Embedded SQL 1

SQL APIs

e Interactive SQL command interpreters (e.g., DB2’s command line
processor) are simply domain-independent client programs that
interact with an SQL database server

e In general, it is necessary to write other client programs for specific
applications.

e SQL has “bindings” for various programming languages (e.g.,
C/C++, Java) that describe how applications written in those
languages can be made to interact with a database server

The main problem is the “impedance mismatch” between
set-oriented SQL and the application programming lan-
guage. How should data be passed back forth between
the two?

CS 348 Introduction to Database Management Winter 2007

Embedded SQL 2

Development Process for Embedded SQL Applications

EMBEDDED SQL /C
SOURCE

L

EMBEDDED SQL
PREPROCESSOR

C C
SOURCE LIBRARIES
c

COMPILER

OBJECT
CODE

OBJECT

© 99 | cope

CS 348 Introduction to Database Management Winter 2007

Embedded SQL 3

A Simple Example

#include <stdio.h>
EXEC SQL INCLUDE SQLCA;
main () {
EXEC SQL WHENEVER SQLERROR GOTO error;
EXEC SQL CONNECT TO sample;
EXEC SQL UPDATE Employee
SET salary = 1l.l*salary
WHERE empno = 000370’ ;
EXEC SQL COMMIT WORK;
EXEC SQL CONNECT RESET;
return(0) ;
error:
printf ("update failed, sqglcode = %ld\n",SQLCODE) ;
return(-1) ;

CS 348 Introduction to Database Management Winter 2007
Embedded SQL 4

Static Embedded SQL

e SQL DML and DDL can be embedded in a C program by prefixing
with “EXEC SQL” and suffixing with “;”.

e host variables are used to send and receive values from the
database system
— values can be sent by using host variables in place of constants.

— values can be received by using host variables in an INTO
clause.

The SELECT statement is different in embedded SQL.

CS 348 Introduction to Database Management Winter 2007

Embedded SQL 5

Declaring Host Variables

EXEC SQL BEGIN DECLARE SECTION;
char deptno[4];

char deptname[30];

char mgrnol[7];

char admrdept [4];

char location[17];

EXEC SQL END DECLARE SECTION;

/* program assigns values to variables */

EXEC SQL INSERT INTO

Department (deptno, deptname, mgrno, admrdept, location)
VALUES

(:deptno, :deptname, :mgrno, :admrdept, : location) ;

CS 348 Introduction to Database Management Winter 2007

Embedded SQL 6

Domain and Type Correspondence

Domain C Type
INTEGER long int v;
SMALLINT short int v;

REAL float v;
DOUBLE double v;
CHAR(n) char v[n+1];

VARCHAR(n) char v[n+1]; or
struct tag { short int len; char v[n]; }
DATE char v[11];

Each SQL domain (type) corresponds to a type in the host
language. See, e.g., the DB2 Application Development
Guide for complete list.

CS 348 Introduction to Database Management Winter 2007

Embedded SQL 7

Queries Using INTO

Print the last name of a specified employee.

int PrintEmployeeName (char employeenum[]) {
EXEC SQL BEGIN DECLARE SECTION;

char empnol[7];
char lastname[16];

EXEC SQL END DECLARE SECTION;

strcpy (empno, employeenum) ;

EXEC SQL
SELECT lastname INTO :lastname
FROM employee

WHERE empno = :empno;

if (SQLCODE < 0) { return(-1); } /* error */

else if (SQLCODE == 100){printf ("no such employee\n") ;}

else { printf ("%$s\n", lastname); }

return(0);
¥
CS 348 Introduction to Database Management Winter 2007
Embedded SQL 8

Indicator Variables

e What if a returned value is NULL?

— NULLs are handled using special flags called indicator
variables.

— Any host variable that might receive a NULL should have a
corresponding indicator variable.

