Data Modeling and the Entity-Relationship Model

Ashraf Aboulnaga

David R. Cheriton School of Computer Science University of Waterloo

CS 348 Introduction to Database Management Winter 2013

	CS 348	E-R Model	Winter 2013	1 / 50
Notes				

Outline

1	Basic E-R Modeling			
	Entities			
	Attributes			
	Relationships			
	Roles			
2	Constraints in E-R Mo	dels		
	Primary Keys			
	Relationship Types			
	Existence Dependence	cies		
	General Cardinality			
8	Extensions to E-R Mod			
•	Structured Attribute			
	Aggregation			
	Specialization			
	Generalization			
	Design Considerations			
	Translating E-R Diagra	ame to a Relational Sch	nema	
				0 / 50
	CS 348	E-R Model	Winter 2013	2 / 50
es				2 / 50
				2 / 50
				2 / 50
				2 / 50
				2 / 50
				2 / 50
				2 / 50
				2 / 50
				2 / 50
				2 / 50
				2 / 50
				2 / 50
				2 / 50
				2 / 50
				2 / 50

Overview of E-R Model

Used for (and designed for) database (conceptual schema) design

 \Rightarrow Proposed by Peter Chen in 1976

World/enterprise described in terms of

- entities
- attributes
- relationships

Visualization: E-R diagram

N.B. Many variant notations are in common use

	CS 348	E-R Model	Winter 2013	3 / 50
Notes				

Basic E-R Modeling

Entity: a distinguishable object

Entity set: set of entities of same type Examples:

- students currently at University of Waterloo
- flights offered by Air Canada
- burglaries in Ontario during 1994

Graphical representation of entity sets:

	Student	Flight	Burglary
Notes	CS 348	E-R Model	Winter 2013 4 / 50
.10165			

Basic E-R Modeling (cont'd)

Attributes: describe properties of entities Examples (for Student-entities): StudentNum, StudentName, Major, ...

Domain: set of permitted values for an attribute

Graphical representation of attributes:

Relationship: representation of the fact that certain entities are related to each other

Relationship set: set of relationships of a given type Examples:

- students registered in courses
- passengers booked on flights
- parents and their children
- bank branches, customers and their accounts

In order for a relationship to exist, the participating entities must exist.

	CS 348	E-R Model	Winter 2013	6 / 50
Notes				

Graphical Representation

	CS 348	E-R Model	Winter 2013	7 / 50
Notes				

Graphical Representation (cont'd)

Multiple Relationships and Role Names

Role: the function of an entity set in a relationship set Role name: an explicit indication of a role

Example:

Role labels are needed whenever an entity set has multiple functions in a relationship set.

	CS 348	E-R Model	Winter 2013	9 / 50
Notes				

Relationships and Attributes

Relationships may also have attributes

Example:

Constraints in E-R Models

- Primary keys
- Relationship types
- Existence dependencies
- General cardinality constraints

	CS 348	E-R Model	Winter	2013	11 / 50
Notes					

Primary Keys

Each entity must be distinguishable from any other entity in an entity set by its attributes

Primary key: selection of attributes chosen by designer values of which determines the particular entity.

Relationship Types

- many-to-many (N:N): an entity in one set can be related to many entities in the other set, and vice versa (This is the interpretation we have used so far.)
- many-to-one (N:1): each entity in one set can be related to at most one entity in the other, but an entity in the second set may be related to many entities in the first

- one-to-many (1:N): similar
- one-to-one (1:1): each entity in one set can be related to at most one entity in the other, and vise versa

Existence Dependencies

Sometimes the existence of an entity depends on the existence of another entity

If x is existence dependent on y, then

- y is a dominant entity
- x is a subordinate entity

Example: "Transactions are existence dependent on accounts."

Identifying Subordinate Entities

Weak entity set: an entity set containing subordinate entities Strong entity set: an entity set containing no subordinate entities

Attributes of weak entity sets only form key relative to a given dominant entity

Example: "All transactions for a given account have a unique transaction number."

Identifying Subordinate Entities (cont'd)

A weak entity set must have a many-to-one relationship to a distinct entity set

Visualization: (distinguishing an identifying relationship)

Discriminator of a weak entity set: set of attributes that distinguish subordinate entities of the set, for a particular dominant entity

Primary key for a weak entity set: discriminator + primary key of entity set for dominating entities

	CS 348	E-R Model	Winter 2013	16 / 50
Notes				

General Cardinality Constraints

General cardinality constraints determine lower and upper bounds on the number of relationships of a given relationship set in which a component entity may participate

Extensions to E-R Modeling

- Structured attributes
- Aggregation
- Specialization
- Generalization
- Disjointness

	CS 348	E-R Model	Winter 2013	18 / 50
Notes				

Structured Attributes

Composite attributes: composed of fixed number of other attributes Multi-valued attributes: attributes that are set-valued

Example:

Aggregation

Relationships can be viewed as higher-level entities

Example: "Accounts are assigned to a given student enrollment."

A specialized kind of entity set may be derived from a given entity set

Example: "Graduate students are students who have a supervisor and a number of degrees."

Several entity sets can be abstracted by a more general entity set

Example: "A vehicle abstracts the notion of a car and a truck."

Disjointness

Specialized entity sets are usually disjoint but can be declared to have entities in common

- By default, specialized entity sets are disjoint. Example: We may decide that nothing is both a car and a truck.
- However, we can declare them to overlap (to accommodate utility vehicles, perhaps).

			MakeA	AndModel			
		Licen	venue venu	ehicle Pric	re		
				OVERLAPS			
		Tonnage) Truck	Car	MaxSpeed		
		(AxelCount	PassengerC	Count		
	CS 348		E-R	Model		Winter 2013	23 / 50
Notes							

Designing An E-R Schema

Usually many ways to design an E-R schema Points to consider

- use attribute or entity set?
- use entity set or relationship set?
- degrees of relationships?
- extended features?

