Recommending XMLTable Views for XQuery
Workloads

Iman Elghandour! *, Ashraf Aboulnaga!, Daniel C. Zilio?, and Calisto
Zuzarte?

! University of Waterloo
2 IBM Toronto Lab

Abstract. Physical structures, for example indexes and materialized
views, can improve query execution performance by orders of magnitude.
Hence, it is important to choose the right configuration of these physical
structures for a given database. In this paper, we discuss the types of
materialized views that are suitable for an XML database. We then focus
on XMLTable materialized views and present a procedure to recommend
them given an XML database and a workload of XQuery queries. We
have implemented our XMLTable View Advisor in a prototype version
based on IBM® DB2® V9.7, which supports both relational and XML
data, and we experimentally demonstrate the effectiveness of our advi-
sor’s recommendations.

1 Introduction

XML is becoming widely adopted as a data storage and representation format.
In addition to native XML database systems, most commercial database sys-
tems now support an XML column type and have query optimizers that can
handle XML data and queries [6,21,22]. Furthermore, these database systems
allow creating physical structures such as indexes and materialized views to im-
prove the query execution performance of XML queries. For large databases and
complex query workloads, it is challenging to choose the right configuration of
physical structures that also have a reasonable disk usage.

Recommending indexes and materialized views as part of the physical data-
base design process has previously been studied extensively in the context of
relational databases, and most commercial database systems now include Design
Advisors that automatically recommend various physical structures [2, 23]. The
high-level outline of the recommendation process for XML databases is similar
to that for relational databases. However, recommending indexes and material-
ized views for XML databases presents some unique challenges that make the
problem more difficult than the relational case, and that lead to the details of
the solutions being significantly different.

*Supported by an IBM PhD Fellowship. Also affiliated with Alexandria University,
Alexandria, Egypt.

There are currently several types of materialized views for XML data. Dif-
ferent proposals have defined different view languages for XML data and have
studied matching these views with XML queries. In this paper, we discuss these
different approaches and we then focus on one of them, namely XMLTable mate-
rialized views. We discuss the advantages of using XMLTable materialized views,
which are relational in structure, to improve the performance of XQuery work-
loads. Next, we present a physical design advisor that recommends XMLTable
materialized views for XQuery workloads. We present an experimental study of
the the effectiveness of this XMLTable View Advisor.

The main issues that we address when recommending materialized views
are: (1) determining the candidate physical structures (materialized views) that
would be useful for a query or a workload consisting of a set of queries, (2)
expanding the set of candidates by adding new ones that are useful for multiple
queries in the workload, and (3) searching the space of possible materialized view
configurations for the optimal configuration that provides the maximum benefit
to the workload while satisfying disk, schema, and other system constraints. In
this paper, we present novel techniques to address each of these challenges. We
have implemented our XMLTable View Advisor in a prototype version of DB2
V9.7, which supports both relational and XML databases, and we have used
this implementation to verify the efficiency of our proposed advisor and the high
quality of the view configurations that it recommends.

The rest of the paper is organized as follows. We present related work in
Section 2. Next, we present our contributions, which can be summarized as
follows:

— A brief discussion of the existing materialized view languages for XML data
(Section 3).

— We propose an end to end solution for an XMLTable View Advisor that rec-
ommends relational materialized views that are constructed using the SQL
XMLTable function (Section 4). Within our solution for the XMLTable View
Advisor we make the following contributions: (1) a technique for enumerat-
ing XMLTable views that are useful for an XQuery query (Section 4.2), (2)
an algorithm that translates XQuery queries into relational queries that use
XMLTable views (Section 4.3), (3) a generalization algorithm that gener-
ates new XMLTable views that are useful for multiple queries in the current
workload (Section 5), and (4) a search algorithm that extends the heuris-
tic algorithm introduced in [10] to address the interaction between views
(Section 6).

— An implementation of the XMLTable View Advisor in a prototype version
of DB2 and an experimental study using the TPoX [19] benchmark (Section
7).

2 Related Work

In the past few years, there has been a considerable amount of work on au-
tomatic physical design for relational databases [2,23]. Unfortunately, none of
these works extend directly to XML databases. The XML Index Advisor pro-
posed in [10] recommends XML indexes for an XML database given a workload
of XML queries. Our XML View Advisor expands on the Index Advisor by
recommending XMLTable views, which are more complex than the partial XML
indexes recommended by the Index Advisor. In this section, we first discuss exist-
ing approaches that decide on how to store the data based on its characteristics.
Next, we present previous cost based approaches that are used to recommend
materialized views for XML databases.

