
Transactions 1

Problems Caused by Failures

• Update all account balances at a bank branch.

Accounts(Anum, CId, BranchId, Balance)

update Accounts

set Balance = Balance * 1.05

where BranchId = 12345

If the system crashes while processing this update, some,
but not all, tuples with BranchId = 12345 may have
been updated.

CS 348 Introduction to Database Management Winter 2007

Transactions 2

Another Failure-Related Problem

• transfer money between accounts:

update Accounts

set Balance = Balance - 100

where Anum = 8888

update Accounts

set Balance = Balance + 100

where Anum = 9999

If the system fails between these updates, money may be
withdrawn but not redeposited

CS 348 Introduction to Database Management Winter 2007



Transactions 3

Problems Caused by Concurrency

• Application 1:

update Accounts

set Balance = Balance - 100

where Anum = 8888

update Accounts

set Balance = Balance + 100

where Anum = 9999

• Application 2:

select Sum(Balance)

from Accounts

If the applications run concurrently, the total balance re-
turned to application 2 may be inaccurate.

CS 348 Introduction to Database Management Winter 2007

Transactions 4

Another Concurrency Problem

• Application 1:

select balance into :balance

from Accounts

where Anum = 8888

compute :newbalance using :balance

update Accounts

set Balance = :newbalance

where Anum = 8888

• Application 2: same as Application 1

If the applications run concurrently, one of the updates
may be “lost”.

CS 348 Introduction to Database Management Winter 2007



Transactions 5

Transaction Properties

• Transactions are durable, atomic application-specified units of
work.

Atomic: indivisible, all-or-nothing.

Durable: effects survive failures.

A tomic: a transaction occurs entirely, or not at all

C onsistent

I solated: a transaction’s unfinished changes are not vis-
ible to others

D urable: once it is complete, a transaction’s changes are
permanent

CS 348 Introduction to Database Management Winter 2007

Transactions 6

Serializability (informal)

• Concurrent transactions must appear to have been executed
sequentially, i.e., one at a time, in some order. If Ti and Tj are
concurrent transactions, then either:

– Ti will appear to precede Tj , meaning that Tj will “see” any
updates made by Ti , and Ti will not see any updates made by Tj

, or

– Ti will appear to follow Tj , meaning that Ti will see Tj ’s updates
and Tj will not see Ti’s.

CS 348 Introduction to Database Management Winter 2007



Transactions 7

Serializability: An Example

• An interleaved execution of two transactions, T1 and T2:

Ha = w1[x] r2[x] w1[y] r2[y]

• An equivalent serial execution of T1 and T2:

Hb = w1[x] w1[y] r2[x] r2[y]

• An interleaved execution of T1 and T2 with no equivalent serial
execution:

Hc = w1[x] r2[x] r2[y] w1[y]

Ha is serializable because it is equivalent to Hb , a serial
schedule. Hc is not serializable.

CS 348 Introduction to Database Management Winter 2007

Transactions 8

Transactions and Histories

• Two operations conflict if:

– they belong to different transactions

– they operate on the same object

– at least one of the operations is a write

• A transaction is a sequence of read and write operations.

• An execution history over a set of transactions T1 . . . Tn is an
interleaving of the the operations of T1 . . . Tn in which the operation
ordering imposed by each transaction is preserved.

• Two important assumptions:

– transactions interact with each other only via database reads
and writes

– a database is a fixed set of independent objects

CS 348 Introduction to Database Management Winter 2007



Transactions 9

Serializability

• Two histories are (conflict) equivalent if

– they are over the same set of transactions, and

– the ordering of each pair of conflicting operations is the same in
each history

• A history H is said to be (conflict) serializable if there exists some
serial history H′ that is (conflict) equivalent to H

CS 348 Introduction to Database Management Winter 2007

Transactions 10

Testing for Serializability

r1[x] r3[x] w4[y] r2[u] w4[z] r1[y] r3[u] r2[z] w2[z] r3[z] r1[z] w3[y]

Is this history serializable?

