Relational Algebra

Ashraf Aboulnaga

David R. Cheriton School of Computer Science University of Waterloo

CS 348 Introduction to Database Management Winter 2013

	CS 348	Relational Algebra	Winter 2013	1 / 15
Notes				

Database Schema Used in Examples

Relational Algebra

- the relational algebra consists of a set of operators
- relational algebra is *closed*
 - each operator takes as input zero or more relations
 - each operator defines a single output relation in terms of its input relation(s) $% \left(s\right) =\left(s\right) \left(s\right$
 - relational operators can be composed to form expressions that define new relations in terms of existing relations.
- Notation:

R is a relation name; E is a relational algebra expression

	CS 348	Relational Algebra	Winter 2013 3 /	15
VO.	es			

- Relation Name: R
- Selection: $\sigma_{condition}(E)$
 - result schema is the same as E's
 - result instance includes the subset of the tuples of E that each satisfies the condition
- Projection: $\pi_{attributes}(E)$
 - result schema includes only the specified attributes
 - result instance could have as many tuples as E, except that duplicates are eliminated

CS 348	Relational Algebra	Winter 2013	4 / 15
	CS 348	CS 348 Relational Algebra	CS 348 Relational Algebra Winter 2013

```
• Rename: \rho(R(\overline{F}), E)
```

- \overline{F} is a list of terms of the form oldname
 ightarrow newname
- returns the result of E with columns renamed according to \overline{F} .
- remembers the result as R for future expressions

• Product: $E_1 \times E_2$

- result schema has all of the attributes of E_1 and all of the attributes of E_2
- result instance includes one tuple for every pair of tuples (one from each expression result) in E_1 and E_2
- sometimes called cross-product or Cartesian product
- renaming is needed when E_1 and E_2 have common attributes

	CS 348	Relational Algebra	Winter 2013	5 / 15
Νc	tes			

Cross Product Example

R	
AAA	BBB
a_1	b_1
a_2	b_2
a_3	<i>b</i> 3

S	
CCC	DDD
<i>c</i> ₁	d_1
<i>c</i> ₂	d_2

R imes S			
AAA	BBB	CCC	DDD
a_1	b_1	c_1	d_1
a_2	b_2	c_1	d_1
a_3	b_3	c_1	d_1
a_1	b_1	c_2	d_2
a_2	b_2	<i>C</i> ₂	d_2
a_3	b_3	<i>C</i> ₂	d_2

	CS 348	Relational Algebra	Winter 2013	6 / 15
lotes				- /

Select, Project, Product Examples

- Note: Use Emp to mean the Employee relation, Proj the project relation
- Find the last names and hire dates of employees who make more than \$100000.

 $\pi_{LastName,HireDate}(\sigma_{Salary>100000}(Emp))$

• For each project for which department E21 is responsible, find the name of the employee in charge of that project.

 $\pi_{ProjNo,LastName}(\sigma_{DeptNo=E21}(\sigma_{RespEmp=EmpNo}(Emp imes Proj)))$

	CS 348	Relational Algebra	Winter 2013	7 / 15
Notes				

Joins

- Conditional join: $E_1 \Join_{condition} E_2$
 - equivalent to $\sigma_{condition}(E_1 \times E_2)$
 - special case: equijoin

 $Proj \bowtie_{(\text{RespEmp}=\text{EmpNo})} Emp$

- Natural join $(E_1 \bowtie E_2)$
 - The result of $E_1 \bowtie E_2$ can be formed by the following steps
 - 1 form the cross-product of E_1 and E_2 (renaming duplicate attributes) 2 eliminate from the cross product any tuples that do not have
 - matching values for all pairs of attributes common to schemas E_1 and E_2
 - **3** project out duplicate attributes
 - if no attributes in common, this is just a product

	CS 348	Relational Algebra	Winter 2013	8 / 15
Not	es			

Example: Natural Join

- Consider the natural join of the Project and Department tables, which have attribute DeptNo in common
 - the schema of the result will include attributes ProjName, DeptNo, RespEmp, MajProj, DeptName, MgrNo, and AdmrDept
 - the resulting relation will include one tuple for each tuple in the Project relation (why?)

Notes		CS 348	Relational Algebra	Winter 2013 9 / 15
	Notes			

- Union $(R \cup S)$:
 - schemas of R and S must be "union compatible"
 - result includes all tuples that appear either in R or in S or in both
- Difference (R S):
 - schemas of R and S must be "union compatible"
 - result includes all tuples that appear in R and that do not appear in S
- Intersection $(R \cap S)$:
 - schemas of R and S must be "union compatible"
 - result includes all tuples that appear in both R and S
- Union Compatible:
 - Same number of fields.
 - 'Corresponding' fields have the same type

	CS 348	Relational Algebra	Winter 2013	10 / 15
Notes				

Relational Division

X			
Α	В	C	
a_1	b_1	<i>c</i> ₁	S
a_1	b_1	<i>c</i> ₂	$\begin{bmatrix} S \\ B \\ C \end{bmatrix} = \begin{bmatrix} X/S \\ \hline \end{bmatrix}$
a_1	b_2	c_2	
a_2	b_1	c_1	$\begin{vmatrix} b_1 & c_1 \\ b_2 & c_1 \end{vmatrix}$
a_2	b_1	<i>c</i> ₂	$egin{array}{c c c c c c c c c c c c c c c c c c c $
a_2	b_2	c_2	b_2 c_2
a_2	b_3	<i>C</i> 3	
a_3	b_1	c_1	

	CS 348	Relational Algebra	Winter 2013	11 / 15
Notes				

Division is the Inverse of Product

	CS 348	Relational Algebra	Winter 2013	12 / 15
Notes				

Summary of Relational Operators

	CS 348	Relational Algebra	Winter 2013	13 / 15
Notes				

Algebraic Equivalences

• This:

$$\pi_{ProjNo,LastName}(\sigma_{DeptNo=E21}(\sigma_{RespEmp=EmpNo}(E imes P)))$$

• is equivalent to this:

$$\pi_{ProjNo,LastName}(\sigma_{DeptNo=E21}(E \bowtie_{RespEmp=EmpNo} P))$$

• is equivalent to this:

$$\pi_{ProjNo,LastName}(E \Join_{RespEmp=EmpNo} \sigma_{DeptNo=E21}(P))$$

• is equivalent to this:

$$egin{aligned} \pi_{ProjNo,LastName}(&(&\pi_{LastName,EmpNo}(E)) ⅇ_{RespEmp=EmpNo}\ &(&\pi_{ProjNo,RespEmp}(\sigma_{DeptNo=E21}(P)))) \end{aligned}$$

• More on this topic later when we discuss database tuning...

	CS 348	Relational Algebra	Winter 2013	14 / 15
Notes				

Definition (Relationally Complete)

A query language that is at least as expressive as relational algebra is said to be *relationally complete*.

- The following languages are all relationally complete:
 - safe relational calculus
 - relational algebra
 - SQL
- SQL has additional expressive power because it captures duplicate tuples, unknown values, aggregation, ordering, ...

	CS 348	Relational Algebra	Winter 2013	15 / 15
Notes				