— In C/C++, indicator variables are short ints

CS 348 Introduction to Database Management Winter 2007

Embedded SQL 9

Indicator Variables: An Example

int PrintEmployeePhone (char employeenum[]) {
EXEC SQL BEGIN DECLARE SECTION;
char empnol[7];
char phonenuml[5] ;
short int phoneind;
EXEC SQL END DECLARE SECTION;
strcpy (empno, employeenum) ;
EXEC SQL
SELECT phoneno INTO :phonenum :phoneind
FROM employee WHERE empno = :empno;
if (SQLCODE < 0) { return(-1); } /* error */
else if (SQLCODE==100){printf ("no such employee\n") ;}
else if (phoneind<0){printf ("phone unknown\n");}
else { printf ("%s\n",phonenum); }

return(0) ;

CS 348 Introduction to Database Management Winter 2007

Embedded SQL 10

Cursors

e If a query may return more than one row, then a cursor must be use
to retrieve values from the result.

e A cursor is a bit like a pointer that refers to some row of the result.
At any time, a cursor may be in one of three places:

— before first tuple
— on a tuple
— after last tuple
0 | BEFORE FIRST TUPLE | -n -1
1 -n
2 -n+1
O O O
n-1 -2
n -1
n+1| AFTER LAST TUPLE

CS 348 Introduction to Database Management Winter 2007

Embedded SQL 11

Using Cursors

1. Declare the cursor

e Declaring a cursor associates a cursor identifier with a query.

2. Open the cursor
e Opening a cursor (conceptually) causes the query to be
evaluated, generating a result.
3. Fetch one or more tuples using the cursor
e Each call to the FETCH command returns values from one tuple

of the generated result.

4. Close the cursor

CS 348 Introduction to Database Management Winter 2007

Embedded SQL 12

The FETCH Command Syntax

FETCH [<location>] <cursor-name>
[INTO <host-varls, <host-var2> ...]

e Possible locations:
— NEXT (this is the default)
- PRIOR
- FIRST
- LAST
- ABSOLUTE n
- RELATIVE n

CS 348 Introduction to Database Management Winter 2007

Embedded SQL 13

Using Cursors: An Example

void PrintEmpNames () {
int rval; /* -1 for error, 0 for success */
EXEC SQL BEGIN DECLARE SECTION;
char fullname[30];
EXEC SQL END DECLARE SECTION;
EXEC SQL DECLARE Cl1 CURSOR FOR

SELECT firstnme || ’ ' || lastname FROM Employee;
EXEC SQL OPEN C1;
for(;;) {
EXEC SQL FETCH NEXT Cl1 INTO :fullname;
if (SQLCODE == 100) { rval = 0; break; }
else if (SQLCODE < 0) { rval = -1; break;}
printf ("$s\n", fullname);
}
EXEC SQL CLOSE C1;
return(rval); }
CS 348 Introduction to Database Management Winter 2007
Embedded SQL 14

Dynamic Embedded SQL

e Must be used when tables, columns or predicates are not known at
the time the application is written.

e Basic idea:

1. prepare the statement for execution: PREPARE
- in static embedded SQL programs, statement preparation is
handled at compile time by the preprocessor

2. execute the prepared statement: EXECUTE

e once prepared, a statement may be executed multiple times, if
desired

CS 348 Introduction to Database Management Winter 2007

Embedded SQL

15

EXEC SQL

Dynamic Embedded SQL: A Simple Example

BEGIN DECLARE SECTION;

char s[100] =
INTO department VALUES (’OOO456’,’Legal’,..)";

"INSERT
EXEC SQL
EXEC SQL

END DECLARE SECTION;
EXECUTE IMMEDIATE :s;

or, to factor cost of “preparing”

EXEC SQL BEGIN DECLARE SECTION;
char s[100] =
"INSERT INTO department VALUES (’OOO456’,’Legal',..)";

EXEC SQL END DECLARE SECTION;

EXEC SQL PREPARE S1 FROM :s;

EXEC SQL EXECUTE S1;

EXEC SQL EXECUTE S1;

CS 348 Introduction to Database Management Winter 2007
Embedded SQL 16

Dynamic Embedded SQL: Using Host Variables for Input

EXEC SQL

BEGIN DECLARE SECTION;

char s[100] = "INSERT INTO employee VALUES (?,

char empno[7];

char firstname[13];

EXEC SQL

EXEC SQL

END DECLARE SECTION;

PREPARE S1 FROM :s;

strcpy (empno, "000111") ;

strcpy (firstname, "Ken") ;