A history is serializable iff its serialization graph is
acyclic.

CS 348 Introduction to Database Management Winter 2007



Transactions 11

Serialization Graphs

r1[x] r3[x] w4[y] r2[u] w4[z] r1[y] r3[u] r2[z] w2[z] r3[z] r1[z] w3[y]

T1 T2

T3 T4

CS 348 Introduction to Database Management Winter 2007

Transactions 12

Serialization Graphs (cont’d)

r1[x] r3[x] w4[y] r2[u] w4[z] r1[y] r3[u] r2[z] w2[z] r3[z] r1[z] w3[y]

T1 T2

T3 T4

The history above is equivalent to

w4[y]w4[z] r2[u] r2[z]w2[z] r1[x] r1[y] r1[z]r3[x] r3[u] r3[z]w3[y]

That is, it is equivalent to executing T4 followed by T2 fol-
lowed by T1 followed by T3.

CS 348 Introduction to Database Management Winter 2007



Transactions 13

Abort and Commit

• A transaction may terminate in one of two ways:

– When a transaction commits, any updates it made become
durable, and they become visible to other transactions. A
commit is the “all” in “all-or-nothing” execution.

– When a transaction aborts, any updates it may have made are
undone (erased), as if the transaction never ran at all. An abort
is the “nothing” in “all-or-nothing” execution.

• A transaction that has started but has not yet aborted or committed
is said to be active.

CS 348 Introduction to Database Management Winter 2007

Transactions 14

Transactions in SQL

• A new transaction is begun when an application first executes an
SQL command.

• Two SQL commands are available to terminate a transaction:

– commit work: commits the transaction

– rollback work: abort the transaction

• A new transaction begins with the application’s next SQL command
after commit workor rollback work.

CS 348 Introduction to Database Management Winter 2007



Transactions 15

SQL Isolation Levels

• SQL allows the serializability guarantee to be relaxed, if necessary.

• For each transaction, it is possible to specify an isolation level.

• Four isolation levels are supported, with the highest being
serializability:

Level 0 (Read Uncommitted): transaction may see uncommitted
updates

Level 1 (Read Committed): transaction sees only committed
changes, but non-repeatable reads are possible

Level 2 (Repeatable Read): reads are repeatable, but
“phantoms” are possible

Level 3 (Serializability)

CS 348 Introduction to Database Management Winter 2007

Transactions 16

Non-Repeatable Reads

• Application 1:

update Employee

set Salary = Salary + 1000

where WorkDept = ’D11’

• Application 2:

select * from Employee

where WorkDept = ’D11’

select * from Employee

where Lastname like ’A%’

If there are employees in D11 with surnames that begin
with “A”, Application 2’s queries may see them with dif-
ferent salaries.

CS 348 Introduction to Database Management Winter 2007



Transactions 17

Phantoms

• Application 1:

insert into Employee

values (’000123’,’Shel’,’Q’,’Jetstream’,’D11’,

’05/01/00’,52000.00)

• Application 2:

select *

from Employee

where WorkDept = ’D11’

select *

from Employee

where Salary > 50000

Application 2’s second query may see Sheldon Jetstream,
even though its first query does not.

CS 348 Introduction to Database Management Winter 2007

Transactions 18

Implementing Transactions

• The implementation of transactions in a DBMS has two parts:

Concurrency Control: guarantees that the execution history has
the desired properties (such as serializability)

Recovery Management: guarantees that committed transactions
are durable (despite failures), and that aborted transactions
have no effect on the database

CS 348 Introduction to Database Management Winter 2007



Transactions 19

Concurrency Control

• Serializability can be guaranteed by executing transactions serially,
but it many environments this leads to poor performance.

• Typically, many transactions are in progress concurrently, and a
concurrency control protocol is used to ensure that the resulting
history is serializable.

• Many concurrency control protocols have been proposed, based on:

– locking, or

– timestamps, or

– serialization graph analysis

• By far the most commonly implemented protocol is strict two-phase
locking.

