Overview of Database Management

Ashraf Aboulnaga

David R. Cheriton School of Computer Science University of Waterloo

CS 348 Introduction to Database Management Winter 2013

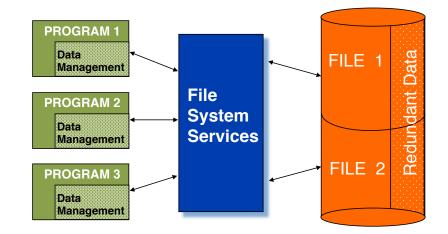
	CS 348	Overview of Database Management	Winter 2013	1 / 26
Notes				

• ANSI definition of data:

- 1 A representation of facts, concepts, or instructions in a formalized manner suitable for communication, interpretation, or processing by humans or by automatic means.
- 2 Any representation such as characters or analog quantities to which meaning is or might be assigned. Generally, we perform operations on data or data items to supply some information about an entity.
- Volatile vs persistent data
 - Our concern is primarily with persistent data

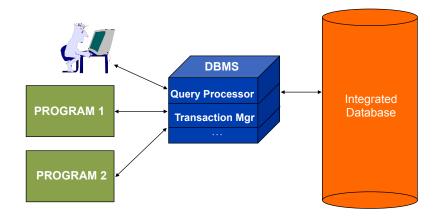
	CS 348	Overview of Database Management	Winter 2013	2 / 26
Notes				
_				

Early Data Management – Ancient History


- Data are not stored on disk
- One data set per program. High data redundancy

PROGRAM 1 Data + Management	DATA SET 1
PROGRAM 2 Data - Management	DATA SET 2
PROGRAM 3 Data Management	DATA SET 3

	CS 348	Overview of Database Management	Winter 2013	3 / 26
Notes				


File Processing – More Recent History

- Data are stored in files with interface between programs and files.
- Various access methods exist (e.g., sequential, indexed, random).
- One file corresponds to one or several programs.

	CS 348	Overview of Database Management	Winter 2013	4 / 26
Notes				

Database Approach

	CS 348	Overview of Database Management	Winter 2013	5 / 26
Notor	05 010		Willion 2010	0 / 20
Notes				

What is a Database?

Definition (Database)

A *large* and *persistent* collection of (more-or-less similar) pieces of information organized in a way that facilitates efficient *retrieval* and *modification*.

The structure of the database is determined by the abstract data model that is used Examples:

- a file cabinet
- a library system
- a personnel management system

Definition (Database Management System (DBMS))

A program (or set of programs) that manages details related to storage and access for a database.

	CS 348	Overview of Database Management	Winter 2013	6 / 26
Notes				

- Formalism that defines what the structure of the data are \Longrightarrow schema
 - within a file
 - between files
- File systems can at best specify data organization within one file
- Alternatives for business data
 - Hierarchical; network
 - Relational
 - Object-oriented (more recently object-relational)

	CS 348	Overview of Database Management	Winter 2013	7 / 26
Notes				

Definition (Schema)

A schema is a description of the data interface to the database (i.e., how the data is organized).

Definition (Instance)

A database instance is a database (real data) that conforms to a given schema.

A schema can have many instances.

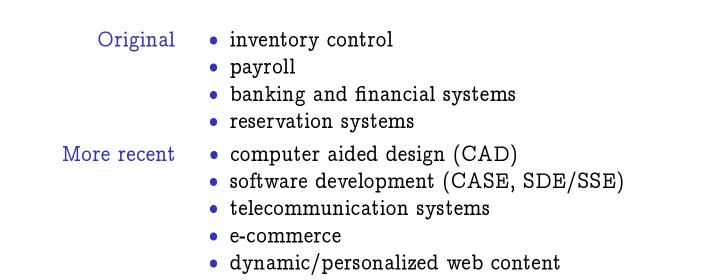
	CS 348	Overview of Database Management	Winter 2013	8 / 26
Votes				

Example – Relational

- Schema
 - EMP(ENO, ENAME, TITLE)
 - PROJ(PNO, PNAME, BUDGET)
 - WORKS(ENO, PNO, RESP, DUR)
- Instance

EMP				
ENO	ENAME	TITL	.E	
E1 E2 E3 E4 E5 E6 E7	J. Doe M. Smith A. Lee J. Miller B. Casey L. Chu R. Davis	Elect. I Syst. A Mech. Progra Syst. A Elect. I Mech.	nal. Eng. mmer nal. Eng. Eng.	
E8 PROJ	J. Jones	Syst. A		
PNO	PNAME	E	BUDGET	Г
P1 P2 P3 P4	Instrumenta Database D CAD/CAM Maintenance	evelop.	150000 135000 250000 310000	

