

Relational Calculus

Chapter 4

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Relational Calculus

- ❖ Comes in two flavors: <u>Tuple relational calculus</u> (TRC) and <u>Domain relational calculus</u> (DRC).
- Calculus has variables, constants, comparison ops, logical connectives and quantifiers.
 - <u>TRC</u>: Variables range over (i.e., get bound to) *tuples*.
 - *DRC*: Variables range over *domain elements* (= field values).
 - Both TRC and DRC are simple subsets of first-order logic.
- ❖ Expressions in the calculus are called *formulas*. An answer tuple is essentially an assignment of constants to variables that make the formula evaluate to *true*.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Domain Relational Calculus

* Query has the form:

$$\{\langle x1, x2, ..., xn \rangle | p(\langle x1, x2, ..., xn \rangle)\}$$

- * *Answer* includes all tuples $\langle x1, x2, ..., xn \rangle$ that make the *formula* $p(\langle x1, x2, ..., xn \rangle)$ be *true*.
- * Formula is recursively defined, starting with simple atomic formulas (getting tuples from relations or making comparisons of values), and building bigger and better formulas using the *logical* connectives.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

DRC Formulas

- * Atomic formula:
 - $\langle x1, x2, ..., xn \rangle \in Rname$, or X op Y, or X op constant op is one of $<,>,=,\leq,\geq,\neq$
- * Formula:
 - an atomic formula, or
 - $\neg p, p \land q, p \lor q$, where p and q are formulas, or
 - $\exists X (p(X))$, where variable X is *free* in p(X), or
 - $\forall X (p(X))$, where variable X is *free* in p(X)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Free and Bound Variables

- ❖ The use of quantifiers $\exists X$ and $\forall X$ in a formula is said to *bind* X.
 - A variable that is **not bound** is **free**.
- ❖ Let us revisit the definition of a query:

$$\{\langle x1, x2, ..., xn \rangle | p(\langle x1, x2, ..., xn \rangle)\}$$

❖ There is an important restriction: the variables x1, ..., xn that appear to the left of `|' must be the *only* free variables in the formula p(...).

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

5

Find all sailors with a rating above 7

$$\{\langle I, N, T, A \rangle | \langle I, N, T, A \rangle \in Sailors \land T > 7\}$$

- ❖ The condition $\langle I, N, T, A \rangle \in Sailors$ ensures that the domain variables I, N, T and A are bound to fields of the same Sailors tuple.
- * The term $\langle I, N, T, A \rangle$ to the left of `|' (which should be read as *such that*) says that every tuple $\langle I, N, T, A \rangle$ that satisfies T > 7 is in the answer.
- Modify this query to answer:
 - Find sailors who are older than 18 or have a rating under 9, and are called 'Joe'.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Find sailors rated > 7 who have reserved boat #103

$$\{\langle I, N, T, A \rangle | \langle I, N, T, A \rangle \in Sailors \land T > 7 \land \exists Ir, Br, D (\langle Ir, Br, D \rangle) \in Reserves \land Ir = I \land Br = 103) \}$$

- * We have used $\exists Ir, Br, D (...)$ as a shorthand for $\exists Ir (\exists Br (\exists D (...)))$
- ❖ Note the use of ∃ to find a tuple in Reserves that `joins with' the Sailors tuple under consideration.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

7

Find sailors rated > 7 who've reserved a red boat

$$\langle I, N, T, A \rangle | \langle I, N, T, A \rangle \in Sailors \land T > 7 \land$$

$$\exists Ir, Br, D \langle Ir, Br, D \rangle \in Reserves \land Ir = I \land$$

$$\exists B, BN, C \langle B, BN, C \rangle \in Boats \land B = Br \land C = 'red' \}$$

- Observe how the parentheses control the scope of each quantifier's binding.
- This may look cumbersome, but with a good user interface, it is very intuitive. (MS Access, QBE)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Find sailors who've reserved all boats

* Find all sailors I such that for each 3-tuple $\langle B,BN,C\rangle$ either it is not a tuple in Boats or there is a tuple in Reserves showing that sailor I has reserved it.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

.

Find sailors who've reserved all boats (again!)

$$\begin{cases}
\langle I, N, T, A \rangle | \langle I, N, T, A \rangle \in Sailors \land \\
\forall \langle B, BN, C \rangle \in Boats \\
(\exists \langle Ir, Br, D \rangle \in Reserves(I = Ir \land Br = B))
\end{cases}$$

- * Simpler notation, same query. (Much clearer!)
- ❖ To find sailors who've reserved all red boats:

.....
$$(C \neq 'red' \vee \exists \langle Ir, Br, D \rangle \in \text{Re} serves[I = Ir \wedge Br = B)]$$

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Unsafe Queries, Expressive Power

- ❖ It is possible to write syntactically correct calculus queries that have an infinite number of answers! Such queries are called <u>unsafe</u>.
 - e.g., $\{S \mid \neg \{S \in Sailors\}\}$
- ❖ It is known that every query that can be expressed in relational algebra can be expressed as a safe query in DRC / TRC; the converse is also true.
- Relational Completeness: Query language (e.g., SQL) can express every query that is expressible in relational algebra/calculus.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke