefLabel
http://www.w3.org/2000/01/rdf-schema#label
http://lexvo.org/ontology#label
http://dbpedia.org/property/glottorefname
http://lexvo.org/ontology#label
http://dbpedia.org/property/glottorefname
http://www.w3.org/2008/05/skos#prefLabel
http://www.w3.org/2000/01/rdf-schema#label
http://www.w3.org/2000/01/rdf-schema#label
http://xmlns.com/foaf/0.1/name
http://www.w3.org/2008/05/skos#prefLabel
http://dbpedia.org/property/glotto
http://lexvo.org/ontology#nearlySameAs
http://dbpedia.org/property/name
http://www.w3.org/2008/05/skos#prefLabel
http://xmlns.com/foaf/0.1/name
http://www.w3.org/2000/01/rdf-schema#label
http://dbpedia.org/property/name
http://lexvo.org/ontology#label

(m) http://dbpedia.org/ontology/iso6393Code –
http://lexvo.org/ontology#iso639P3PCode

(n) http://dbpedia.org/property/glottorefname –
http://www.w3.org/2000/01/rdf-schema#label

(o) http://dbpedia.org/property/ethnicity –
http://www.w3.org/2000/01/rdf-schema#label

(p) http://dbpedia.org/property/name –
http://www.w3.org/2000/01/rdf-schema#label

3. DBpedia - OpenCyc:

(a) http://www.w3.org/2000/01/rdf-schema#label –
http://sw.cyc.com/CycAnnotations_v1#label

(b) http://www.w3.org/2000/01/rdf-schema#label –
http://sw.opencyc.org/concept/Mx4rwLSVCpwpEbGdrcN5Y29ycA

(c) http://dbpedia.org/property/name –
http://sw.cyc.com/CycAnnotations_v1#label

(d) http://xmlns.com/foaf/0.1/name –
http://sw.opencyc.org/concept/Mx4rwLSVCpwpEbGdrcN5Y29ycA

(e) http://xmlns.com/foaf/0.1/name –
http://www.w3.org/2000/01/rdf-schema#label

(f) http://xmlns.com/foaf/0.1/name –
http://sw.opencyc.org/concept/wikipediaArticleURL

(g) http://xmlns.com/foaf/0.1/name –
http://sw.cyc.com/CycAnnotations_v1#label

(h) http://www.w3.org/2000/01/rdf-schema#label –
http://www.w3.org/2000/01/rdf-schema#label

(i) http://dbpedia.org/property/name –
http://sw.opencyc.org/concept/Mx4rwLSVCpwpEbGdrcN5Y29ycA

(j) http://dbpedia.org/property/name –
http://www.w3.org/2000/01/rdf-schema#label

(k) http://www.w3.org/2000/01/rdf-schema#label –
http://sw.opencyc.org/concept/wikipediaArticleURL

147

http://dbpedia.org/ontology/iso6393Code
http://lexvo.org/ontology#iso639P3PCode
http://dbpedia.org/property/glottorefname
http://www.w3.org/2000/01/rdf-schema#label
http://dbpedia.org/property/ethnicity
http://www.w3.org/2000/01/rdf-schema#label
http://dbpedia.org/property/name
http://www.w3.org/2000/01/rdf-schema#label
http://www.w3.org/2000/01/rdf-schema#label
http://sw.cyc.com/CycAnnotations_v1#label
http://www.w3.org/2000/01/rdf-schema#label
http://sw.opencyc.org/concept/Mx4rwLSVCpwpEbGdrcN5Y29ycA
http://dbpedia.org/property/name
http://sw.cyc.com/CycAnnotations_v1#label
http://xmlns.com/foaf/0.1/name
http://sw.opencyc.org/concept/Mx4rwLSVCpwpEbGdrcN5Y29ycA
http://xmlns.com/foaf/0.1/name
http://www.w3.org/2000/01/rdf-schema#label
http://xmlns.com/foaf/0.1/name
http://sw.opencyc.org/concept/wikipediaArticleURL
http://xmlns.com/foaf/0.1/name
http://sw.cyc.com/CycAnnotations_v1#label
http://www.w3.org/2000/01/rdf-schema#label
http://www.w3.org/2000/01/rdf-schema#label
http://dbpedia.org/property/name
http://sw.opencyc.org/concept/Mx4rwLSVCpwpEbGdrcN5Y29ycA
http://dbpedia.org/property/name
http://www.w3.org/2000/01/rdf-schema#label
http://www.w3.org/2000/01/rdf-schema#label
http://sw.opencyc.org/concept/wikipediaArticleURL

