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Abstract Modern cloud-native OLAP databases adopt

a storage-disaggregation architecture that separates the

management of computation and storage. A major bot-

tleneck in such an architecture is the network connect-

ing the computation and storage layers. Computation

pushdown is a promising solution to tackle this issue,

which offloads some computation tasks to the storage

layer to reduce network traffic. This paper presents Flex-

PushdownDB(FPDB), where we revisit the design of

computation pushdown in a storage-disaggregation ar-

chitecture, and then introduce several optimizations to

further accelerate query processing.

First, FPDB supports fine-grained hybrid query ex-

ecution to combine the benefits of caching and compu-

tation pushdown. Within the cache, FPDB introduces

a novel Weighted-LFU cache replacement policy that
takes into account the cost of pushdown computation.

Second, we design adaptive pushdown as a new mecha-

nism to avoid throttling the storage-layer computation

during pushdown, which pushes the request back to the

computation layer at runtime if the storage-layer com-
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putational resource is insufficient. Finally, we derive a

general principle to identify pushdown-amenable com-

putational tasks, by summarizing common patterns of

pushdown capabilities in existing systems, and further

propose two new pushdown operators, namely, selection

bitmap and distributed data shuffle. Evaluation on SSB

and TPC-H shows each optimization can improve the

performance by 2.2×, 1.9×, and 3× respectively.

Keywords OLAP · Cloud databases · Caching ·
Computation pushdown · Adaptive query processing ·
Query optimization

1 Introduction

Database management systems (DBMSs) are gradually

moving from on-premises to the cloud for higher elas-

ticity and lower cost. Modern cloud DBMSs adopt a

storage-disaggregation architecture that divides compu-

tation and storage into separate layers of servers con-

nected through the network, simplifying provisioning

and enabling independent scaling of resources. How-

ever, disaggregation requires rethinking a fundamental

principle of distributed DBMSs: “move computation to

data rather than data to computation”. Compared to

the traditional shared-nothing architecture, which em-

bodies that principle and stores data on local disks, the

network in the disaggregation architecture typically has

lower bandwidth than local disks, making it a potential

performance bottleneck [72]. Computation pushdown is

a promising solution to mitigate the network bottle-

neck, where some computation logic is sent and eval-

uated close to the storage (e.g., selection, projection),

resulting in less data returned to the compute layer. Ex-

amples include Oracle Exadata [80], IBM Netezza [44],
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AWS Redshift Spectrum [4], AWS Aqua [11], and Push-

downDB [86]. Although the concept of pushdown com-

putation is absorbed into current cloud databases, its

implementation remains somewhat restricted. As a re-

sult, there are substantial performance enhancements

left unexploited. We identify the following three limita-

tions of existing designs:

First, caching is a widely adopted technique, which

keeps the hot data in the compute layer to reduce the

amount of data transferred between the compute and

storage layers. Examples include AWS Redshift [51],

Snowflake [42,79], Databricks [23], and Presto with Al-

luxio cache service [26]. However, existing cloud DBMSs

consider caching and computation pushdown as orthog-

onal. Most systems implement only one of them. Some

systems, such as Exadata [80], Netezza [44], Redshift

Spectrum [4], and Presto [26] consider the two tech-

niques as independent: query operators can either ac-

cess cached data (i.e., full tables) or push down compu-

tation on remote data, but not both.

Second, existing systems decides whether to push

down computation during the query optimization phase

statically. For example, Presto [25] enables pushdown

for all filter operators to S3 by setting a flag in the con-

figuration file (”hive.s3select-pushdown.enabled=true”).

However, pushdown in existing systems does not con-

sider the current storage layer’s computational capacity

and load at the time when the query is executed. If the

storage-layer computation resource is scarce (e.g., due

to multi-tenancy), computation pushdown may hurt the

performance of a particular query. Unfortunately, it is

difficult and sometimes impossible to predict the storage-

side computational load ahead of query execution, mak-

ing it challenging to determine how aggressive compu-

tation pushdown should occur.

A third limitation is the lack of a general princi-

ple that determines which operators are amenable for

pushdown. Existing systems empirically consider a sub-

set of relational operators such as selection, projection,

and aggregation, due to their ease of implementation

and effective traffic reduction. We believe a larger set

of operators can benefit from pushdown and a principle

should exist to decide which operators are considered.

In this paper, we present FlexPushdownDB (FPDB

in short), which addresses the three limitations above.