Our approach relies on recommending relational materialized views for XML
queries. Relational and XML data reside side by side in current database sys-
tems [6]. Query execution cost depends on the storage mode of the data, and
so there are situations where it is appropriate to use a relational representation
of the data and others where it is appropriate to use an XML representation. A
discussion of the factors affecting the choice of using a relational or XML repre-
sentation to store data is presented in [14, 18]. The proposed solution is to find a
logical design for a database given the characteristics of the data to be stored in
it. However, application access patterns of the data are also important. These
access patterns can be exploited to add materialized views to the database to
enhance performance [12]. To incorporate both relational and XML data models
in the same database system, several hybrid XML-relational architectures are
presented in [13].

Another area where relational and XML data coexist is publishing relational
data as XML, an area that has been extensively studied in the last few years.
In these systems, data is stored in relational stores and published as an XML
schema, which requires translating XQuery queries into SQL queries, and trans-
lating relational data into XML data that satisfies the published XML schema.
Most publishing techniques have one fixed way to translate the relational data
into XML based on the XML schema. However, some research projects attempt
using a cost based analysis for choosing the best translation [7,9].

In MARS [9], the data is originally stored in relational and XML format,
in addition to partial views of the data that are of relational and XML types.
In that work, one virtual XML view is published and the incoming queries are
translated according to the source that is chosen to answer them. A cost based
analysis to choose the best query translation is proposed.

In LegoDB [7], the mapping between XML and relational views of the data
is also chosen according to a cost based approach. The application is represented
by a workload of queries and data statistics. A subset of the XML schema, called
p-schema, is used to describe the data. P-schema has the advantage that it can
be directly mapped to relational data, and also it is annotated by statistics
information. Initially, different candidate p-schemas are enumerated. Then, a
greedy heuristic search is used to find the best schema. The cost of a schema is
estimated by performing the mapping between the XML data and the relational

storage, translating the XML workload according to this mapping, importing the
XML statistics into the new relations, and finally, using a relational optimizer
to estimate the cost of the workload.

An attempt to partially automate the logical design of a hybrid (Relational-
XML) database system is presented in [18]. The input to the proposed Schema
Advisor is an annotated information model that is considered as a conceptual
design for the database. Based on this annotated model, the schema advisor
analyzes different storage alternatives and chooses the best of them according
to a scoring function. Users of the system can also give their input to the tool
to guide the advisor process.

Another cost based approach for automating the logical design of XML data-
bases is proposed in the ULoad project [4]. That work uses the XML Access Mod-
ules (XAMs) algebraic formalism to represent the data and its storage structures.
ULoad uses a fixed set of designs to choose from, but the users can expand them
with their own persistent data structures using the same graphical language. A
structural summary of the data is then used to estimate the cost of answering a
workload of queries given a configuration of XAMs.

3 Materialized Views for XML Data

Creating views of relational and XML data can take place on either the logical
or physical level or both. On the logical design level, data can be XML and be
published as relational views [13,17], or data can be relational and be published
as XML views [9, 17]. Queries are written according to the published schema, so
if, for example, the published schema is XML and the data is stored in relational
format, we need to (1) translate the XML queries to SQL queries according to
the stored schema, and (2) transform the XML data to relational to be stored
in the relational store, and vice versa for query answers.

On the physical design level, materialized views of XML data can be in one
of the following forms:

1. Views of XML data fragments that are defined by XQuery queries [3, 20]. The
queries written against the views are also in XQuery. Result containment is
checked to decide if a view can answer a query.

2. Views of XML data fragments that are defined by XPath path expressions [5,
16]. Queries can be either XPath or full XQuery. In the latter case, indexes
containing fragments of the data constitute the XML views.

3. Views of XML data elements and their values that are defined by XPath
path expressions and stored in relational tables. XQuery queries are then
translated into SQL queries to be executed on these materialized relational
views. This approach is close to shredding the XML data into relational
tables [7,8]. We adopt this approach in this paper and elaborate on it next.