(l) http://dbpedia.org/property/name –
http://sw.opencyc.org/concept/wikipediaArticleURL

4. DBpedia - UK Learning:

(a) http://dbpedia.org/property/name –
http://xmlns.com/foaf/0.1/isPrimaryTopicOf

(b) http://www.w3.org/2000/01/rdf-schema#label –
http://www.w3.org/2000/01/rdf-schema#label

(c) http://xmlns.com/foaf/0.1/name –
http://www.w3.org/2000/01/rdf-schema#label

(d) http://www.w3.org/2000/01/rdf-schema#label –
http://xmlns.com/foaf/0.1/isPrimaryTopicOf

(e) http://xmlns.com/foaf/0.1/name –
http://xmlns.com/foaf/0.1/isPrimaryTopicOf

(f) http://dbpedia.org/property/name –
http://www.w3.org/2000/01/rdf-schema#label

5. Lexvo - Geonames:

(a) http://www.w3.org/2000/01/rdf-schema#label –
http://www.geonames.org/ontology#wikipediaArticle

(b) http://www.w3.org/2000/01/rdf-schema#label –
http://www.geonames.org/ontology#inCountry

(c) http://lexvo.org/ontology#label –
http://www.geonames.org/ontology#locationMap

(d) http://lexvo.org/ontology#label –
http://www.geonames.org/ontology#name

(e) http://www.w3.org/2000/01/rdf-schema#label –
http://www.geonames.org/ontology#alternateName

(f) http://lexvo.org/ontology#label –
http://www.geonames.org/ontology#wikipediaArticle

(g) http://lexvo.org/ontology#label –
http://www.geonames.org/ontology#alternateName

(h) http://lexvo.org/ontology#label –
http://www.geonames.org/ontology#inCountry

148

http://dbpedia.org/property/name
http://sw.opencyc.org/concept/wikipediaArticleURL
http://dbpedia.org/property/name
http://xmlns.com/foaf/0.1/isPrimaryTopicOf
http://www.w3.org/2000/01/rdf-schema#label
http://www.w3.org/2000/01/rdf-schema#label
http://xmlns.com/foaf/0.1/name
http://www.w3.org/2000/01/rdf-schema#label
http://www.w3.org/2000/01/rdf-schema#label
http://xmlns.com/foaf/0.1/isPrimaryTopicOf
http://xmlns.com/foaf/0.1/name
http://xmlns.com/foaf/0.1/isPrimaryTopicOf
http://dbpedia.org/property/name
http://www.w3.org/2000/01/rdf-schema#label
http://www.w3.org/2000/01/rdf-schema#label
http://www.geonames.org/ontology#wikipediaArticle
http://www.w3.org/2000/01/rdf-schema#label
http://www.geonames.org/ontology#inCountry
http://lexvo.org/ontology#label
http://www.geonames.org/ontology#locationMap
http://lexvo.org/ontology#label
http://www.geonames.org/ontology#name
http://www.w3.org/2000/01/rdf-schema#label
http://www.geonames.org/ontology#alternateName
http://lexvo.org/ontology#label
http://www.geonames.org/ontology#wikipediaArticle
http://lexvo.org/ontology#label
http://www.geonames.org/ontology#alternateName
http://lexvo.org/ontology#label
http://www.geonames.org/ontology#inCountry

(i) http://lexvo.org/ontology#label –
http://www.w3.org/2000/01/rdf-schema#seeAlso

(j) http://www.w3.org/2000/01/rdf-schema#label –
http://www.geonames.org/ontology#countryCode

(k) http://www.w3.org/2000/01/rdf-schema#label –
http://www.w3.org/2000/01/rdf-schema#seeAlso