WOR	WORKS				
ENO	PNO	RESP	DUR		
E1	P1	Manager	12		
E2	P1	Analyst	24		
E2	P2	Analyst	6		
E3	P3	Consultant	10		
E3	P4	Engineer	48		
E4	P2	Programmer	18		
E5	P2	Manager	24		
E6	P4	Manager	48		
E7	P3	Engineer	36		
E8	P3	Manager	40		


Notes

Overview of Database Management

Winter 2013 9 / 26

CS 348

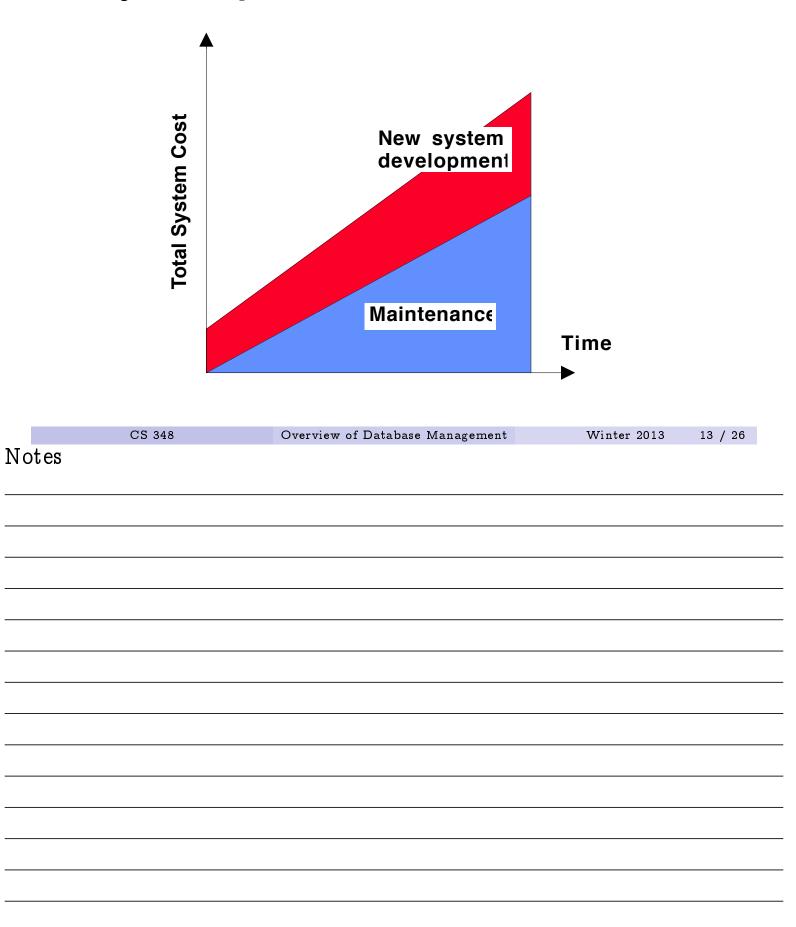
Application of Databases

	00.049	Original of Database Management	187: t 0012	10 / 26
	CS 348	Overview of Database Management	Winter 2013	10 / 26
Notes				

Common Circumstances:

- There is lots of data (mass storage)
- Data is formatted
- Requirements:
 - persistence and reliability
 - efficient and concurrent access
- Issues:
 - many files with different structure
 - shared files or replicated data
 - need to exchange data (translation programs)

	CS 348	Overview of Database Management	Winter 2013	11 / 26
No	tes			


• Data constitute an organizational asset \implies Integrated control

- Reduction of redundancy
- Avoidance of inconsistency
- Data integrity
- Sharability
- Improved security
- Programmer productivity \implies Data Independence
 - Programmers do not have to deal with data organization

	CS 348	Overview of Database Management	Winter 2013	12 / 26
Notes				

Programmer Productivity

• High data independence

Brief History of Data Management: Ancient

- 2000 BC: Sumerian Records
- 350 BC: Syllogisms (Aristotle)
- 296 BC: Library of Alexandria
 - 1879: Modern Logic (Frege)
 - 1884: U.S. Census (Hollerith)
 - 1941: Model Theory (Tarski)

	CS 348	Overview of Database Management	Winter 2013	14 / 26
Notes				

First generation 50's and 60's

- batch processing
- sequential files and tape
- input on punched cards

Second generation (60's)