First, we observe that caching and computation push-

down are not orthogonal techniques, and that the rigid

dichotomy in existing systems leaves potential perfor-

mance benefits unexploited. FPDB introduces the con-

cept of separable operators, which combines local com-

putation on cached segments and pushdown on the seg-

ments in the cloud storage. This hybrid execution can

leverage cached data at a fine granularity. We observe

that some of the most commonly-used operators are

separable, including filtering, projection, and aggrega-

tion. Furthermore, separable operators open up new

possibilities for cache management. Traditional cache

replacement policies assume that each miss requires

loading the data block to the cache, which incurs a con-

stant cost if the blocks have the same size. In FPDB,

however, this assumption is no longer true because we

can push down computation instead of loading data.

The cost of a miss depends on how amenable the block

is to pushdown—misses that can be accelerated with

pushdown (e.g., high-selectivity filters) have a lower

cost. We develop a novel cache replacement policy called

Weighted-LFU, which incorporates caching and push-

down into a unified cost model to predict the best cache

admission and eviction decisions. Evaluation shows that

the hybrid execution outperforms both caching-only and

pushdown-only architectures by 2.2× on the Star Schema

Benchmark (SSB) [64]. Weighted-LFU can further ac-

celerate query execution by 37% over the baseline LFU.

Second, we propose an adaptive query processing ap-

proach that adapts the query plan during execution to

consider the current load on storage nodes. We first

explore the design space and analyze the theoretical

bound — what is the optimal division of the tasks be-

tween pushdown and non-pushdown to achieve the best

overall performance. Then we design a new mechanism,

adaptive pushdown, to avoid throttling the storage-layer

computation during pushdown. Instead of having the

database engine make pushdown decisions, adaptive push-

down lets the storage layer to decide whether to ex-

ecute an incoming pushdown request, or to push the

request back to the compute layer. When a pushback

happens, the compute layer reads the raw data from

the storage layer and processes the task locally. Intu-

itively, pushdown requests should be executed at the

storage layer when sufficient computation resource ex-

ists, and pushed back when the storage computation

is saturated. We will demonstrate that the proposed

mechanism can perform close to the theoretical bound.

Evaluation shows that adaptive pushdown outperforms

traditional baselines of no pushdown and eager push-

down by both 1.9× on TPC-H [33] benchmark.

Finally, we derive a general principle to identify

pushdown-amenable computational tasks, by summa-

rizing common patterns of pushdown capabilities in ex-

isting systems. First, pushdown tasks should be local—

pushdown computation should access data only within

a single storage node and not incur data transfer within

the storage layer. Second, pushdown tasks should be

bounded—a pushdown task should require at most lin-

ear CPU and memory resources with respect to the ac-

cessed data size. This principle preserves the benefits of
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storage-disaggregation, and simplifies resource isolation

and security in a multi-tenant environment. Following

the principle above, we further identify two operators

that can benefit from pushdown to the storage layer —

selection bitmap and distributed data shuffle. Evalua-

tion results show that the two new pushdown operators

can further accelerate end-to-end query processing on

TPC-H by 3.0× and 1.7× respectively.

The paper makes the following key contributions:

– We develop a fine-grained hybrid execution mode

for cloud DBMSs to combine the benefits of caching

and pushdown in a storage-disaggregation architec-

ture, and a novel Weighted-LFU cache replacement

policy that is specifically optimized for the disag-

gregated architecture.

– We develop adaptive pushdown, which leverages the

computation at storage dynamically with the con-

sideration of the storage-layer resource utilization,

through a pushback mechanism used to decide if a

pushdown task should be executed in the storage.

– We infer a general principle to determine whether

an operator is amenable to pushdown from existing

systems, and identify two unexplored operators that

can benefit from pushdown to the storage layer —

distributed data shuffle and selection bitmap.

– We present the detailed design and implementation

of FPDB, an open-source C++-based cloud-native

OLAP DBMS, with a storage-layer prototype that

supports the proposed pushdown capabilities. We

believe it can benefit the community given the lack

of cloud-DBMS prototypes.

The rest of the paper is organized as follows. Sec-

tion 2 introduces the background and limitations of

pushdown in existing cloud OLAP DBMSs. After show-

ing an overview of FPDB in Section 3, Sections 4, 5,

and 6 discuss hybrid query execution, adaptive push-

down, and proposed pushdown operators, respectively.

Section 7 presents implementation details of FPDB.