• The strict two-phase locking protocol can be relaxed, as necessary,
to accommodate isolation levels below serializability.

CS 348 Introduction to Database Management Winter 2007

Transactions 20

Strict Two-Phase Locking

• The rules

1. Before a transaction may read or write an object, it must have a
lock on that object.

– a shared lock is required to read an object
– an exclusive lock is required to write an object

2. Two or more transactions may not hold locks on the same object
unless all hold shared locks.

3. A transaction may not release any locks until it commits (or
aborts).

If all transactions use strict two-phase locking, the execu-
tion history is guaranteed to be serializable.

CS 348 Introduction to Database Management Winter 2007



Transactions 21

Transaction Blocking

• Consider the following sequence of events:

– T1 acquires a shared lock on x and reads x

– T2 attempts to acquire an exclusive lock on x (so that it can write
x)

• The two-phase locking rules prevent T2 from acquiring its exlusive
lock - this is called a lock conflict.

• Lock conflicts can be resolved in one of two ways:

1. T2 can be blocked - forced to wait until T1 releases its lock

2. T1 can be pre-empted - forced to abort and give up its locks

CS 348 Introduction to Database Management Winter 2007

Transactions 22

Deadlocks

• transaction blocking can result in deadlocks For example:

– T1 reads object x

– T2 reads object y

– T2 attempts to write object x (it is blocked)

– T1 attempts to write object y (it is blocked)

A deadlock can be resolved only by forcing one of the
transactions involved in the deadlock to abort.

CS 348 Introduction to Database Management Winter 2007



Transactions 23

Recovery Management

• recovery management means:

– implementing voluntary or involuntary rollback of individual
transactions

– implementing recovery from system failures

– system failure means:

∗ the database server is halted abruptly
∗ processing of in-progress SQL command(s) is halted abruptly
∗ connections to application programs (clients) are broken.
∗ contents of memory buffers are lost
∗ database files are not damaged.

CS 348 Introduction to Database Management Winter 2007

Transactions 24

Failures and Transactions

• To ensure that transactions are atomic, every transaction that is
active when a system failure occurs must either be

– restarted after the failure from the point it which it left off, or

– rolled back after the failure

• It is difficult to restart applications after a system failure, so the
recovery manager does the following:

– abort transactions that were active at the time of the failure

– ensure that changes made by transactions that committed
before the failure are not lost

CS 348 Introduction to Database Management Winter 2007



Transactions 25

Recovery Management

• Recovery management is usually accomplished using a log.

• A log is a read/append data structure located in persistent storage
(it must survive the failure)

• When transactions are running, log records are appended to the log.
Log records contain:

UNDO information: old versions of objects that have been
modified by a transaction. UNDO information can be used to
undo database changes made by a transaction that aborts.

REDO information: new versions of objects that have been
modified by a transaction. REDO records can be used to redo the
work done by a transaction that commits.

BEGIN/COMMIT/ABORT: records are recorded whenever a
transaction begins, commits, or aborts.

CS 348 Introduction to Database Management Winter 2007

Transactions 26

Write-Ahead Log Protocol

• A log record must always be written before the corresponding
update is applied to the database

CS 348 Introduction to Database Management Winter 2007



Transactions 27

log head → T0,begin

(oldest part of the log) T0,X,99,100

T1,begin

T1,Y,199,200

T2,begin

T2,Z,51,50

T1,M,1000,10

T1,commit

T3,begin

T2,abort

T3,Y,200,50

T4,begin

(newest part of the log) T4,M,10,100

log tail → T3,commit

CS 348 Introduction to Database Management Winter 2007

Transactions 28

Recovery

• recovering from a system failure

1. Scan the log from tail to head:

– Create a list of committed transactions
– Undo updates of active and aborted transactions

2. Scan the log from head to tail:

– Redo updates of committed transactions.

• rolling back a single transaction

1. Scan the log from the tail to the transaction’s BEGIN record.

– Undo the transaction’s updates.

CS 348 Introduction to Database Management Winter 2007