(l) http://www.w3.org/2000/01/rdf-schema#label –
http://www.geonames.org/ontology#name

(m) http://lexvo.org/ontology#label –
http://www.geonames.org/ontology#countryCode

6. Linkedmdb - DBpedia:

(a) http://dbpedia.org/property/hasPhotoCollection –
http://dbpedia.org/property/name

(b) http://dbpedia.org/property/hasPhotoCollection –
http://www.w3.org/2000/01/rdf-schema#label

(c) http://www.w3.org/2000/01/rdf-schema#label –
http://www.w3.org/2000/01/rdf-schema#label

(d) http://dbpedia.org/property/hasPhotoCollection –
http://xmlns.com/foaf/0.1/name

(e) http://dbpedia.org/property/hasPhotoCollection –
http://dbpedia.org/ontology/thumbnail

(f) http://dbpedia.org/property/hasPhotoCollection –
http://xmlns.com/foaf/0.1/depiction

7. Linkedmdb - Geonames:

(a) http://data.linkedmdb.org/resource/movie/country_name –
http://www.geonames.org/ontology#countryCode

(b) http://data.linkedmdb.org/resource/movie/country_name –
http://www.geonames.org/ontology#name

(c) http://data.linkedmdb.org/resource/movie/country_fips_code –
http://www.w3.org/2000/01/rdf-schema#seeAlso

(d) http://data.linkedmdb.org/resource/movie/country_name –
http://www.geonames.org/ontology#inCountry

149

http://lexvo.org/ontology#label
http://www.w3.org/2000/01/rdf-schema#seeAlso
http://www.w3.org/2000/01/rdf-schema#label
http://www.geonames.org/ontology#countryCode
http://www.w3.org/2000/01/rdf-schema#label
http://www.w3.org/2000/01/rdf-schema#seeAlso
http://www.w3.org/2000/01/rdf-schema#label
http://www.geonames.org/ontology#name
http://lexvo.org/ontology#label
http://www.geonames.org/ontology#countryCode
http://dbpedia.org/property/hasPhotoCollection
http://dbpedia.org/property/name
http://dbpedia.org/property/hasPhotoCollection
http://www.w3.org/2000/01/rdf-schema#label
http://www.w3.org/2000/01/rdf-schema#label
http://www.w3.org/2000/01/rdf-schema#label
http://dbpedia.org/property/hasPhotoCollection
http://xmlns.com/foaf/0.1/name
http://dbpedia.org/property/hasPhotoCollection
http://dbpedia.org/ontology/thumbnail
http://dbpedia.org/property/hasPhotoCollection
http://xmlns.com/foaf/0.1/depiction
http://data.linkedmdb.org/resource/movie/country_name
http://www.geonames.org/ontology#countryCode
http://data.linkedmdb.org/resource/movie/country_name
http://www.geonames.org/ontology#name
http://data.linkedmdb.org/resource/movie/country_fips_code
http://www.w3.org/2000/01/rdf-schema#seeAlso
http://data.linkedmdb.org/resource/movie/country_name
http://www.geonames.org/ontology#inCountry

(e) http://www.w3.org/2000/01/rdf-schema#label –
http://www.geonames.org/ontology#alternateName

(f) http://data.linkedmdb.org/resource/movie/country_iso_alpha2 –
http://www.w3.org/2000/01/rdf-schema#seeAlso

(g) http://data.linkedmdb.org/resource/movie/country_fips_code –
http://www.geonames.org/ontology#officialName

(h) http://data.linkedmdb.org/resource/movie/country_name –
http://www.geonames.org/ontology#alternateName

(i) http://data.linkedmdb.org/resource/movie/country_name –
http://www.w3.org/2000/01/rdf-schema#seeAlso

(j) http://data.linkedmdb.org/resource/movie/country_iso_alpha2 –
http://www.geonames.org/ontology#name

(k) http://www.w3.org/2000/01/rdf-schema#label –
http://www.geonames.org/ontology#inCountry

(l) http://data.linkedmdb.org/resource/movie/country_iso_alpha2 –
http://www.geonames.org/ontology#alternateName