Section 8 evaluates the performance of proposed op-

timization techniques. Finally, Section 9 discusses the

related work and Section 10 concludes the paper.

This paper extends our prior work in [85]. We pro-

pose two new optimizations on computation pushdown

for modern cloud OLAP databases. We design adap-

tive pushdown to consider storage-layer resource uti-

lization status at pushdown runtime (Section 5). We

propose two new pushdown operators following a gen-

eral priciple derived from the behavior of existing sys-

tem (Section 6). Corresponding experiments are added

in Section 8. The system prototype, FPDB, is also sig-

nificantly extended compared to [85], with full TPC-H

support, distributed query execution, and an additional

(a) (b) (c)

Fig. 1: Distributed Database Architectures—(a) shared-
nothing, (b) shared-disk, and (c) storage-disaggregation.

storage-layer subsystem in which we implement push-

down with proposed optimizations (Section 7).

2 Background and Motivation

This section describes the background on the storage-

disaggregation architecture and computation pushdown

(Sections 2.1–2.2), and the limitations in existing cloud

OLAP DBMSs that support pushdown (Section 2.3).

2.1 Storage-disaggregation Architecture

According to the conventional wisdom, shared-nothing

(Fig. 1(a)) is the most scalable architecture for high-

performance distributed data warehousing systems, where

servers with local memory and disks are connected through

a network. While a cloud DBMS can adopt a shared-

nothing architecture, many of them choose to disaggre-

gate the compute and storage layers (Fig. 1(c)). This

brings benefits of lower cost, simpler fault tolerance,

and higher hardware utilization. Many cloud databases

have been developed following such an architecture, in-

cluding Aurora [77,78], Redshift Spectrum [4], Athena [2],

Presto [25], Hive [73], SparkSQL [37], Snowflake [42],

and Vertica EON mode [59,75].

While storage-disaggregation is similar to the con-

ventional shared-disk architecture (Fig. 1(b)), they also

have significant differences. In a shared-disk architec-

ture, the disks are typically centralized, making it hard

to scale out the system. The disaggregation architec-

ture, by contrast, can scale the storage layer horizon-

tally just like the compute layer. The disaggregation

architecture can also provide non-trivial computation

in the storage layer, while disks are passive storage de-

vices in the shared-disk architecture.

2.2 Computation Pushdown

The concept of computation pushdown was incubated

in database machines since the 1970s. The early sys-

tems push computation to storage via special hardware.
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Database machines like the Intelligent Database Ma-

chine [74], Grace [45], IBM Netezza data warehouse ap-

pliances [44], and Oracle Exadata Database Machine [80]

move relational operations such as filtering and pro-

jection close to disks. Other research areas, including

Smart Disks/SSD [43,46,50,58,82,84] and processing-

in-memory [47,57] also endorse this spirit.

Cloud databases have emerged in the last decade,

with computation and storage disaggregated, especially

for analytical queries. The disaggregated architecture

supports certain amount of computation within the stor-

age layer, so that some operators can be offloaded to

storage to reduce network traffic. The actual computa-

tion can happen either on the storage servers (e.g., Au-

rora [77,78]), or in a different sub-layer close to the stor-

age devices (e.g., S3 Select [29], Redshift Spectrum [4],

Presto [25], PushdownDB [86], AQUA [11], Azure Data

Lake Storage query acceleration [15]).

2.3 Limitations of Computation Pushdown in Existing

Cloud OLAP DBMSs

Even though computation pushdown is widely embraced

by existing cloud OLAP DBMSs, there are still restric-

tions and unexplored opportunities. In the rest of this

section, we demonstrate three major limitations to mo-

tivate the work in this paper.

2.3.1 Dichotomy between Pushdown and Caching

Caching is a traditional wisdom to speed up query ex-

ecution in a disaggregated architecture. The system

keeps hot data in the local memory or disks of the

computation nodes. Cache hits require only local data

accesses and are thus much faster than cache misses,

which require loading data over the network.

Fig. 2: Performance trade-off between caching, computation
pushdown, and an ideal hybrid approach.

Both pushdown and caching can be leveraged to

mitigate the network bottleneck in a disaggregated ar-

chitecture. Fig. 2 shows the high-level performance trade-

off between the two approaches. With only the caching

technique, the query execution time decreases as the

cache size increases, due to a higher hit ratio. Using

only the pushdown technique, when the cache size is

small, pushdown outperforms caching due to reduced

network traffic; when the cache size is sufficiently large,

caching performs better due to a higher cache hit ra-

tio. Ideally, a system should adopt a hybrid design that

combines the benefits of both worlds — caching a sub-

set of hot data and push down computation for the rest,

which is shown as the bottom line in Fig. 2.