3.1 XMLTable Views of XML Data

Using relational materialized views for XML data and queries allows us to benefit
from the rich and mature infrastructure for these views built into many database

Derived table column names

I

SELECT'u."ord", u,"ordID'I'
FROM ORDER, xmltable(

Row __»&< Sadoc/FIXML/Orde

generator passing ORDER.ODOC as “odoc" columns)
ord” XML path " i Navigated 1
"ordID" varchar(10) path '®@ID" —columns

Fig. 1. XMLTable view example.

Jasu

systems. Using these views provides a simple and effective way to improve the
performance of XML workloads by leveraging existing infrastructure. Building
relational views of XML data requires a mechanism that maps between XML
elements and their corresponding column names in the relational views. For
example, in ROX [13], the XML Wrapper of IBM DB2 [15] is used to do this
mapping. The XML Wrapper allows CREATE NICKNAME statements that
include nicknames for XPath expressions in the XML document.

A new approach for creating relational views for XML data is to use the
XMLTable function [1,21]. XMLTable is a SQL table function that creates a
derived table based on XML data. The XMLTable function is applied on a ta-
ble with an XML-type column. Each row of the table has an XML document
in this XML-typed column, and the XMLTable functions maps elements occur-
ring in these XML documents to columns in the derived table generated by
the XMLTable function. The parameters of an XMLTable function are: (1) A
row generator, which is a path expression. Each element reachable by this path
expression corresponds to a tuple in the derived table. (2) Column navigators,
which are Xpath navigation patterns. Each column navigator is used to popu-
late a column in the derived table. The row generator specifies the rows in the
derived table generated by the XMLTable function, and the column navigators
specify the columns of these rows. Figure 1 illustrates an example SQL query
with an XMLTable function.

Using the XMLTable function to create relational views of the XML data
allows us to benefit from both the mature relational view matching [12] and
also XPath view matching [5,16]. The XMLTable is defined in the FROM clause
of a SELECT statement which allows two levels of matching of queries with
views. The optimizer matches queries that contain XMLTable functions with
XMLTable views. Next, XMLTable definitions of the query and view can use
XPath matching to find the needed compensation and so to rewrite the query to
use the view contents. A discussion of the possible techniques and issues related
to matching and rewriting queries to use XMLTable views is presented in [11].

In this paper, our goal is to recommend XMLTable materialized views that
benefit a workload of XQuery queries on data that is stored in an XML-typed
column of a table. This requires: (1) enumerating XMLTable views for an XQuery
query and translating the query to use the views, (2) expanding the set of can-

didate views, and (3) choosing the best set of views given a disk space budget.
We elaborate on these three steps in Sections 4-6, respectively.

4 View Enumeration Process

4.1 Types of XMLTable Views

We employ a cost based analysis to choose the views that would benefit the
queries in the workload the most. The high level architecture of the XMLTable
View Advisor is as follows. First, we analyze each query in the workload and
enumerate its possible XMLTable view candidates. The set of XMLTable views
enumerated for all queries in the workload constitutes our basic set of candi-
date views. Next, we expand the set of candidate views by recommending more
general views that can answer more queries in the workload. Then, for each can-
didate view, we invoke the query optimizer in a special mode to estimate the
benefit of the view to the queries in the workload. Finally, we search the space of
candidates to find the best configuration of views that has the highest benefit to
the workload and fits into the given disk space budget. Our advisor architecture
is similar to that of the XML Index Advisor described in [10]. The proposed
advisor is based on employing common access patterns of XQuery queries to
decide on the views that are useful for them. For example, if a query frequently
accesses an element’s value in the XML data (an ID for instance), then it is
beneficial to extract it as a separate column in the XMLTable view.

The class of XQuery queries that we support includes queries with FOR,
LET, WHERE, and RETURN clauses. The RETURN clause can have either a
simple or a constructed expression. The general form of a query that we support
is as follows:

GQ

for $forVar in (ColumnName)/forExpr[forPredicate]
let $letVar := aggFn(letExpr)

where wherePredicate

return returnExpr

We use the following query QI on the TPoX [19] benchmark database as a
running example:
Q1: For every customer whose age is greater than 50 and has an ID
greater than 9000, return her name and the number of accounts she
has.

for $cust in ("CUSTACC.CADOC")/Customer [@id > 9000]

let $accounts := count($cust/Accounts/Account)
where $cust/age > 50
return

<print>

<name>$cust/name</name>
<accounts_number>$accounts</accounts_number>
</print>

4.2 Enumerating Candidate Views

To enumerate candidate views for an XQuery, we parse the query and break it
down into its FOR, LET, WHERE, and RETURN clauses. Then, for each one
of these clauses we further break it into its components. We describe next how
we handle each clause in the candidate enumeration process (Algorithm 1).