- disk enabled random access files
- new access methods (ISAM, hash files)
- mostly batch with some interactivity
- independent applications with separate files
- growing applications base

	CS 348	Overview of Database Management	Winter 2013	15 / 26
Νo	tes			

Brief History of Data Management: 1960s (cont'd)

As the application base grows, we end up with

- many shared files
- a multitude of file structures
- a need to exchange data among applications

This causes a variety of problems

- redundancy: multiple copies
- inconsistency: independent updates
- inaccuracy: concurrent updates
- incompatibility: multiple formats
- insecurity: proliferation
- inauditability: poor chain of responsibility
- inflexibility: changes are difficult to apply

	CS 348	Overview of Database Management	Winter 2013	16 / 26
Notes				

Brief History of Data Management: 1960s (cont'd)

 IBM's Information Management System (IMS): concurrent access only allows 1:N parent-child relationships (i.e. a tree) hierarchy can be exploited for efficiency queries navigate up and down trees—one record at a time data access language embedded in business processing language difficult to express some queries Network data model Charles Bachman's Integrated Data Store (IDS) model standardized by Conference On DAta SYstems Languages (CODASYL) data organized as collections of sets of records separation of physical data representation from users' view of data pointers between records represent relationships set types encoded as lists queries navigate between records—still one record at a time 	•	inorar onroar aat). concurrent ac	2000
 hierarchy can be exploited for efficiency queries navigate up and down trees—one record at a time data access language embedded in business processing language difficult to express some queries Network data model Charles Bachman's Integrated Data Store (IDS) model standardized by Conference On DAta SYstems Languages (CODASYL) data organized as collections of sets of records separation of physical data representation from users' view of data pointers between records represent relationships set types encoded as lists queries navigate between records—still one record at a time 				,	2000
 queries navigate up and down trees—one record at a time data access language embedded in business processing language difficult to express some queries Network data model Charles Bachman's Integrated Data Store (IDS) model standardized by Conference On DAta SYstems Languages (CODASYL) data organized as collections of sets of records separation of physical data representation from users' view of data pointers between records represent relationships set types encoded as lists queries navigate between records—still one record at a time 		-	、		
 difficult to express some queries Network data model Charles Bachman's Integrated Data Store (IDS) model standardized by Conference On DAta SYstems Languages (CODASYL) data organized as collections of sets of records separation of physical data representation from users' view of data pointers between records represent relationships set types encoded as lists queries navigate between records—still one record at a time 		•		ord at a time	
 Network data model Charles Bachman's Integrated Data Store (IDS) model standardized by Conference On DAta SYstems Languages (CODASYL) data organized as collections of sets of records separation of physical data representation from users' view of data pointers between records represent relationships set types encoded as lists queries navigate between records—still one record at a time 		• data access 1	language embedded in business pr	cocessing languag	ge
 Charles Bachman's Integrated Data Store (IDS) model standardized by Conference On DAta SYstems Languages (CODASYL) data organized as collections of sets of records separation of physical data representation from users' view of data pointers between records represent relationships set types encoded as lists queries navigate between records—still one record at a time 		• difficult to e	xpress some queries		
 model standardized by Conference On DAta SYstems Languages (CODASYL) data organized as collections of sets of records separation of physical data representation from users' view of data pointers between records represent relationships set types encoded as lists queries navigate between records—still one record at a time 	•	Network data m	nodel		
 (CODASYL) data organized as collections of sets of records separation of physical data representation from users' view of data pointers between records represent relationships set types encoded as lists queries navigate between records—still one record at a time 		• Charles Bac	hman's Integrated Data Store (ID	S)	
 data organized as collections of sets of records separation of physical data representation from users' view of data pointers between records represent relationships set types encoded as lists queries navigate between records—still one record at a time 			-	SYstems Langua	ges
 separation of physical data representation from users' view of data pointers between records represent relationships set types encoded as lists queries navigate between records—still one record at a time 		N N		5	
 set types encoded as lists queries navigate between records—still one record at a time CS 348 Overview of Database Management Winter 2013 17 / 26 		-			data
 queries navigate between records—still one record at a time CS 348 Overview of Database Management Winter 2013 17 / 26 		• pointers bet	ween records represent relationshi	ips	
CS 348 Overview of Database Management Winter 2013 17 / 26		set types end	coded as lists		
		• -		cord at a time	
otes		• -		cord at a time	
		• queries navi	gate between records—still one re		17 / 26
	otes	• queries navi	gate between records—still one re		17 / 26
	otes	• queries navi	gate between records—still one re		17 / 26
	otes	• queries navi	gate between records—still one re		17 / 26
	otes	• queries navi	gate between records—still one re		17 / 26
	otes	• queries navi	gate between records—still one re		17 / 26
	otes	• queries navi	gate between records—still one re		17 / 26
	otes	• queries navi	gate between records—still one re		17 / 26
	otes	• queries navi	gate between records—still one re		17 / 26
	otes	• queries navi	gate between records—still one re		17 / 26
	otes	• queries navi	gate between records—still one re		17 / 26
	otes	• queries navi	gate between records—still one re		
	otes	• queries navi	gate between records—still one re		
	otes	• queries navi	gate between records—still one re		
	otes	• queries navi	gate between records—still one re		