Existing systems do not offer a fully hybrid design.

While some systems support both caching and push-

down, they select the operation mode at the table gran-

ularity, considering the two techniques as orthogonal.

The storage layer keeps additional “external” tables

that can be queried using computation pushdown. No

system, to the best of our knowledge, can utilize both

caching and pushdown within the processing of a single

table in a fine granularity.

2.3.2 Static Pushdown Decisions at Planning Time

Existing cloud OLAP DBMSs make pushdown deci-

sions during the query optimization phase — the query

plan is split into two pieces, with the pushdown por-

tion executed in the storage layer, and the rest exe-

cuted in the compute layer. Once a pushdown decision

is made, it cannot be changed at runtime — a push-

down task will always be executed at storage. In other

words, pushdown tasks are processed eagerly.

Eager pushdown may not always benefit query pro-

cessing. Since the storage layer is shared by multiple

tenants, the amount of available computation resource

for each request may vary. To build a deeper under-

standing, we prototype a S3-like [5] object storage layer

within FPDB, and measure the performance of push-

down using standard benchmark queries (TPC-H [33],

see Section 8.1 for detailed setups) in different storage-

layer resource utilization conditions. Fig. 3 presents the

results of two sample queries (Q1 and Q19). No push-

down is included as a baseline for comparison.
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Fig. 3: Performance of no pushdown and eager pushdown on
Sample Queries — Q1 and Q19 in TPC-H.
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For both queries, the performance of no pushdown

is independent of the available storage-layer compu-

tational power (we regard full storage-layer computa-

tional power as all CPU cores at the storage node are

available for pushdown tasks, see Section 8.3). Eager

pushdown outperforms no pushdown when the storage

has abundant computational resource since data trans-

fer is reduced. However, when storage-layer computa-

tional resource is insufficient, query execution starts to

suffer from the slowdown of pushdown execution. When

the storage layer is saturated, eager pushdown under-

performs no pushdown, and pushdown execution be-

comes the major performance bottleneck overall.

An ideal solution should consider the storage-layer

computational resource utilization status, and adap-

tively adjust how aggresive the pushdown is. Intuitively,

when the storage system is idle on computation, more

pushdown tasks should be placed and executed at the

storage layer to speed up query processing. Conversely,

when the storage system is under heavy load, the DBMS

should be more inclined to execute operators at the lo-

cal compute nodes instead of offloading them to the

storage, to avoid throttling storage-layer computation.

2.3.3 Empirically Adopting Pushdown Operators

Existing systems design and implement pushdown fea-

tures empirically, which end up picking a customized set

of pushdown operators respectively. For example, func-

tionalities including selection, projection, and scalar ag-

gregation are supported by almost all existing push-

down systems, grouped aggregation is favored by Red-

shift Spectrum [4], and pushdown of Bloom filters is

introduced in PushdownDB [86].

We aim to conduct a comprehensive analysis of the

design space, to identify key characteristics that con-

tribute to the suitability of a pushdown operator. We

closely examine the behaviors of existing OLAP DBMSs

that offer pushdown support and categorize pushdown

operators based on their key features. By deriving a

shared pattern from these observations, we can estab-

lish a general principle that will potentially facilitate

the discovery of new pushdown operators.

3 System Overview

In this section, we demonstrate the high-level system

architecture of FPDB (Fig. 4), including both the basic

designs and several enhancements.

Hybrid Pushdown with Caching. Fig. 4(a, b) shows

the traditional caching-only and pushdown-only designs.

In a hybrid architecture (Fig. 4(c)), FPDB stores the

hot input data in the local cache (i.e., main memory

or disk) to take advantage of fast IO, and keeps the

cold input data in the external cloud storage and ut-

lize pushdown computation to reduce network traffic.

FPDB contains the following two main modules to en-

able such hybrid query execution:

The hybrid query executor takes in a logical query

plan from the optimizer and transforms it into a sep-

arable query plan based on the content in the cache.

The separable query plan processes the cached data in

the compute node and pushes down computation tasks

like filters and aggregations to the storage layer for un-

cached data. The two portions are then merged and fed

to downstream operators. Section 4.1 will discuss the

details of how operators are separated and merged.