Algorithm 1 enumerateCandidates(zquery)

1: for clause € zquery do
2: if clause is forClause then

3: create a new view view and associate it with the variable $forVar

4: set the row generator of view to be forExpr

5: for p € forPredicate do

6: add p to view as a column navigator

T end for

8: else if clause is letClause then

9: create a new view view and associate it with the variable $letVar

10: if letEzpr references an existing refView then

11: resolvedLetExpr <— append the row generator of refView and letExpr
12: set the row generator of view to be resolvedLetFExpr

13: add column “.” to refView and a backward navigation path to view (these

columns are used to join the two views view and refView)
14: else

15: set the row generator of view to be letExpr

16: end if

17: if clause has aggF'n then

18: add a SQL GROUP BY clause to view with all columns except the expres-
sion that appears in the aggFn

19: end if

20: else if clause is whereClause then

21: for p € wherePredicate do

22: find refView that is referenced in p

23: add p to refView as a column navigator

24: end for

25: else if clause is returnClause then

26: for expr € returnExpr do

27: find refView that is referenced in ezpr

28: add expr to refView as a column navigator

29: end for

30: end if

31: end for

FOR Clause. We divide the FOR clause into a variable, a path expression,
and its optional predicates. For every FOR clause: (1) we create a new view and
assign its row generator to be the path expression extractor in the FOR clause
(i.e. the path expression after removing any predicate values from it, forEzpr in
GQ), (2) we record the variable name and the created view so we can add any
expression that references it to the view as a column, and (3) finally, for every

path appearing in a predicate, we create a navigation path and add it to the
view. For example, when we parse the FOR clause of @I, we create a new view
V1 that has the row generator /Customer and the column @id:

V1:
select u.cx0 from CUSTACC, xmltable(

’$cadoc/Customer’ passing CUSTACC.CADOC as "cadoc"
columns
cx0 double path ’@id’) as u

LET Clause. Similar to the FOR clause, we parse the LET clause to find
the clause variable (letVar in GQ) and its binding expression (letEzpr in GQ). In
addition, a LET clause might have an optional aggregation function that we only
take into account when we rewrite the XQuery to use the view and a binding ex-
pression that references a previously bound variable ($cust/Accounts/Account
in Q1). For an expression with a reference variable, we look up the expression
referenced by this variable (/Customer in this example) and concatenate it with
the rest of the expression to form the path expression we use for this clause. We
then create a new view with that new path expression as a row generator. We
add a column in each of the newly created view and the old one to be used for
joining them together in the translated query. The updated version of VI and
the newly created V2 will be as follows:

Vi1:
select u.cx0, u.cxl from CUSTACC, xmltable(

’$cadoc/Customer’ passing CUSTACC.CADOC as "cadoc"
columns

cx0 double path ’@id’,

cxl =xml path ’.’) as u

V2:
select count(u.cy0) as ACcl, u.cyl from CUSTACC, xmltable(

’$cadoc/Customer/Accounts/Account’ passing CUSTACC.CADOC as "cadoc"
columns
cy0 xml path ’.7,
cyl double path ’parent::Accounts/parent::Customer’) as u
group by cyl

WHERE Clause. For every predicate appearing in a WHERE clause, we
handle each predicate expression by finding the view referenced by the variable
that appears in this expression, and adding a column to that view to correspond
to this navigation. To account for the predicate on age in Q1, view V1 is now
written as follows:

Vi:
select u.cx0, u.cxl, u.cx2 from CUSTACC, xmltable(

’$cadoc/Customer’ passing CUSTACC.CADOC as "cadoc"
columns

cx0 double path ’@id’,

cxl xml path ’.7,

cx2 double path ’age’) as u

RETURN Clause. For all the expressions that appear in the RETURN
clause, we find all the variables that reference views and we find the views that
they reference. We add a column for each variable to the corresponding view.
View VI can be updated now to have name as a column:

V1i:
select u.cx0, u.cxl, u.cx2, u.cx3 from CUSTACC, xmltable(
>$cadoc/Customer’ passing CUSTACC.CADOC as "cadoc"
columns
cx0 double path ’@id’,
cxl =xml path ’.’,
cx2 double path ’age’,
cx3 varchar(100) path ’name’) as u

4.3 Translating XQuery Queries into SQL Queries that Use
XMLTable Views

Current XML query optimizers lack the infrastructure to perform the matching
of XQuery queries with relational (XMLTable) views. Existing matching algo-
rithms match queries with XMLTable function to XMLTable views [11]. There-
fore, we outline in this section a procedure to translate XQuery queries into SQL
queries with XMLTable functions. The translation involves using views that are
similar to the ones being recommended, and hence we perform the candidate
enumeration step described in the previous section to find the best suitable view
for a query. Next, we use these recommended views to rewrite the query.

We examine the parsed XQuery, and then construct an SQL query based on
this information. We add all the recommended views to the FROM clause of
the SQL query. We then use the column names in the views in the SELECT
clause and WHERE clause according to the binding of variables and how they
appear in the original query. We also add joins between the views that are used
to rewrite the query when needed.

For example, we have recommended two views VI and V2 for 1 and we can
now construct the FROM clause as FROM V1, V2. Next, we examine the return
clause and construct the SELECT clause of the rewritten query. If the return
value is a simple XPath expression, then the corresponding column name is used,
otherwise if an XML fragment is constructed, an XQuery construction is done
using the XMLELEMENT function. Finally, we construct the WHERE clause
as a conjunction of all the predicates that appear in the XQuery and those that
correspond to joins between views. The final rewritten query for Q1 is as follows:
Rewritten Query: RQ1

select XMLELEMENT(NAME ‘"print" , XMLELEMENT(NAME ‘'"name" ,
Vvl.cx3) , XMLELEMENT(NAME "accounts_number" , Vv2.ACcl))
from (..same as V1..) as Vvl, (..same as V2..) as Vv2
where (Vvli.cx2 > 50) and (Vvl.cxO > 9000)
and (Vv2.cyl = Vvl.cxl)

5 Expanding the set of Enumerated Views

In the XML Index Advisor [10], we have found that generalizing the index pat-
terns makes them useful for queries not seen in the workload that is used for
the recommendation. Similarly, creating views that answer multiple queries in
the workload and potential unseen queries can increase the usefulness of our
recommendations. Since our proposed view definition encapsulates both XPath
expressions and SQL query definitions, generalization can benefit from the index
generalization techniques we proposed in [10] and the query merging techniques
proposed in [23]. The possible generalization techniques include generalizing the
row generator or the column navigator of the view, and merging views. In ad-
dition, it is possible to use relational indexes on XMLTable views to increase
their benefit. We describe some of the possible query generalization forms that
we have explored in this section.

Generalizing Column Navigators to Include Subtrees. Most of the XML-
Table views that we recommend in the enumeration phase are a normalization
(flattening) of all the values that are being accessed in the workload queries. An
alternative approach is to recommend views that store sub-trees of the data as
XML columns. A recommended XMLTable view can now have the XPath path
expression to reach the data as the row generator and one column with a “.”
path expression to represent all the subtrees reachable by that row generator.
For example, V3 (below) is a generalization of V1. This approach is useful when
the query requires reconstructing the XML tree. This general view requires that
the matching infrastructure allows matching multiple columns in the query with
one column in the view and is also capable of performing XPath compensation.
For example matching view V8 with Vv0in query RQ1 means matching columns
czl, cxl, cx2 and czd in Vvl with cz0 in V8 and requires navigating for @id,
age, and name, respectively, in the rewritten query that uses the view. Instead of
replacing the columns of a view with a “.” column, a less aggressive approach for
generalizing column navigators is to consider pairs of views that share the same
row generator and consider pairs of columns, one from each view, and generalize
these columns together using index generalization algorithms that we propose
in [10].

Sedect u.cx0 from CUSTACC, xmltable(
’$cadoc/Customer’ passing CUSTACC.CADOC as "cadoc"
columns
cx0 int path ’.’) as u

Merging Views. A common generalization approach used in relational advisors
is view merging [23]. For XMLTable views, we merge views that have the same
row generator to produce a new view that has the set of column navigators that
appear in the merged views after removing duplicates. The goal of this approach
is to decrease the disk space required for views by removing duplicate columns
from the merged views, while still achieving the same performance.