Database Management System

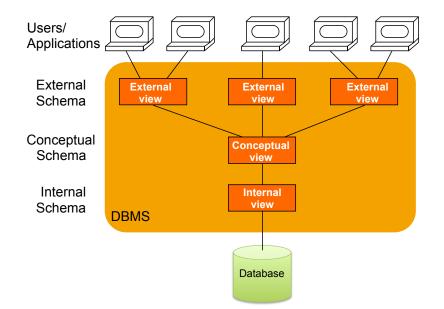
Idea

Abstracts common functions and creates a uniform well defined interface for applications accessing data.

1	Data Model all data stored in a well defined way
2	Access control only authorized people get to see/modify it
3	Concurrency control multiple concurrent applications access data
4	Database recovery nothing gets accidentally lost

5 Database maintenance

	CS 348	Overview of Database Management	Winter 2013	18 / 26
Tatag	0100	Overview of Database Management	WINGE 2010	10 / 20
lotes				


Definition (Schema)

A schema is a description of the data interface to the database (i.e., how the data is organized).

- 1 External schema (view): what the application programs and user see. May differ for different users of the same database.
- 2 Conceptual schema: description of the logical structure of all data in the database.
- 3 Physical schema: description of physical aspects (selection of files, devices, storage algorithms, etc.)

	CS 348	Overview of Database Management	Winter 2013	19 / 26
Not	es			

Three-level Schema Architecture (cont.)

	CS 348	Overview of Database Management	Winter 2013	20 / 26
Notes				

Data Independence

Idea

Applications do not access data directly but, rather through an abstract data model provided by the DBMS.

Two kinds of data independence:

Physical: applications immune to changes in storage structures Logical: applications immune to changes in data organization

1	Note	
(One of the most important reasons to use a DBMS!	

	CS 348	Overview of Database Management	Winter 2013	21 / 26
Notes				

Data Definition Language (DDL): for specifying schemas

- may have different DDLs for external schema, conceptual schema, internal schema
- information is stored in the data dictionary, or catalog

Data Manipulation Language (DML): for specifying queries and updates

- navigational (procedural)
- non-navigational (declarative)

	CS 348	Overview of Database Management	Winter 2013	22 / 26
Notes				

Types of Database Users

End user:

- Accesses the database indirectly through forms or other query-generating applications, or
- Generates ad-hoc queries using the DML.

Application developer:

• Designs and implements applications that access the database.

Database administrator (DBA):

- Manages conceptual schema.
- Assists with application view integration.
- Monitors and tunes DBMS performance.
- Defines internal schema.
- Loads and reformats database.
- Is responsible for security and reliability.

	CS 348	Overview of Database Management	Winter 2013	23 / 26
Notes				

When multiple applications access the same data, undesirable results occur.

Example:

```
withdraw(AC,1000)
Bal := getbal(AC)
if (Bal>1000)
   <give-money>
   setbal(AC,Bal-1000)
```

withdraw(AC,500)

Bal := getbal(AC)
if (Bal>500)
 <give-money>

setbal(AC,Bal-500)

Idea

Every application may think it is the sole application accessing the data. The DBMS should guarantee correct execution.

	CS 348	Overview of Database Management	Winter 2013	24 / 26
Votes				

Definition (Transaction)

An application-specified atomic and durable unit of work.

Properties of transactions ensured by the DBMS:

Atomic:	a transaction occurs entirely, or not at all
Consistency:	each transaction preserves the consistency of the database
Isolated:	concurrent transactions do not interfere with each other
Durable:	once completed, a transaction's changes are permanent

	CS 348	Overview of Database Management	Winter 2013	25 / 26
Notes				

Summary

Using a DBMS to manage data helps:

- to remove common code from applications
- to provide uniform access to data
- to guarantee data integrity
- to manage concurrent access
- to protect against system failure
- to set access policies for data

	CS 348	Overview of Database Management	Winter 2013	26 / 26
No	tes			