The cache manager determines what data should be

cached in the compute node. The cache eviction policy

takes into account the existence of computation push-

down to exploit further performance improvement. For

each query, the cache manager updates the metadata

(e.g., access frequency) for the accessed data and deter-

mines whether admission and/or eviction should occur.

Section 4.2 will present detailed cache admission and

eviction policies.

Adaptive Pushdown. As discussed in Section 2.3.2,

blindly executing all pushdown tasks in the storage

layer may throttle the storage-layer computational re-

sources, which may hurt the overall query performance.

Ideally, only a portion of tasks that the pushdown en-

gine can sustain are offloaded. For the rest computation

tasks, the accessed raw data is returned to the compute

nodes and no pushdown occurs. FPDB is enhanced by

an adaptive pushdown arbitrator deployed in the stor-

age layer (Fig. 4(d)). The adaptive pushdown arbitra-

tor is responsible for determining how aggressive push-

down computation should occur — whether a particular

pushdown task should be accepted and executed in the

storage, through effective heuristics. Section 5 will dis-

cuss the details of the adaptive pushdown mechanism.

Advanced Pushdown Operators. We further en-

hance FPDB by designing and implementing pushdown

operators that are not investigated deeply but can ben-

efit query processing (Fig. 4(e)). Besides the conven-

tional pushdown operators that are supported by ex-

isting systems (e.g., selection, projection, aggregation,

bloom filter, etc.), FPDB additionally supports offload-

ing distributed data shuffle and selection bitmap opera-

tions to the storage layer. The two proposed pushdown

operators are discovered following a general principle

which decides whether an operator is amenable to push-

down. We will show the details of the advanced push-

down operators as well as the principle in Section 6.
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(a) Caching Only (b) Pushdown Only (c) Hybrid Execution (d) Adaptive Pushdown (e) Advanced Pushdown Operators

Fig. 4: System Architectures — High level architectures of baseline solutions (caching-only (a), pushdown-only (b)), and
three proposed enhancements deployed within FPDB (hybrid execution (c), adaptive pushdown (d), and advanced pushdown
operators (e)).

4 Hybrid Pushdown and Caching Execution

In this section, we present the solution of fine-grained

hybrid query execution with pushdown and caching,

and a new cache replacement policy specifically de-

signed for the storage-disaggregation architecture.

4.1 Hybrid Query Executor

At a high level, the query executor converts the logical

query plan into a separable query plan by dispatching

separable operators into both local and pushdown pro-

cessing; the results are then combined through a merge

operator. This section describes the module and illus-

trates how the system works through an example query.

4.1.1 Design Choices

Designing the hybrid query executor requires making

two high-level design decisions: what to cache and at

which granularity, which we discuss below.

Caching Table Data or Query Results. Two types

of data can potentially be cached in FPDB: table data

and query results. Table data can be either the raw in-

put files or a subset of rows/columns of the input tables.

Query results can be the final or intermediate results of

a query, which can be considered as materialized views.

We consider the caching of table data and results

as two orthogonal techniques, with their own opportu-

nities and challenges. In FPDB, we explore caching on

the raw table data since it is adopted more widely in

existing OLAP DBMSs [51,42,79,23,26] — the system

usually deploys a data cache in a granularity such as

tables, pages, blocks, etc.

Storage and Caching Granularity. FPDB stores ta-

bles in object cloud storage service. Tables are horizon-

tally partitioned based on certain attributes (e.g., pri-

mary key, sorted field, timestamp, etc.). Each partition

is stored as an object in the cloud storage and contains

all the columns for the corresponding subset of rows.

The basic caching unit in FPDB is a segment, which

contains data for a particular column in a table parti-

tion (i.e., a column for a subset of rows). A segment is

uniquely identified by the segment key, which contains

three parts: the table name, the partition name, and

the column name. The data format of a segment (e.g.,

Apache Arrow [7]) can be potentially different from the

raw input data (e.g., CSV, Parquet [10], etc.).

4.1.2 Separable Operators

We call an operator separable if it can be executed using

segments in both the cache and the cloud storage, with

the results combined as the final output. Not all the

operators are separable (e.g., a join). Below we analyze

the separability of several common operators.

Projection. Projection is a separable operator. If only

a subset of segments in the queried columns are cached,

the executor can load the remaining segments from the

storage layer. The results can be then combined and fed

to the downstream operator.