Indexes on XMLTable Views. One approach to make XMLTable views more
useful is to build relational indexes on their columns and hence improve query
performance. This is possible since the XMLTable views are defined in the form
of SQL statements that produce relations. There can be many possible indexes
that can be built on the different columns of an XMLTable view to help the
view perform better. In this paper, we use a heuristic approach to select only
one index for each view. The chosen index has all the columns of the view that
have originally participated in a predicate in the XQuery that caused this view
to be recommended. This way we guarantee that these columns have relational
values that are used for lookup in the query. The index follows the same order
of the columns in the view. For example, the index that we recommend for view
V1is “create index indexl on V1(cx0, cx2)”. For every candidate view, we
add to the search space another alternative structure which is composed of the
view with a relational index over its columns.

6 Searching for the Optimal View Configuration

To recommend a set of XMLTable views (a view configuration) for a workload,
we need to search the space of candidate views to find the best set of views that
fits into a given disk space budget. We generalize the search algorithms in [10]
to be able to search any physical structure (indexes, views, views with indexes
on them, etc.). The search problem can be modeled as a 0/1 knapsack problem.
The size of the knapsack is the disk space budget specified by the user. Each
candidate physical structure — which is an “item” that can be placed in the
knapsack — has a cost, which is its estimated size, and a benefit. We compute
the benefit of a physical structure as the difference between the workload cost
as estimated by the query optimizer before and after creating this structure.

XMLTable views can interact with each other in ways that reduce their total
benefit for a query workload. Our search algorithm takes such interactions into
consideration. The main types of interaction affecting the selection of views are:
(1) views that can be used together to rewrite a query, and (2) views that are
generated by merging other views. These interaction factors are similar to the
ones encountered when searching the space of XML indexes, so we use a greedy
search algorithm as in [10], but we modify the heuristic rules used in this search
to deal with interactions so that they suit the view search problem.

The high level outline of the greedy search algorithm is as follows. First, we
estimate the size of each candidate view, and the total benefit of this view for
the workload. We then sort the candidate views according to their benefit/size
ratio. Finally, we add candidates to the output configuration in sorted order of
benefit/size ratio if they agree with the heuristic rules, starting with the highest
ratio, and we continue until the available disk space budget is exhausted. In [10]
we proposed heuristic rules that are based on index coverage. We define the view
coverage of a view as its view ID as well as the ID of the views that it subsumes.
Subsequently, the coverage of a configuration of views is the combination of
the view coverage of its constituent views. For example, if V3 is generated by

merging V1 and V2, then the coverage of V3is the set of {1, 2, 3}. We refer to the
coverage of a candidate view (cand) or a group of views (config) as cand.coverage
and config.coverage respectively. We also refer to the size of a candidate view
(cand) as cand.size. Algorithm 2 outlines the the search algorithm. We use the
following functions to apply the heuristics and perform the search:

— benefit(config) returns the estimated benefit of the workload when this con-

figuration of views (or views with relational indexes on them) is created. It is
based on calling the query optimizer with and without the views in place and
computing the reduction in the optimizer’s estimated cost when the views
are in place.

addCandIfSpaceAvl(cand, config) adds the candidate (cand) to the configu-
ration (config) if the cand.size + config.size < diskConstraint. In addition,

if the condition holds, addCandIfSpaceAvl updates the size and coverage of
config.

replaceCandIfSpace Avl(cand, subConfig, config) replaces the subConfig in config
with cand if the new configuration after performing the replacement newConfig
has a higher benefit than config and the added size is below a threshold .
This is the heuristic that we add to the greedy search to deal with view
interactions. The value (3 is a threshold that specifies how much increase in
size we are willing to allow. We have found 8 = 10% to work well in our
experiments. Finally, if the condition holds and there is enough disk space
to do the replacement, replace CandIfSpaceAvl updates the size and coverage
of config.

overlap Config(config! , config?) scans a config2 and returns the minimal subConfig
configuration that has the view coverage of configi.