(m) http://data.linkedmdb.org/resource/movie/country_iso_alpha3 –
http://www.geonames.org/ontology#name

(n) http://data.linkedmdb.org/resource/movie/country_iso_alpha3 –
http://www.geonames.org/ontology#countryCode

(o) http://data.linkedmdb.org/resource/movie/country_iso_alpha2 –
http://www.geonames.org/ontology#officialName

(p) http://www.w3.org/2000/01/rdf-schema#label –
http://www.geonames.org/ontology#officialName

(q) http://www.w3.org/2000/01/rdf-schema#label –
http://www.geonames.org/ontology#wikipediaArticle

(r) http://data.linkedmdb.org/resource/movie/country_iso_alpha3 –
http://www.geonames.org/ontology#officialName

(s) http://data.linkedmdb.org/resource/movie/country_fips_code –
http://www.geonames.org/ontology#alternateName

(t) http://www.w3.org/2000/01/rdf-schema#label –
http://www.geonames.org/ontology#countryCode

150

http://www.w3.org/2000/01/rdf-schema#label
http://www.geonames.org/ontology#alternateName
http://data.linkedmdb.org/resource/movie/country_iso_alpha2
http://www.w3.org/2000/01/rdf-schema#seeAlso
http://data.linkedmdb.org/resource/movie/country_fips_code
http://www.geonames.org/ontology#officialName
http://data.linkedmdb.org/resource/movie/country_name
http://www.geonames.org/ontology#alternateName
http://data.linkedmdb.org/resource/movie/country_name
http://www.w3.org/2000/01/rdf-schema#seeAlso
http://data.linkedmdb.org/resource/movie/country_iso_alpha2
http://www.geonames.org/ontology#name
http://www.w3.org/2000/01/rdf-schema#label
http://www.geonames.org/ontology#inCountry
http://data.linkedmdb.org/resource/movie/country_iso_alpha2
http://www.geonames.org/ontology#alternateName
http://data.linkedmdb.org/resource/movie/country_iso_alpha3
http://www.geonames.org/ontology#name
http://data.linkedmdb.org/resource/movie/country_iso_alpha3
http://www.geonames.org/ontology#countryCode
http://data.linkedmdb.org/resource/movie/country_iso_alpha2
http://www.geonames.org/ontology#officialName
http://www.w3.org/2000/01/rdf-schema#label
http://www.geonames.org/ontology#officialName
http://www.w3.org/2000/01/rdf-schema#label
http://www.geonames.org/ontology#wikipediaArticle
http://data.linkedmdb.org/resource/movie/country_iso_alpha3
http://www.geonames.org/ontology#officialName
http://data.linkedmdb.org/resource/movie/country_fips_code
http://www.geonames.org/ontology#alternateName
http://www.w3.org/2000/01/rdf-schema#label
http://www.geonames.org/ontology#countryCode

(u) http://data.linkedmdb.org/resource/movie/country_iso_alpha3 –
http://www.geonames.org/ontology#alternateName

(v) http://www.w3.org/2000/01/rdf-schema#label –
http://www.geonames.org/ontology#name

(w) http://data.linkedmdb.org/resource/movie/country_iso_alpha3 –
http://www.w3.org/2000/01/rdf-schema#seeAlso

(x) http://data.linkedmdb.org/resource/movie/country_name –
http://www.geonames.org/ontology#officialName

(y) http://data.linkedmdb.org/resource/movie/country_iso_alpha2 –
http://www.geonames.org/ontology#countryCode

(z) http://data.linkedmdb.org/resource/movie/country_name –
http://www.geonames.org/ontology#wikipediaArticle

8. NYTimes - DBpedia:

(a) http://www.w3.org/2004/02/skos/core#prefLabel –
http://xmlns.com/foaf/0.1/name

(b) http://www.w3.org/2004/02/skos/core#prefLabel –
http://www.w3.org/2000/01/rdf-schema#label

(c) http://www.w3.org/2004/02/skos/core#prefLabel –
http://dbpedia.org/property/name