Filtering Scan. Whether a filtering scan is separable

depends on the cache contents. Ideally, the executor

can process some partitions in the cache, push down

filtering for the remaining partitions to the storage, and

then merge the results, thus separating the execution.

However, the situation can be complex when multiple

columns are selected but not all of them are part of the

filtering predicate.

Consider a scan query that returns two sets of at-

tributes A and B from a table but the filtering predicate

is applied on only attribute set A. For a particular table

partition, if all segments in both A and B are cached,

the partition can be processed using the data in the

cache. However, if only a subset of segments in A are

cached, the executor must either load the missing seg-

ments or push down the scan of the partition to the
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ScanScanScanScan

Local Cache

(a) Conventional

MergeMerge

ScanScan

Local Cache

ScanScan

(b) Separable Query Plan

Fig. 5: Example of a Separable Query Plan — The hybrid
query plan contains a parallel merge operator that combines
the results from cache and computation pushdown.

storage entirely. Finally, if all segments in A but only

a subset of segments in B are cached (call it B′), the

processing can be partially separated — the executor

filters A and B′ using cached data, and pushes down

the filtering for (B −B′).

Base Table Aggregation. Pushdown computation can

perform aggregation on certain columns of a table. These

operators can be naturally separated: a partition is ag-

gregated locally if all involved segments are cached; oth-

erwise the aggregation is pushed down to the storage.

The output can then be merged.

Hash Join. A join cannot be completely pushed down

to the storage layer due to limitations of the computa-

tion model that a storage layer supports. Prior work [86]

has shown that a Bloom hash join can be partially

pushed down as a regular predicate on the outer rela-

tion in a join. Given this observation, we conclude that

the building phase in hash join is not separable — the

columns of interest in the inner relation must be loaded

to the compute node. The probing phase is separable:

cached segments of the outer relation can be processed

locally, while uncached segments can be filtered using

the Bloom filter generated based on the inner relation.

Sort. Theoretically, sort is separable — a remote seg-

ment can be sorted via pushdown and the segments are

then merged in the computation node. Such techniques

have been explored in the context of near-storage pro-

cessing [54] using FPGA. However, since the cloud stor-

age today does not support sorting (e.g., S3 Select), the

separation of sorting is not supported in FPDB.

4.1.3 Separable Query Plan

A query plan is separable if it contains separable oper-

ators. Fig. 5 shows an example of a conventional query

plan without pushdown (Fig. 5(a)) and the transformed

separable query plan (Fig. 5(b)).

A conventional query plan reads all the data from

the compute node’s local cache (i.e., buffer pool). For a

miss, the data is loaded from the storage layer into the

cache before query processing. A separable query plan,

by contrast, splits its separable operators and processes

them using both the cached data and pushdown compu-

tation. How the separation occurs depends on the cur-

rent content in the cache, as described in Section 4.1.2.

For good performance and scalability, the merge op-

erator in FPDB is implemented across multiple par-

allel threads. Specifically, each operator in FPDB is

implemented using multiple worker threads and each

worker thread is assigned multiple segments of data.

The segments assigned to a particular worker might be

entirely cached, entirely remote, or a mixture of both.

For threads with a mixture of data sources, the results

must be first merged locally into a unified data struc-

ture. The data across different threads does not need

to be explicitly merged—they are directly forwarded

to the downstream operators (e.g., joins) following the

original parallel query plan.

4.1.4 Example Query Execution

SELECT R.B, sum(S.D)
FROM R, S
WHERE R.A = S.C AND R.B > 10 AND S.D > 20
GROUP BY R.B

Listing 1: Example query joining relations R and S.

We use the query above as an example to further

demonstrate how the hybrid query executor works; the

plan of the query is shown in Fig. 6. The example

database contains two relations R and S with the as-
sumption that |R| < |S|, and each relation has two

partitions (as shown in the cloud storage in Fig. 6). Re-

lation R has two attributes A and B, and relation S

has two attributes C and D. Four segments are cached

locally, as shown in the Local Cache module in Fig. 6.

To execute the query using hash join, the DBMS

first scans R to build the hash table and scans S to

probe the hash table. The output is fed to the group-by

operator. Four partitions are involved in the join, i.e.,

partitions 1 and 2 in relations R and S, respectively.

Depending on what segments are cached, the partition

can be scanned locally, remotely, or in a hybrid mode.