EXEC SQL

EXECUTE S1 USING :empno, :firstname,

CS 348

Introduction to Database Management

Winter 2007

Embedded SQL 17

Placeholders

e In the query string
INSERT INTO employee VALUES (?, 2?2, ...)";

the ? are called placeholders

e placeholders can appear where literals can appear - not in place of
relation names, column names, etc.

e host variable values replace the placeholders when the prepared
statement is executed

e the USING clause is used to specify which host variables should
replace the placeholders:
EXEC SQL EXECUTE S1 USING :empno, :firsname, ... ;

e USING can only use used with previously-prepared statements, not
with EXECUTE IMMEDIATE

CS 348 Introduction to Database Management Winter 2007

Embedded SQL 18

Dynamic Single-Row Queries

EXEC SQL BEGIN DECLARE SECTION;
char s[100] =

"select lastname,salary from employee where empno = ?"
char empnol[7];
char lastname[1l6];
double salary;
short int salaryind;
EXEC SQL END DECLARE SECTION;
EXEC SQL PREPARE S1 FROM :s;
EXEC SQL EXECUTE S1

INTO :lastname, :salary:salaryind USING :empno

e the INTO clause specifies which host variables receive the results

e INTO (with EXECUTE) in dynamic SQL is like INTO (with
SELECT) in static

CS 348 Introduction to Database Management Winter 2007

Embedded SQL 19

Dynamic Cursors

EXEC SQL BEGIN DECLARE SECTION;
char s[100] =

"select lastname,salary from employee where edlevel = ?"
short int edlevel;
char lastname[1l6];
double salary;
short int salaryind;
EXEC SQL END DECLARE SECTION;
EXEC SQL PREPARE S1 FROM :s;
EXEC SQL DECLARE Cl1 CURSOR FOR S1;
edlevel = 18;
EXEC SQL OPEN C1l USING :edlevel;

while(...) {
EXEC SQL FETCH FROM C1
INTO :lastname, :salary:salaryind;
CS 348 Introduction to Database Management Winter 2007
Embedded SQL 20

Descriptors and the SQLDA

e if the numbers and types of input and output values are not known
in advance, SQL descriptors can be used determine them at
run-time

e an SQLDA (descriptor area) is used to hold a description of the
structure (number of attributes and their types) of a query result.

e the DESCRIBE command can be used to populate a descriptor
area, that is, no find out the structure of a query result

CS 348 Introduction to Database Management Winter 2007

Embedded SQL 21

JDBC, ODBC and CLI

e CLI (Call-Level Interface) is a vendor-neutral ISO standard

programming interface for SQL database systems. It is similar to
ODBC.

e ODBC (Open Database Connectivity), popularized by Microsoft, is a
programming interface for SQL database systems.

e JDBC (Java Database Connectivity) is a collection of Java classes
that provide an ODBC/CLI-like programming interface.

e An embedded SQL program used to access one DBMS must be
recompiled before it can be used to access a different DBMS.

e A CLI/ODBC/JDBC program need not be recompiled - a single
application may even access multiple DBMS at the same time.

CS 348 Introduction to Database Management Winter 2007

Embedded SQL 22

A CLI Example

SQLHANDLE henv; /* an environment handle*/
SQLHANDLE hdbc; /* a connection handle */
SQLHANDLE hstmt; /* a statement handle */
SQLCHAR numteamsquery[] = "select count(*) from teams";
SQLAllocHandle (SQL_HANDLE ENV, SQL NULL HANDLE, &henv) ;
DBconnect (henv, &hdbc, server,uid, pwd) ;
SQLAllocHandle (SQL HANDLE STMT, hdbc, &hstmt) ;
SQLExecDirect (hstmt, numteamsquery, SQL NTS); /* execute */
SQLFetch (hstmt); /* get one row of the result */
SQLGetData (hstmt,1,SQL C LONG, &numteams,

sizeof (numteams) , &bytesremaining) ;
SQLFreeStmt (hstmt, SQL _CLOSE); /* close the statement */

CLI/ODBC interface is similar to dynamic embedded SQL

CS 348 Introduction to Database Management Winter 2007