Algorithm 2 heuristicSearch(candidates, diskConstraint)

1: sort candidates according to their benefit(cand)/cand.size ratio

2:

recommended «— (), recommended.size < 0, recommended.coverage «— ()

3: while recommended.size < diskConstraint do

4:
5:

12:
13:
14:

bestCand <« pick the next best cand in candidates
if recommended.coverage = () or recommended.coverageNbestCand.coverage = ¢
then
addCandlIfSpaceAvl(bestCand,recommended)
else if recommended.coverage > best.coverage then
replace CandIfSpaceAvl (bestCand,recommended,recommended)
else
overlapConfig < overlapCoverage(bestCand, recommended)
replaceCandIfSpace Avl (bestCand,overlap Config,recommended)
end if
end while
return recommended

7 Experiments

7.1 Experimental Setup

Since V9.1, DB2 supports both relational and XML data [6]. We have used
an initial prototype version of IBM DB2 V9.7 that was modified to support
creating materialized views using the XMLTable function [1]. The client side of
the XMLTable View Advisor is implemented in Java 1.6, and communicates with
the prototype server via JDBC. We have conducted our experiments on a Dell
PowerEdge 2850 server with two Intel Xeon 2.8GHz CPUs (with hyperthreading)
and 4GB of memory running SuSE Linux 10. The database is stored on a 146GB
10K RPM SCSI drive.

We used the TPoX [19] benchmark in our experiments. We generate the data
using a scale factor of 1GB. We evaluate our advisor on the standard 10 queries
that are part of the benchmark specification. We have made minor changes to
the workload queries to account for some implementation limitations.

Our XMLTable View Advisor implementation has some limitations due to
the existing DB2 prototype infrastructure. These limitations make our advisor
unable to recommend views for certain XQuery query types. We can only use
SQL data types for columns that appear in the XMLTable functions, since cast-
ing XML data into their corresponding relational data types fails in some cases.
In addition, columns in XMLTable functions can only be elements; hence, sub-
trees reachable by an XPath expression, or linear expressions that select several
elements will be concatenated into one large string value. This is not the correct
approach when executing XQuery queries. Moreover, our implementation does
not support more than two joins per query. We have also left adding support
for structured queries, which are XQuery queries with a sub-query in the return
clause, for future work. However, these limitations have not prevented us from
verifying the usefulness of XMLTable views to answer XQuery queries.

7.2 Effectiveness of the XMLTable View Advisor Recommendations

Figure 2 shows the estimated (based on query optimizer estimates) and actual
(based on measured execution time) speedups for the TPoX workload. Speedup
is defined as the execution time (estimated or actual) of the workload when no
XML physical structures are created in the database divided by the execution
time of the workload with the view configuration recommended by our advisor is
in place. Both figures show that a maximum ratio of 1.6 (for the estimated work-
load execution speedup) and 1.3 (for the actual workload execution speedup) is
achieved when we create the recommended views. Since some queries in the
workload did not benefit from views, we also show the estimated and actual exe-
cution time of each query in Figure 3. Figures 3(a) and 3(b) show the estimated
and actual execution time per query for a configuration with no views and view
configurations of different sizes. Queries Q1, Q2, Q7, Q8, Q9, and Q10, which
range from simple navigation to join queries, have benefited from the recom-
mended XMLTable views. The actual speedup exceeded 3000 for some queries,

for example Q1 and Q7. The configuration which consists of all useful views has
a size of 115 MB, which also helped us to achieve an average speedup per query
of 639 (the speedup of queries that did not benefit from views is 1). Even for a
configuration size of 9.8 MB, the average speedup per query is 134 which proves
that XMLTable views can be useful for many query types.

18 14 — -
16 PO = ° / e
s i . 12 sooed
§ 14 ""‘ § 1
&2 y g
s 1 3 o¢
E S
g o8 E 0.6
T o6 =
5 S 04
£ o4 b
2 02 0.2
0 0
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Disk space constraint (MB} Disk space constraint (MB)
(a) Estimated speedup. (b) Actual speedup.

Fig. 2. Workload speedup for the recommended XMLTABLE views.

1E407 1E+06

1.E+06 1.E+05 -

1.E+05

1.E+04

1E+04 =omB

W10 MB 1.E+03 +

1.E+03

50 MB 1E402 4

1.E+02 100 MB

Actual execution time (ms}

1.E+01 200 MB 1.E+01 +

Estimated execution time (Optimizer unit)

1.E+00 -
Q1 Q2 Q3 04 Q5 Q6 Q7 Q8 Q9 Qi0 Ql Q@2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

1.E+00

Workload queries Workload queries

momB
m10MB
n50 MB
=100 MB
w200 MB

(a) Estimated execution time. (b) Actual execution time.

