
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1

The Relational Model and
Basic SQL

Chapter 3
(Except 3.5)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 2

Why Use a DBMS?

Data independence and efficient access.
Reduced application development time.
Data integrity and security.
Uniform data administration.
Concurrent access, recovery from crashes.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 3

Data Independence *

Applications insulated from how data is
structured and stored.
Logical data independence: Protection from
changes in logical structure of data.
Physical data independence: Protection from
changes in physical structure of data.

One of the most important benefits of using a DBMS!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 4

Levels of Abstraction

Many views, single
conceptual (logical) schema
and physical schema.

Views describe how users
see the data.
Conceptual schema defines
logical structure
Physical schema describes
the files and indexes used.

Schemas are defined using DDL; data is modified/queried using DML.

Physical Schema

Conceptual Schema

View 1 View 2 View 3

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 5

Relational Database: Definitions

Relational database: a set of relations
Relation: made up of 2 parts:

Instance : a table, with rows and columns.
#Rows = cardinality, #fields = degree / arity.
Schema : specifies name of relation, plus name and
type of each column.

• E.G. Students(sid: string, name: string, login: string,
age: integer, gpa: real).

Can think of a relation as a set of rows or
tuples (i.e., all rows are distinct).

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 6

Example: University Database

Conceptual schema:
Students(sid: string, name: string, login: string,

age: integer, gpa:real)
Courses(cid: string, cname:string, credits:integer)
Enrolled(sid:string, cid:string, grade:string)

Physical schema:
Relations stored as unordered files.
Index on first column of Students.

External Schema (View):
Course_info(cid:string,enrollment:integer)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 7

Example Instance of Students Relation

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@eecs 18 3.2
53650 Smith smith@math 19 3.8

Cardinality = 3, degree = 5, all rows distinct

Do all columns in a relation instance have to
be distinct?

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 8

Relational Query Languages

A major strength of the relational model:
supports simple, powerful querying of data.
Queries can be written intuitively, and the
DBMS is responsible for efficient evaluation.

The key: precise semantics for relational queries.
Allows the optimizer to extensively re-order
operations, and still ensure that the answer does
not change.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 9

The SQL Language

Developed by IBM (system R) in the 1970s
Need for a standard since it is used by many
vendors
Standards:

SQL-86
SQL-89 (minor revision)
SQL-92 (major revision)
SQL-99 (major extensions, current standard)

Both a DDL and a DML

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 10

The SQL Query Language

To find all 18 year old students, we can write:

SELECT *
FROM Students S
WHERE S.age=18

•To find just names and logins, replace the first line:

SELECT S.name, S.login

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@ee 18 3.2

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 11

Querying Multiple Relations
What does the
following query
compute?

SELECT S.name, E.cid
FROM Students S, Enrolled E
WHERE S.sid=E.sid AND E.grade=“A”

S.name E.cid
Smith Topology112

sid cid grade
53831 Carnatic101 C
53831 Reggae203 B
53650 Topology112 A
53666 History105 B

Given the following instances
of Enrolled and Students:

we get:

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@eecs 18 3.2
53650 Smith smith@math 19 3.8

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 12

Creating Relations in SQL

Creates the Students
relation. Observe that the
type (domain) of each field
is specified, and enforced by
the DBMS whenever tuples
are added or modified.
As another example, the
Enrolled table holds
information about courses
that students take.

CREATE TABLE Students
(sid: CHAR(20),
name: CHAR(20),
login: CHAR(10),
age: INTEGER,
gpa: REAL)

CREATE TABLE Enrolled
(sid: CHAR(20),
cid: CHAR(20),
grade: CHAR(2))

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 13

Some Attribute Domains in SQL

INTEGER
DECIMAL(p,q): p-bit numbers, with q bits right of decimal
FLOAT(p): p-bit floating point numbers
CHAR(n): fixed length character string, length n
VARCHAR(n): variable length character string, max. length n
DATE: describes a year, month, day
TIME: describes an hour, minute, second
TIMESTAMP: describes and date and a time on that date
YEAR/MONTH INTERVAL: time interval
DAY/TIME INTERVAL: time interval
… and many more

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 14

Destroying and Altering Relations

Destroys the relation Students. The schema
information and the tuples are deleted.

DROP TABLE Students

The schema of Students is altered by adding a
new field; every tuple in the current instance
is extended with a null value in the new field.

ALTER TABLE Students
ADD COLUMN firstYear: integer

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 15

Adding and Deleting Tuples

Can insert a single tuple using:

INSERT INTO Students (sid, name, login, age, gpa)
VALUES (53688, ‘Smith’, ‘smith@ee’, 18, 3.2)

Can delete all tuples satisfying some
condition (e.g., name = Smith):

DELETE
FROM Students S
WHERE S.name = ‘Smith’

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 16

Updating Tuples

Can update all tuples using:

UPDATE Students
SET gpa = gpa * 1.1

Can update all tuples satisfying some
condition (e.g., name = Smith):

UPDATE Students
SET gpa = gpa * 1.1
WHERE name = ‘Smith‘

Powerful variants of these commands are available; more later!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 17

Integrity Constraints (ICs)

IC: condition that must be true for any instance
of the database; e.g., domain constraints.

ICs are specified when schema is defined.
ICs are checked when relations are modified.

A legal instance of a relation is one that satisfies
all specified ICs.

DBMS should not allow illegal instances.
If the DBMS checks ICs, stored data is more
faithful to real-world meaning.

Avoids data entry errors, too!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 18

Primary Key Constraints

A set of fields is a key for a relation if :
1. No two distinct tuples can have same values in all

key fields, and
2. This is not true for any subset of the key.

Part 2 false? A superkey.
If there’s >1 key for a relation, one of the keys is
chosen (by DBA) to be the primary key.

E.g., sid is a key for Students. (What about
name?) The set {sid, gpa} is a superkey.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 19

Primary and Candidate Keys in SQL
Possibly many candidate keys (specified using
UNIQUE), one of which is chosen as the primary key.

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid,cid))

“For a given student and course,
there is a single grade.” vs.
“Students can take only one
course, and receive a single grade
for that course; further, no two
students in a course receive the
same grade.”
Used carelessly, an IC can prevent
the storage of database instances
that arise in practice!

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid),
UNIQUE (cid, grade))

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 20

Foreign Keys, Referential Integrity

Foreign key : Set of fields in one relation that is used
to `refer’ to a tuple in another relation. (Must
correspond to primary key of the second relation.)
Like a `logical pointer’.
E.g. sid is a foreign key referring to Students:

Enrolled(sid: string, cid: string, grade: string)
If all foreign key constraints are enforced, referential
integrity is achieved, i.e., no dangling references.
Can you name a data model w/o referential integrity?

• Links in HTML!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 21

Foreign Keys in SQL
Only students listed in the Students relation should
be allowed to enroll for courses.

CREATE TABLE Enrolled
(sid CHAR(20), cid CHAR(20), grade CHAR(2),

PRIMARY KEY (sid,cid),
FOREIGN KEY (sid) REFERENCES Students)

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@eecs 18 3.2
53650 Smith smith@math 19 3.8

sid cid grade
53666 Carnatic101 C
53666 Reggae203 B
53650 Topology112 A
53666 History105 B

Enrolled
Students

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 22

Enforcing Referential Integrity

Consider Students and Enrolled; sid in Enrolled is a
foreign key that references Students.
What should be done if an Enrolled tuple with a
non-existent student id is inserted? (Reject it!)
What should be done if a Students tuple is deleted?

Also delete all Enrolled tuples that refer to it.
Disallow deletion of a Students tuple that is referred to.
Set sid in Enrolled tuples that refer to it to a default sid.
(In SQL, also: Set sid in Enrolled tuples that refer to it to a
special value null, denoting `unknown’ or `inapplicable’.)

Similar if primary key of Students tuple is updated.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 23

Referential Integrity in SQL

SQL/92 and SQL:1999
support all 4 options on
deletes and updates.

Default is NO ACTION
(delete/update is rejected)
CASCADE (also delete
all tuples that refer to
deleted tuple)
SET NULL / SET DEFAULT
(sets foreign key value
of referencing tuple)

CREATE TABLE Enrolled
(sid CHAR(20),
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid,cid),
FOREIGN KEY (sid)

REFERENCES Students
ON DELETE CASCADE
ON UPDATE SET DEFAULT)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 24

Where do ICs Come From?
ICs are based upon the semantics of the real-
world enterprise that is being described in the
database relations.
We can check a database instance to see if an
IC is violated, but we can NEVER infer that
an IC is true by looking at an instance.

An IC is a statement about all possible instances!
From example, we know name is not a key, but the
assertion that sid is a key is given to us.

Key and foreign key ICs are the most
common; more general ICs supported too.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 25

Views

A view is just a relation, but we store a
definition, rather than a set of tuples.

CREATE VIEW YoungActiveStudents (name, grade)
AS SELECT S.name, E.grade
FROM Students S, Enrolled E
WHERE S.sid = E.sid and S.age<21

Views can be dropped using the DROP VIEW command.
How to handle DROP TABLE if there’s a view on the table?

• DROP TABLE command has options to let the user specify
this.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 26

Views and Security

Views can be used to present necessary
information (or a summary), while hiding
details in underlying relation(s).

Given YoungStudents, but not Students or
Enrolled, we can find students s who have are
enrolled, but not the cid’s of the courses they are
enrolled in.

