
Physical Database Design and Tuning

Ashraf Aboulnaga

David R. Cheriton School of Computer Science

University of Waterloo

CS 348
Introduction to Database Management

Winter 2013

CS 348 Tuning Winter 2013 1 / 21

Notes

Outline

1 Introduction

2 Designing and Tuning the Physical Schema
Indexing
Guidelines for Physical Design

3 Tuning the Conceptual Schema
Denormalization
Partitioning

4 Tuning Queries and Applications

CS 348 Tuning Winter 2013 2 / 21

Notes

Physical Database Design and Tuning

Physical Design The process of selecting a physical schema (collection
of data structures) to implement the conceptual schema

Tuning Periodically adjusting the physical and/or conceptual
schema of a working system to adapt to changing
requirements and/or performance characteristics

Good design and tuning requires understanding the database
workload.

CS 348 Tuning Winter 2013 3 / 21

Notes

Workload Modeling

De�nition (Workload Description)

A workload description contains

� the most important queries and their frequency

� the most important updates and their frequency

� the desired performance goal for each query or update

� For each query:
� Which relations are accessed?
� Which attributes are retrieved?
� Which attributes occur in selection/join conditions? How selective

is each condition?

� For each update:
� Type of update and relations/attributes a�ected.
� Which attributes occur in selection/join conditions? How selective

is each condition?

CS 348 Tuning Winter 2013 4 / 21

Notes

The Physical Schema

� A storage strategy is chosen for each relation
� Possible storage options:

� Unsorted (heap) �le
� Sorted �le
� Hash �le

� Indexes are then added
� Speed up queries
� Extra update overhead
� Possible index types:

� B-trees (actually, B+-trees)
� R trees
� Hash tables
� ISAM, VSAM
�

: : :

CS 348 Tuning Winter 2013 5 / 21

Notes

A Table Scan

select *
from Employee
where Lastname = ’Smith’

� To answer this query, the DBMS must search the blocks of the
database �le to check for matching tuples.

� If no indexes exist for Lastname (and the �le is unsorted with
respect to Lastname), all blocks of the �le must be scanned.

CS 348 Tuning Winter 2013 6 / 21

Notes

Creating Indexes

create index LastnameIndex
on Employee(Lastname) [CLUSTER]

drop index LastnameIndex

Primary e�ects of LastnameIndex:

� Substantially reduce execution time for selections that specify
conditions involving Lastname

� Increase execution time for insertions

� Increase or decrease execution time for updates or deletions of
tuples from Employee

� Increase the amount of space required to represent Employee

CS 348 Tuning Winter 2013 7 / 21

Notes

Clustering vs. Non-Clustering Indexes

� An index on attribute A of a relation is a clustering index if
tuples in the relation with similar values for A are stored together
in the same block.

� Other indices are non-clustering (or secondary) indices.

Note

A relation may have at most one clustering index, and any number of
non-clustering indices.

CS 348 Tuning Winter 2013 8 / 21

Notes

Non-Clustering Index Example

10 Davis
14 Smith

17
21
27

Taylor
Garner
Dawson

31
39

Jones
Weddell

44
46

Hoff
Ryan

57
66
73

Ashton
Truman
McNair

77
83

Salem
Walsh

84
90

Parker
Strong
Green95

Ashton
Davis
Dawson

Garner

McNair
Parker
Ryan

Salem
Smith
Strong

Taylor
Truman
Walsh
Weddell

Jones
Hoff
GreenDawson

Jones

Strong

Ryan

CS 348 Tuning Winter 2013 9 / 21

Notes

Clustering Index Example

44
57

77
84

10 Davis
14 Smith

17
21
27

Taylor
Garner
Dawson

31
39

Jones
Weddell

44
46

Hoff
Ryan

57
66
73

Ashton
Truman
McNair

77
83

Salem
Walsh

84
90

Parker
Strong
Green95

73

27

root node

10
17

31

CS 348 Tuning Winter 2013 10 / 21

Notes

Co-Clustering Relations

De�nition (Co-Clustering)

Two relations are co-clustered if their tuples are interleaved within
the same �le

� Co-clustering is useful for storing hierarchical data (1:N
relationships)

� E�ects on performance:
� Can speed up joins, particularly foreign-key joins
� Sequential scans of either relation become slower

CS 348 Tuning Winter 2013 11 / 21

Notes

Range Queries

� B-trees can also help for range queries:

select *
from R
where A � c

� If a B-tree is de�ned on A, we can use it to �nd the tuples for
which A = c. Using the forward pointers in the leaf blocks, we can
then �nd tuples for which A > c.