9. NYTimes - Geonames:

(a) http://www.w3.org/2003/01/geo/wgs84_pos#lat –
http://www.w3.org/2003/01/geo/wgs84_pos#lat

(b) http://www.w3.org/2004/02/skos/core#prefLabel –
http://www.geonames.org/ontology#name

(c) http://www.w3.org/2004/02/skos/core#prefLabel –
http://www.geonames.org/ontology#alternateName

(d) http://www.w3.org/2003/01/geo/wgs84_pos#long –
http://www.w3.org/2003/01/geo/wgs84_pos#long

(e) http://www.w3.org/2004/02/skos/core#prefLabel –
http://www.geonames.org/ontology#officialName

(f) http://www.w3.org/2004/02/skos/core#prefLabel –
http://www.geonames.org/ontology#wikipediaArticle

151

http://data.linkedmdb.org/resource/movie/country_iso_alpha3
http://www.geonames.org/ontology#alternateName
http://www.w3.org/2000/01/rdf-schema#label
http://www.geonames.org/ontology#name
http://data.linkedmdb.org/resource/movie/country_iso_alpha3
http://www.w3.org/2000/01/rdf-schema#seeAlso
http://data.linkedmdb.org/resource/movie/country_name
http://www.geonames.org/ontology#officialName
http://data.linkedmdb.org/resource/movie/country_iso_alpha2
http://www.geonames.org/ontology#countryCode
http://data.linkedmdb.org/resource/movie/country_name
http://www.geonames.org/ontology#wikipediaArticle
http://www.w3.org/2004/02/skos/core#prefLabel
http://xmlns.com/foaf/0.1/name
http://www.w3.org/2004/02/skos/core#prefLabel
http://www.w3.org/2000/01/rdf-schema#label
http://www.w3.org/2004/02/skos/core#prefLabel
http://dbpedia.org/property/name
http://www.w3.org/2003/01/geo/wgs84_pos#lat
http://www.w3.org/2003/01/geo/wgs84_pos#lat
http://www.w3.org/2004/02/skos/core#prefLabel
http://www.geonames.org/ontology#name
http://www.w3.org/2004/02/skos/core#prefLabel
http://www.geonames.org/ontology#alternateName
http://www.w3.org/2003/01/geo/wgs84_pos#long
http://www.w3.org/2003/01/geo/wgs84_pos#long
http://www.w3.org/2004/02/skos/core#prefLabel
http://www.geonames.org/ontology#officialName
http://www.w3.org/2004/02/skos/core#prefLabel
http://www.geonames.org/ontology#wikipediaArticle

(g) http://www.w3.org/2004/02/skos/core#prefLabel –
http://www.w3.org/2000/01/rdf-schema#seeAlso

(h) http://www.w3.org/2004/02/skos/core#prefLabel –
http://www.geonames.org/ontology#locationMap

10. OpenCyc - Umbel:

(a) http://sw.cyc.com/CycAnnotations_v1#label –
http://www.w3.org/2004/02/skos/core#prefLabel

(b) http://sw.cyc.com/CycAnnotations_v1#label –
http://umbel.org/umbel#isRelatedTo

(c) http://www.w3.org/2000/01/rdf-schema#label –
http://umbel.org/umbel#isRelatedTo

(d) http://www.w3.org/2000/01/rdf-schema#label –
http://www.w3.org/2004/02/skos/core#altLabel

(e) http://sw.opencyc.org/concept/Mx4rwLSVCpwpEbGdrcN5Y29ycA –
http://umbel.org/umbel#isRelatedTo

(f) http://www.w3.org/2000/01/rdf-schema#label –
http://www.w3.org/2004/02/skos/core#prefLabel

(g) http://sw.opencyc.org/concept/Mx4rwLSVCpwpEbGdrcN5Y29ycA –
http://www.w3.org/2004/02/skos/core#prefLabel

(h) http://sw.cyc.com/CycAnnotations_v1#label –
http://www.w3.org/2004/02/skos/core#altLabel

(i) http://sw.opencyc.org/concept/Mx4rwLSVCpwpEbGdrcN5Y29ycA –
http://www.w3.org/2004/02/skos/core#altLabel

