The Relational Model

Ashraf Aboulnaga

David R. Cheriton School of Computer Science University of Waterloo

CS 348 Introduction to Database Management Winter 2013

	CS 348	Relational Model	Winter 2013 1 / 13
otes			

Idea

Structural information is encoded implicitly using pointers.

Consequences:

- difficult to separate conceptual and physical schemas
- queries must explicitly navigate the data graph \Rightarrow procedural queries
- procedural (not semantic) specification of integrity constraints

	CS 348	Relational Model	Winter 2013	2 / 13
Note	S			

Idea

All information is organized in (flat) relations.

Features:

- simple and clean data model
- powerful and *declarative* query/update languages
- semantic integrity constraints
- data independence

	CS 348	Relational Model	Winter 2013	3 / 13
Notes				

The Relational Model: Formal Definition

Universe Domain Relation	 a set of atomic values D with equality (=) a name D with a set of values dom(D) ⊆ D schema: R(A₁ : D₁, A₂ : D₂,, A_k : D_k) with name R A₁,, A_k a set of distinct attribute names D₁,, D_k a collection of (not necessarily distinct) domain names instance: a finite relation
Database	 Instance: a finite relation R ⊆ dom(D₁) × ··· × dom(D_k). schema: finite set of uniquely-named relation schemas instance: a relation R_i for each R_i
• Intentio	n of a relation: The associated relation schema.
	n of a relation: The associated relation schema. on of a relation: The associated set of tuples. Relational Model Winter 2013 4 / 13
• Extension CS 348	on of a relation: The associated set of tuples.
• Extension CS 348	on of a relation: The associated set of tuples.

The Relational Model: Properties

Note

- Relational schemas have named and typed attributes
- Relational instances are finite

Properties of a relation:

- 1 Based on (finite) set theory
 - Attribute ordering: not strictly necessary
 - Value oriented: tuples identified by attribute values
 - Instance has set semantics:
 - No ordering among tuples
 - No duplicate tuples
- 2 All attribute values are atomic
- **3** Degree (arity) = # of attributes in schema
- 4 Cardinality = # of tuples in instance

	CS 348	Relational Model	Winter 2013 5 / 13
No	tes		

Database schema:

author(aid:int, name:string)
wrote(author:int, publication:int)
publication(pubid:int, title:string)
book(pubid, publisher, year)
journal(pubid, volume, no, year)
proceedings(pubid, year)
article(pubid, crossref, startpage, endpage)

Note

Relational schemas are sometimes abbreviated by omitting the attribute domains.

	CS 348	Relational Model	Winter 2013	6 / 13
Notes				

Sample database instance:

author	=	{	(1, John), (2, Sue)	}
wrote	=	{	(1,1),(1,4),(2,3)	}
publication	=	{	 (1, Mathematical Logic), (3, Trans. Databases), (2, Principles of DB Syst.), (4, Query Languages) 	}
book	=	{	(1, AMS, 1990)	}
journal	=	{	(3, 35, 1, 1990)	}
proceedings	=	{	(2, 1995)	}
article	=	{	(4, 2, 30, 41)	}

	CS 348	Relational Model	Winter 2013	7 / 13
Jotes				

Example: A Bibliography Database

Sample database instance (tabular form):

auth	author		
aid	name		
1	John		
2	Sue		

wrote	
author	publication
1	1
1	4
2	3

publication

pubid	title	
1	Mathematical Logic	
3	Trans. Databases	
2	Principles of DB Syst.	
4	Query Languages	

	CS 348	Relational Model	Winter 2013	8 / 13
otes				

Relations vs. SQL Tables

Note

The standard language for interfacing with relational DBMSs is Structured Query Language (SQL). Unfortunately, there are a few important differences between the Relational Model and the data model used by SQL (and relational DBMSs).

Discrepencies between Relational Model and SQL:

- 1 Semantics of Instances
 - Relations are sets of tuples
 - Tables are multisets (bags) of tuples

2 Unknown values

• SQL data model defines a particular value **null** (intended to mean "unknown") which has some special properties (requires *three-value logic*)

	CS 348	Relational Model	Winter 2013	9 / 13
Notes				

Integrity Constraints

A relational schema captures only the structure of relations

Idea

Extend relational/database schema with rules called constraints. An instance is only valid if it satisfies all schema constraints.

Reasons to use constraints:

- 1 Ensure data entry/modification respects database design
 - Shift responsibility from applications to DBMS
- 2 Protect data from bugs in applications

	CS 348	Relational Model	Winter 2013	10 / 13
Notes				

- Tuple-level
 - Domain restrictions
 - Attribute comparisons
- Relation-level
 - Key constraints
 - Superkey: a set of attributes for which no pair of distinct tuples in the relation will ever agree on the corresponding values
 - Candidate key: a minimal superkey (a minimal set of attributes that uniquely identifies a tuple)
 - Primary key: a designated candidate key
 - Functional dependencies, etc.

	CS 348	Relational Model	Winter 2013	11 / 13
Notes				

• Database-level

- Referential integrity
 - Foreign key: Primary key of one relation appearing as attributes of another relation.
 - Referential integrity: A tuple with a non-null value for a foreign key that does not match the primary key value of a tuple in the referenced relation is not allowed.
- Inclusion dependencies

	CS 348	Relational Model	Winter 2013	12 / 13
Not	es			

Example: Database Schema showing ICs