Fig. 3. Query execution time per query for the recommended XMLTABLE views.
8 Conclusions

In this paper, we have presented an XMLTable View Advisor. This is a new
approach for building relational materialized views for XQuery workloads. Our
XMLTable View Advisor recommends relational views that are in the form of
XMLTable views. These views are useful in pre-navigating to queried values that
appear in the data. In addition, XMLTable view matching is based on relational
view matching and XPath matching, and hence we benefit from leveraging the al-
ready existing infrastructure of many database system query optimizers. We have
implemented our advisor in a prototype version of DB2, and our experiments
with this implementation show that our advisor can effectively recommend views
that result in orders of magnitude performance improvement for some queries.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

XMLTABLE overview, 2006. Available at:
http://publib.boulder.ibm.com/infocenter/db2luw/v9/.

S. Agrawal, S. Chaudhuri, L. Kolldr, A. P. Marathe, V. R. Narasayya, and M. Sya-
mala. Database tuning advisor for Microsoft SQL Server 2005. In VLDB, 2004.
A. Arion, V. Benzaken, I. Manolescu, and Y. Papakonstantinou. Structured ma-
terialized views for XML queries. In VLDB, 2007.

A. Arion, V. Benzaken, I. Manolescu, and R. Vijay. ULoad: choosing the right
storage for your XML application. In VLDB, 2005.

A. Balmin, F. Ozcan, K. Beyer, R. J. Cochrane, and H. Pirahesh. A framework
for using materialized XPath views in XML query processing. In VLDB, 2004.

. K. Beyer et al. DB2 goes hybrid: Integrating native XML and XQuery with rela-

tional data and SQL. IBM Systems Journal, 45(2), 2006.

P. Bohannon, J. Freire, J. R. Haritsa, and M. Ramanath. LegoDB: Customizing
relational storage for XML documents. In VLDB, 2002.

P. Bohannon, J. Freire, P. Roy, and J. Siméon. From XML schema to relations: A
cost-based approach to XML storage. In ICDE, 2002.

A. Deutsch and V. Tannen. MARS: A system for publishing XML from mixed and
redundant storage. In VLDB, 2003.

I. Elghandour, A. Aboulnaga, D. C. Zilio, F. Chiang, A. Balmin, K. Beyer, and
C. Zuzarte. XML index recommendation with tight optimizer coupling. In ICDE,
2008.

P. Godfrey, J. Gryz, A. Hoppe, W. Ma, and C. Zuzarte. Query rewrites with views
for XML in DB2. In ICDE, 2009.

A. Y. Halevy. Answering queries using views: A survey. The VLDB Journal, 10(4),
2001.

A. Halverson, V. Josifovski, G. M. Lohman, H. Pirahesh, and M. Mérschel. ROX:
Relational over XML. In VLDB, 2004.

Comparing XML and relational storage: A best practices guide. IBM: Storage best
practices, 2005.

V. Josifovski, S. Massmann, and F. Naumann. Super-Fast XML wrapper genera-
tion in DB2: A demonstration. In ICDE, 2003.

B. Mandhani and D. Suciu. Query caching and view selection for XML databases.
In VLDB, 2005.

I. Manolescu, D. Florescu, and D. Kossmann. Answering XML queries on hetero-
geneous data sources. In VLDB, 2001.

M. M. Moro, L. Lim, and Y.-C. Chang. Schema advisor for hybrid relational-XML
DBMS. In SIGMOD, 2007.

M. Nicola, I. Kogan, and B. Schiefer. An XML transaction process-
ing benchmark. In SIGMOD, 2007. Benchmark Available at:
https://sourceforge.net/projects/tpox/.

N. Onose, A. Deutsch, Y. Papakonstantinou, and E. Curtmola. Rewriting nested
XML queries using nested views. In SIGMOD, 2006.

Oracle Corp. Oracle Database 11g Release 1 XML DB Developer’s Guide, 2007.
Available at: http://www.oracle.com/pls/db111/.

M. Rys. XML and relational database management systems: Inside Microsoft SQL
Server 2005. In SIGMOD, 2005.

D. C. Zilio, J. Rao, S. Lightstone, G. M. Lohman, A. Storm, C. Garcia-Arellano,
and S. Fadden. DB2 design advisor: Integrated automatic physical database design.
In VLDB, 2004.