152

http://www.w3.org/2004/02/skos/core#prefLabel
http://www.w3.org/2000/01/rdf-schema#seeAlso
http://www.w3.org/2004/02/skos/core#prefLabel
http://www.geonames.org/ontology#locationMap
http://sw.cyc.com/CycAnnotations_v1#label
http://www.w3.org/2004/02/skos/core#prefLabel
http://sw.cyc.com/CycAnnotations_v1#label
http://umbel.org/umbel#isRelatedTo
http://www.w3.org/2000/01/rdf-schema#label
http://umbel.org/umbel#isRelatedTo
http://www.w3.org/2000/01/rdf-schema#label
http://www.w3.org/2004/02/skos/core#altLabel
http://sw.opencyc.org/concept/Mx4rwLSVCpwpEbGdrcN5Y29ycA
http://umbel.org/umbel#isRelatedTo
http://www.w3.org/2000/01/rdf-schema#label
http://www.w3.org/2004/02/skos/core#prefLabel
http://sw.opencyc.org/concept/Mx4rwLSVCpwpEbGdrcN5Y29ycA
http://www.w3.org/2004/02/skos/core#prefLabel
http://sw.cyc.com/CycAnnotations_v1#label
http://www.w3.org/2004/02/skos/core#altLabel
http://sw.opencyc.org/concept/Mx4rwLSVCpwpEbGdrcN5Y29ycA
http://www.w3.org/2004/02/skos/core#altLabel

Appendix C

Initialization of Sapphire

This appendix presents the SPARQL queries used in initializing Sapphire. SPARQL queries
are typically provided with limited resources by the remote endpoints. A long-running
query that is expected to consume a lot of resources may be rejected by the remote end-
point. If the query is accepted, it will likely time out. Therefore, the initialization queries
of Sapphire are broken down into multiple queries that are less resource-intensive and
therefore less likely to time out. These queries are as follows.

1. Finding predicates sorted by their frequency (not a resource-intensive query):

Q1) SELECT DISTINCT ?p (COUNT(*) AS ?frequency)
WHERE {
?s ?p ?o
}
GROUP BY ?p
ORDER BY DESC(?frequency)

2. Finding literals and most significant literals: The queries used to find literals need to
be carefully structured to minimize their execution time and the chances of timing out. The
key to achieving this goal is increasing the selectivity of the query. The focus in Sapphire
is on two common characteristics of RDF data that are relevant to Sapphire: 1. Entities
are associated with RDF types or schema classes. 2. Literals of interest in Sapphire are
associated with a limited set of predicates.

Some data sets are well-structured and have a hierarchy of RDF schema classes, with
each entity in the data set belonging to a class. This is the case for most of the data sets

153

that encountered on the LOD cloud. This characteristic can be exploited by restricting
the retrieval of literals to part of the class hierarchy.

The following query finds all classes and their subclasses in a data set:

Q2) PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
SELECT DISTINCT ?class ?subclass
WHERE{
?class a owl:Class.
?class rdfs:subClassOf ?subclass
}

For data sets that do not have an RDF schema class hierarchy, the RDF type can be
exploited. Note that RDF type is the most used predicate in the LOD cloud. The following
query is used to find all types in the data set sorted by their frequency:

Q3) SELECT DISTINCT ?o (COUNT(?s) AS ?frequency)
WHERE{
?s a ?o.
}
GROUP BY ?o
ORDER BY DESC(?frequency)

In both cases, the following query is used to find predicates sorted by the number of
associations to literals:

Q4) SELECT DISTINCT ?p (COUNT(?o) AS ?frequency)
WHERE{
?s ?p ?o.
Filter (isliteral(?o))
}
GROUP BY ?p
ORDER BY DESC(?frequency)

The top k of these predicates are filtered based on whether they satisfy the filtering
conditions on the language of the literals they are associated with and the length of these
literals. This filtering is done by issuing the following query multiple times, once for
each predicate. The placeholder $PREDICATE$ is replaced with the current predicate being
queried:

154

Q5) SELECT DISTINCT ?o
WHERE{
?s $PREDICATE$?o.
Filter (isliteral(?o) && lang(?o) = ’en’ &&
strlen(str(?o)) < 80)
}
LIMIT 1

After issuing these queries to retrieve and filter predicates, if the data set uses RDF
schema classes, Sapphire constructs the tree representing the class hierarchy. Starting from
the root of this tree, the following query is issued to find literals associated with entities of a
certain class (type) $TYPE$ with a predicate $PREDICATE$. This query is issued iteratively,
iterating over all classes and predicates:

Q6) SELECT DISTINCT ?o
WHERE{
?s a $TYPE$.
?s $PREDICATE$?o.
Filter (isliteral(?o) && lang(?o) = ’en’ &&
strlen(str(?o)) < 80).
}

If a query on the class $TYPE$ times out, queries over subclasses of this class are issued.
If the query succeeds and returns an answer, then issuing the same query over the subclasses
is redundant and is therefore not done.

In the case of data sets that do not use an RDF schema class hierarchy, a different
way to reduce query result size is needed. For this, I use LIMIT and OFFSET. Specifically,
the following query is issued multiple times, iterating over $TYPE$ and $PREDICATE$, and
using LIMIT and OFFSET to paginate the answers so that the query does not time out:

Q7) SELECT DISTINCT ?o
WHERE{
?s a $TYPE$.
?s $PREDICATE$?o.
Filter (isliteral(?o) && lang(?o) = ’en’ &&
strlen(str(?o)) < 80).
}

155

LIMIT $LIMIT$
OFFSET $OFFSET$

Finally, the most significant literals need to be found. The following query template is
used for this, and it is issued iteratively similar to Q7:

Q8) SELECT DISTINCT ?o (COUNT(?subject) AS ?frequency)
WHERE{
?s a $TYPE$.
?subject ?p ?s.
?s $PREDICATE$?o.
FILTER(lang(?o) = ’en’ && strlen(str(?o)) < 80)
}
GROUP BY ?o
ORDER BY DESC(?frequency)
LIMIT $LIMIT$
OFFSET $OFFSET$

Recall that $PREDICATE$ is associated with literals. Therefore, the literal filter is not
added and only the filters on language and length are used.

Much of the complexity of the above queries is to avoid timeouts at the remote end-
points. This is important when using Sapphire in a federated architecture. Sapphire can
also be used in a warehousing architecture, where all the data sets are stored locally on
the same server as Sapphire. In the warehousing architecture, no limitations are placed
on querying the data set, e.g., no resource constraints and no timeouts. This makes find-
ing literals much simpler since long-running SPARQL queries can be easily issued without
worrying about timeouts.

Specifically, the following query can be used to find literals filtered by length and
language in the warehousing architecture ($LIMIT$ can be used to restrict the number of
results returned):

Q9) SELECT DISTINCT ?o
WHERE{
?s ?p ?o.
FILTER(isliteral(?o) && lang(?o) = ’en’ &&
strlen(str(?o)) < 80)
}

156

GROUP BY ?o
LIMIT $LIMIT$

The following query finds the most significant literals in the warehousing architecture
if there are no timeout constraints (again, with $LIMIT$ and $OFFSET$ if needed):

Q10) SELECT DISTINCT ?o (COUNT(?s1) AS ?frequency)
WHERE{
?s1 ?p ?s2.
?s2 ?p2 ?o.
FILTER(isliteral(?o) && lang(?o) = ’en’ &&
strlen(str(?o)) < 80)
}
GROUP BY ?o
ORDER BY DESC(?frequency)
LIMIT $LIMIT$
OFFSET $OFFSET$