CS 348 Tuning Winter 2013 12 / 21

Notes

Multi-Attribute Indices

� It is possible to create an index on several attributes of the same
relation. For example:

create index NameIndex
on Employee(Lastname,Firstname)

� The order in which the attributes appear is important. In this
index, tuples (or tuple pointers) are organized �rst by Lastname.
Tuples with a common surname are then organized by
Firstname.

CS 348 Tuning Winter 2013 13 / 21

Notes

Using Multi-Attribute Indices

� The NameIndex index would be useful for these queries:

select *
from Employee
where Lastname = ’Smith’

select *
from Employee
where Lastname = ’Smith’
and Firstname = ’John’

� It would be very useful for these queries:

select Firstname
from Employee
where Lastname = ’Smith’

select Firstname, Lastname
from Employee

� It would not be useful at all for this query:

select *
from Employee
where Firstname = ’John’

CS 348 Tuning Winter 2013 14 / 21

Notes

Physical Design Guidelines

1 Don't index unless the performance increase outweighs the update
overhead

2 Attributes mentioned in WHERE clauses are candidates for index
search keys

3 Multi-attribute search keys should be considered when
� a WHERE clause contains several conditions; or
� it enables index-only plans

4 Choose indexes that bene�t as many queries as possible

5 Each relation can have at most one clustering scheme; therefore
choose it wisely

� Target important queries that would bene�t the most

� Range queries bene�t the most from clustering
� Join queries bene�t the most from co-clustering

� A multi-attribute index that enables an index-only plan does not
bene�t from being clustered

CS 348 Tuning Winter 2013 15 / 21

Notes

DB2 Index Advisor

% db2advis -d sample -s "select empno,lastname
from employee where workdept = ’xxxx’"
Found maximum set of [1] recommended indexes
total disk space needed for initial set [0.005] MB
[50.5219] timerons (without indexes)
[25.1521] timerons (with current solution)
[%50.22] improvement

-- ===========================
-- index[1], 0.005MB

CREATE INDEX WIZ1517 ON "KMSALEM "."EMPLOYEE"
("WORKDEPT" ASC, "LASTNAME" ASC, "EMPNO" ASC) ;

-- ===========================

CS 348 Tuning Winter 2013 16 / 21

Notes

Tuning the Conceptual Schema

Suppose that after tuning the physical schema, the system still does
not meet the performance goals!

� Adjustments can be made to the conceptual schema:
� Re-normalization
� Denormalization
� Partitioning

Warning

Unlike changes to the physical schema, changes to the conceptual
schema of an operational system�called schema evolution�often
can't be completely masked from end users and their applications.

CS 348 Tuning Winter 2013 17 / 21

Notes

Denormalization

Normalization is the process of decomposing schemas to reduce
redundancy

Denormalization is the process of merging schemas to intentionally
increase redundancy

In general, redundancy increases update overhead (due to change
anomalies) but decreases query overhead.

The appropriate choice of normal form depends heavily upon the
workload.

CS 348 Tuning Winter 2013 18 / 21

Notes

Partitioning

� Very large tables can be a source of performance bottlenecks

� Partitioning a table means splitting it into multiple tables for the
purpose of reducing I/O cost or lock contention

1 Horizontal Partitioning

� Each partition has all the original columns and a subset of the
original rows

� Tuples are assigned to a partition based upon a (usually natural)
criteria

� Often used to separate operational from archival data

2 Vertical Partitioning

� Each partition has a subset of the original columns and all the
original rows

� Typically used to separate frequently-used columns from each other
(concurrency hot-spots) or from infrequently-used columns

CS 348 Tuning Winter 2013 19 / 21

Notes

Tuning Queries

� Changes to the physical or conceptual schemas impacts all queries
and updates in the workload.

� Sometimes desirable to target performance of speci�c queries or
applications

� Guidelines for tuning queries:

1 Sorting is expensive. Avoid unnecessary uses of ORDER BY,
DISTINCT, or GROUP BY.

2 Whenever possible, replace subqueries with joins
3 Whenever possible, replace correlated subqueries with uncorrelated

subqueries
4 Use vendor-supplied tools to examine generated plan. Update

and/or create statistics if poor plan is due to poor cost estimation.

CS 348 Tuning Winter 2013 20 / 21

Notes

Tuning Applications

Guidelines for tuning applications:

1 Minimize communication costs
� Return the fewest columns and rows necessary
� Update multiple rows with a WHERE clause rather than a cursor

2 Minimize lock contention and hot-spots
� Delay updates as long as possible
� Delay operations on hot-spots as long as possible
� Shorten or split transactions as much as possible
� Perform insertions/updates/deletions in batches
� Consider lower isolation levels

CS 348 Tuning Winter 2013 21 / 21

Notes

	Introduction
	Designing and Tuning the Physical Schema
	Indexing
	Guidelines for Physical Design

	Tuning the Conceptual Schema
	Denormalization
	Partitioning

	Tuning Queries and Applications