	CS 348	E-R Model	Winter 2013	24 / 50
No	tes			

Example: Should one model employees' phones by a PhoneNumber attribute, or by a Phone entity set related to the Employee entity set?

Rules of thumb:

- Is it a separate object?
- Do we maintain information about it?
- Can several of its kind belong to a single entity?
- Does it make sense to delete such an object?
- Can it be missing from some of the entity set's entities?
- Can it be shared by different entities?

An affirmative answer to any of the above suggests a new entity set.

	CS 348	E-R Model	Winter 2013	25 / 50
Notes				

Instead of representing accounts as entities, we could represent them as relationships

	BranchName			
	Branch			
		Ba	alance	
		Account		
		Account	AccountNum	
			Accountivum	
	StreetAddr	Customer SIN		
	CustomerNan	me CustomerCity		
	CS 348	E-R Model	Winter 2013	26 / 50
ces	0.0010			20 / 00

Binary vs. N-ary Relationships?

Binary vs. N-ary Relationships (cont'd)

We can always represent a relationship on n entity sets with n binary relationships

- 1 Recognize entity sets
- 2 Recognize relationship sets and participating entity sets
- 3 Recognize attributes of entity and relationship sets
- **4** Define relationship types and existence dependencies
- **5** Define general cardinality constraints, keys and discriminators
- 6 Draw diagram

For each step, maintain a log of assumptions motivating the choices, and of restrictions imposed by the choices

	CS 348	E-R Model	Winter 2013	29 / 50
Notes	5			

Example: A Registrar's Database

- Zero or more sections of a course are offered each term. Courses have names and numbers. In each term, the sections of each course are numbered starting with 1.
- Most course sections are taught on-site, but a few are taught at off-site locations.
- Students have student numbers and names.
- Each course section is taught by a professor. A professor may teach more than one section in a term, but if a professor teaches more than one section in a term, they are always sections of the same course. Some professors do not teach every term.
- Up to 50 students may be registered for a course section. Sections with 5 or fewer students are cancelled.
- A student receives a mark for each course in which they are enrolled. Each student has a cumulative grade point average (GPA) which is calculated from all course marks the student has received.

	CS 348	E-R Model	Winter 2013	30 / 50
lotes				
0000				
· · · · ·				

	CS 348	E-R Model	Winter 2013	32 / 50
Notes				

E-R Diagram to Relational Schema

Main ideas:

- Each entity set maps to a new table
- Each attribute maps to a new table column
- Each relationship set maps to either new table columns or to a new table

	CS 348	E-R Model	Winter 2013	36 / 50
Notes				
110000				

Representing Strong Entity Sets

Entity set E with attributes a_1, \ldots, a_n translates to table E with attributes a_1, \ldots, a_n

Entity of type $E \leftrightarrow$ row in table EPrimary key of entity set \rightarrow primary key of table Example:

Weak entity set E translates to table E

Columns of table E should include

- Attributes of the weak entity set
- Attributes of the identifying relationship set
- Primary key attributes of entity set for dominating entities

Primary key of weak entity set \rightarrow primary key of table

	CS 348	E-R Model	Winter 2013	38 / 50
Notes				

Representing Weak Entity Sets (cont.)

Example:

- If the relationship set is an identifying relationship set for a weak entity set then no action needed
- If we can deduce the general cardinality constraint (1,1) for a component entity set E then add following columns to table E
 - Attributes of the relationship set
 - Primary key attributes of remaining component entity sets
- Otherwise: relationship set $R
 ightarrow { t table } R$

	CS 348	E-R Model	Winter 2013	40 / 50
Notes				

• Columns of table R should include

- Attributes of the relationship set
- Primary key attributes of each component entity set
- Primary key of table R determined as follows
 - If we can deduce the general cardinality constraint (0,1) for a component entity set E, then take the primary key attributes for E
 - Otherwise, choose primary key attributes of each component entity

	CS 348	E-R Model	Winter 2013	41 / 50
Notes				

Representing Relationship Sets (cont.)

Example:

Note that the role name of a component entity set should be prepended to its primary key attributes, if supplied.

	CS 348	E-R Model	Winter 2013	42 / 50
Notes				

Tabular representation of aggregation of R

= tabular representation for relationship set R

To represent relationship set involving aggregation of R, treat the aggregation like an entity set whose primary key is the primary key of the table for R

	CS 348	E-R Model	Winter 2013	43 / 50
lotes				

Representing Aggregation (cont.)

Representing Specialization

Create table for higher-level entity set, and treat specialized entity subsets like weak entity sets (without discriminators)

Example:

Create a table for each lower-level entity set only

Columns of new tables should include

- Attributes of lower level entity set
- Attributes of the superset

The higher-level entity set can be defined as a view on the tables for the lower-level entity sets

	CS 348	E-R Model	Winter 2013	46 / 50
No	tes			

Representing Generalization (Approach #1)

Example	e: MakeAndModel
	LicenceNum Vehicle Price
	COVERS
	Tonnage Truck Car MaxSpeed
	Tomage Thek Cai Maxspeed
	AxelCount PassengerCount
	Truck
	LicenceNum MakeAndModel Price Tonnage AxelCount
	Car
	LicenceNum MakeAndModel Price MaxSpeed PassengerCount
C	E-R Model Winter 2013 47 / 50
Notes	

Representing Generalization (Approach #2)

Treat generalization the same as specialization.

Example:

	CS 348	E-R Model	Winter 2013	48 / 50
Notes				

Example Translation: ER Diagram

Example Translation: Relational Diagram