157

Appendix D

Evaluation Questions for the Sapphire
User Study

D.1 Easy Queries

1. Country in which the Ganges starts

2. John F. Kennedy’s vice president

3. Time zone of Salt Lake City

4. Tom Hanks’s wife

5. Children of Margaret Thatcher

6. Currency of the Czech Republic

7. Designer of the Brooklyn Bridge

8. Wife of U.S. president Abraham Lincoln

9. Creator of Wikipedia

10. Depth of lake Placid

158

D.2 Medium Queries

1. Instruments played by Cat Stevens

2. Parents of the wife of Juan Carlos I

3. U.S. state in which Fort Knox is located

4. Person who is called Frank The Tank

5. Birthdays of all actors of the television show Charmed

6. Country in which the Limerick Lake is located

7. Person to which Robert F. Kennedy’s daughter is married

8. Number of people living in the capital of Australia

D.3 Difficult Queries

1. Chess players who died in the same place they were born in

2. Books by William Goldman with more than 300 pages

3. Books by Jack Kerouac which were published by Viking Press

4. Films directed by Steven Spielberg with a budget of at least $80 million

5. Most populous city in Australia

6. Films starring Clint Eastwood direct by himself

7. Presidents born in 1945

8. Find each company that works in both the aerospace and medicine industries

9. Number of inhabitants of the most populous city in Canada

159

	List of Tables
	List of Figures
	Introduction
	Improving the Interlinking of RDF Data Sets
	Answering Questions on RDF Data Sets
	Refining Relational Web Data Integration Systems
	Thesis Statement
	Thesis Outline

	Preliminaries on the Resource Description Framework (RDF) and SPARQL
	Resource Description Framework (RDF)
	The SPARQL Query Language

	ALEX: Automatic Link Exploration Based on User Feedback
	Related Work
	Automatic Linking of RDF Data Sets
	Incorporating Users in Automatic Linking

	Overview of ALEX
	User Interface
	Analysis of the owl:sameAs Links in the LOD Cloud
	Data Sets Used in the Analysis
	Analysis of owl:sameAs Links

	Background on Reinforcement Learning
	Discovering New Links in ALEX
	States in ALEX
	Actions in ALEX
	Rewards and Feedback
	Iterative Improvement
	Interaction Between Policy Evaluation and Improvement

	Soundness of ALEX
	Optimizations to ALEX
	Filtering to Reduce the Search Space
	Partitioning the Search Space
	Optimizations for Handling Incorrect Links

	Experimental Evaluation
	Experimental Setup
	Quality of Links
	Efficiency of ALEX
	Effect of Incorrect Feedback
	Sensitivity of ALEX to Parameter Values

	Conclusion and Future Work

	Sapphire: Querying RDF Data Made Simple
	Related Work
	Approaches to Querying RDF Data
	Natural Language Approaches to Querying RDF Data
	Approximate Structured Queries on RDF Data
	Querying By Example

	Sapphire Architecture and Challenges
	User Interface of Sapphire
	SPARQL Features Not Supported by Sapphire
	Initialization for a New Endpoint
	Caching Data from a New Endpoint
	Indexing Cached Data

	Predictive User Model
	Query Completion Module
	Query Suggestion Module

	Experimental Evaluation
	User Study
	Comparison to Other Systems
	Sapphire Response Time

	Conclusion and Future Work

	UFeed: Refining Relational Web Data Integration Based on User Feedback
	Related Work
	Schema Matching and Mapping
	Incorporating Users and User Feedback in Data Integration Systems

	Preliminaries on Relational Data Integration
	Schema Matching and Mapping
	Probabilistic Mediated Schemas and Mappings
	Answering Queries over Relational Mediated Schemas

	Refinement in UFeed
	Attribute Correspondence and Answer Association
	UFeed Operations
	Applying UFeed Operations to Probabilistic Mediated Schemas and Mappings
	Handling Incorrect Feedback

	UFeed Completeness
	User Interface of UFeed
	Generating Mediated Schemas and Mappings
	Query Processing
	Feedback and Schema Refinement

	Experimental Evaluation
	Experimental Setup
	Quality of Query Answers
	Distance to the Gold Standard

	Conclusion and Future Work

	Conclusion and Future Work
	Thesis Conclusion
	Future Work

	References
	APPENDICES
	Similarity Function used in ALEX
	Similarity Scores for Strings
	Similarity Score for Dates
	Similarity Score for Numbers

	Distinctive Features Found in the Analysis of Links
	Initialization of Sapphire
	Evaluation Questions for the Sapphire User Study
	Easy Queries
	Medium Queries
	Difficult Queries

