Relational Algebra

Ashraf Aboulnaga

David R. Cheriton School of Computer Science
University of Waterloo

CS 348

Introduction to Database Management
Winter 2013

| | CS 348 | Relational Algebra |
| :--- | :--- | :--- |\quad Winter $20131 / 15$

Database Schema Used in Examples

Relational Algebra

- the relational algebra consists of a set of operators
- relational algebra is closed
- each operator takes as input zero or more relations
- each operator defines a single output relation in terms of its input relation(s)
- relational operators can be composed to form expressions that define new relations in terms of existing relations.
- Notation:
R is a relation name; E is a relational algebra expression

Primary Relational Operators

- Relation Name: R
- Selection: $\sigma_{\text {condition }}(E)$
- result schema is the same as E 's
- result instance includes the subset of the tuples of E that each satisfies the condition
- Projection: $\pi_{\text {attributes }}(E)$
- result schema includes only the specified attributes
- result instance could have as many tuples as E, except that duplicates are eliminated

Primary Relational Operators (cont'd)

- Rename: $\rho(R(\bar{F}), E)$
- \bar{F} is a list of terms of the form oldname \rightarrow newname
- returns the result of E with columns renamed according to \bar{F}.
- remembers the result as R for future expressions
- Product: $E_{1} \times E_{2}$
- result schema has all of the attributes of E_{1} and all of the attributes of E_{2}
- result instance includes one tuple for every pair of tuples (one from each expression result) in E_{1} and E_{2}
- sometimes called cross-product or Cartesian product
- renaming is needed when E_{1} and E_{2} have common attributes

Cross Product Example

R

$A A A$	$B B B$
a_{1}	b_{1}
a_{2}	b_{2}
a_{3}	b_{3}

S	
$C C C$	$D D D$
c_{1}	d_{1}
c_{2}	d_{2}

$R \times S$

$A A A$	$B B B$	$C C C$	$D D D$
a_{1}	b_{1}	c_{1}	d_{1}
a_{2}	b_{2}	c_{1}	d_{1}
a_{3}	b_{3}	c_{1}	d_{1}
a_{1}	b_{1}	c_{2}	d_{2}
a_{2}	b_{2}	c_{2}	d_{2}
a_{3}	b_{3}	c_{2}	d_{2}

Select,Project,Product Examples

- Note: Use Emp to mean the Employee relation, Proj the project relation
- Find the last names and hire dates of employees who make more than $\$ 100000$.

$$
\pi_{\text {LastName, HireDate }}\left(\sigma_{\text {Salary }>100000}(E m p)\right)
$$

- For each project for which department E21 is responsible, find the name of the employee in charge of that project.

$$
\pi_{\text {ProjNo,LastName }}\left(\sigma_{D e p t N o=E 21}\left(\sigma_{\text {RespEmp }=E m p N o}(E m p \times P r o j)\right)\right)
$$

Joins

- Conditional join: $E_{1} \bowtie_{\text {condition }} E_{2}$
- equivalent to $\sigma_{\text {condition }}\left(E_{1} \times E_{2}\right)$
- special case: equijoin

$$
\text { Proj } \bowtie_{(\text {RespEmp=EmpNo })} E m p
$$

- Natural join $\left(E_{1} \bowtie E_{2}\right)$
- The result of $E_{1} \bowtie E_{2}$ can be formed by the following steps
(1) form the cross-product of E_{1} and E_{2} (renaming duplicate attributes)
(2) eliminate from the cross product any tuples that do not have matching values for all pairs of attributes common to schemas E_{1} and E_{2}
(3) project out duplicate attributes
- if no attributes in common, this is just a product

Example: Natural Join

- Consider the natural join of the Project and Department tables, which have attribute DeptNo in common
- the schema of the result will include attributes ProjName, DeptNo, RespEmp, MajProj, DeptName, MgrNo, and AdmrDept
- the resulting relation will include one tuple for each tuple in the Project relation (why?)

Set-Based Relational Operators

- Union $(R \cup S)$:
- schemas of R and S must be "union compatible"
- result includes all tuples that appear either in R or in S or in both
- Difference $(R-S)$:
- schemas of R and S must be "union compatible"
- result includes all tuples that appear in R and that do not appear in S
- Intersection $(R \cap S)$:
- schemas of R and S must be "union compatible"
- result includes all tuples that appear in both R and S
- Union Compatible:
- Same number of fields.
- 'Corresponding' fields have the same type

Relational Division

Division is the Inverse of Product

Summary of Relational Operators

$$
\begin{array}{ccl}
E & ::= & R \\
& \sigma_{\text {condition }}(E) \\
& \pi_{\text {attributes }}(E) \\
\rho(R(\bar{F}), E) \\
& E_{1} \times E_{2} \\
& E_{1} \bowtie \text { condition } E_{2} \\
& E_{1} \bowtie E_{2} \\
E_{1} \cup E_{2} \\
& E_{1} \cap E_{2} \\
& E_{1}-E_{2} \\
& E_{1} / E_{2}
\end{array}
$$

	CS 348	Relational Algebra	Winter 2013
Notes		$15 / 15$	

Algebraic Equivalences

- This:
$\pi_{\text {ProjNo,LastName }}\left(\sigma_{\text {DeptNo }=E 21}\left(\sigma_{\text {RespEmp }=E m p N o}(E \times P)\right)\right)$
- is equivalent to this:

$$
\pi_{\text {ProjNo,LastName }}\left(\sigma_{\text {DeptNo=E21 }}\left(E \bowtie_{\text {RespEmp=EmpNo }} P\right)\right)
$$

- is equivalent to this:

$$
\pi_{\text {ProjNo,LastName }}\left(E \bowtie_{\text {RespEmp }=E m p N o} \sigma_{\text {DeptNo }=E 21}(P)\right)
$$

- is equivalent to this:

$$
\begin{aligned}
\pi_{\text {ProjNo,LastName }}(& \left(\pi_{\text {LastName,EmpNo }}(E)\right) \bowtie_{\text {RespEmp }=E m p N o} \\
& \left.\left(\pi_{\text {ProjNo,RespEmp }}\left(\sigma_{\text {DeptNo }=E 21}(P)\right)\right)\right)
\end{aligned}
$$

- More on this topic later when we discuss database tuning...

CS 348

Relational Algebra
Winter 2013
$14 / 15$
Notes

Relational Completeness

Definition (Relationally Complete)

A query language that is at least as expressive as relational algebra is said to be relationally complete.

- The following languages are all relationally complete:
- safe relational calculus
- relational algebra
- SQL
- SQL has additional expressive power because it captures duplicate tuples, unknown values, aggregation, ordering, ...