Scan of Relation R. For the first partition in R, both

segments (i.e., A1 and B1) are cached. Therefore, the

executor reads them from the local cache and no push-

down is involved. For the second partition in R, neither

segment (i.e., A2 and B2) is cached, thus the filter is

pushed down to the storage layer, which returns the

subset of rows in A2 and B2 that satisfy the predi-
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Fig. 6: Separable Query Plan — For the query in Listing 1.

cate. Finally, the local and remote results are combined

through a merge operator.

Scan of Relation S. For the first partition in S, only

segment C1 is cached, but the filter predicate of relation

S is on attribute D, so the filtering scan cannot be pro-

cessed locally and must be pushed down to the storage,

which returns the filtered segments C1 and D1. For the

second partition in S, only segment D2 is cached. Since

the filter predicate is on D, the DBMS can directly read

from the cache to processD2. Since the scan should also

return attribute C2, the DBMS can push down the filter

to the storage to load C2. Note that it is also possible

to process this partition by pushing down the process-

ing of both C2 and D2 — ignoring the cached D2. This

alternative design avoids evaluating the predicate twice

(i.e., for the cached data and remote data) but incurs

more network traffic. FPDB adopts the former option.

In the discussion so far, only the filtering scan is ex-

ecuted in a hybrid mode. As described in Section 4.1.2,

the probe table in a hash join can also be partially

pushed down. For the example query in particular, the

DBMS can scan relation R first, builds a Bloom filter on

attributeR.A, and consider this Bloom filter as an extra

predicate when scanning relation S; namely, the predi-

cates on S then become S.D > 20 AND Bloom filter(S.C).

Note the Bloom filter can only be constructed after the

entire column of attribute R.A is loaded. Therefore,

when pushing down the probe table of the hash join,

the scan of relation S can start only after the scan of

relation R completes. In contrast, both scans can be

executed in parallel without Bloom filter pushdown.

4.1.5 Execution Plan Selection

FPDB currently uses heuristics to generate separable

query plans. It takes an initial plan from the query

optimizer, and splits the execution of separable oper-

ators based on the current cache content. Specifically,

an operator on a partition is always processed based on

cached segments whenever the accessed data is cached.

Otherwise, we try to pushdown the processing of the

partition as much as we can. If neither works (e.g., the

operator is not separable), we have to load the missing

segments from the storage layer. Note that the heuris-

tics we adopt can generate only one separable plan

given an input query plan. We adopt these heuristics

based on the following two assumptions:

– Local processing on cached data is more efficient

than pushdown processing in the storage layer.

– Pushdown processing is more efficient than fetching

all the accessed segments from the storage layer and

then processing locally.

The two conditions can hold in many cloud setups

with storage-disaggregation. The computation power

within the storage layer is still limited compared to the

local compute nodes and the network between the com-

pute and storage layers has lower bandwidth than the

aggregated disk IO bandwidth within the storage layer.

Evaluation in Section 8 will demonstrate the effective-

ness of the heuristics with good performance.

4.2 Cache Manager

The cache manager decides what table segments should

be fetched into the cache and what segments should

be evicted, as well as when cache replacement should

happen. We noticed a key architectural difference in

FPDB that makes conventional cache replacement poli-

cies sub-optimal. Conventionally, cache misses require

loading data from storage to cache. If cached segments

are of equal size, each cache miss incurs the same cost.

In FPDB, however, since we can push down compu-

tation instead of loading data, some segments may be

more amenable to pushdown than others, which affects

the benefit of caching. In other words, segments that

cannot be accelerated through pushdown should be con-

sidered for caching with higher weight; and segments

that can already be significantly accelerated through

pushdown can be cached with lower weight—the ex-

tra benefit of caching beyond pushdown is relatively

smaller. We develop a Weighted-LFU (WLFU) cache

replacement policy based on this observation.
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Fig. 7: Integration of Executor and Cache Manager — The
cache manager decides what segments should stay in cache.

4.2.1 Integration with Hybrid Executor

Fig. 7 demonstrates how the cache manager is inte-

grated with the hybrid executor in FPDB. The hybrid

executor takes a query plan as input and sends infor-

mation about the accessed segments to the cache man-

ager. The cache manager updates its local data struc-

tures, determines which segments should be admitted

or evicted, and loads segments from the cloud storage

into the cache during query execution.

For cache hits, the hybrid executor processes the

query using the cached segments. Cache misses include

two cases: First, if the caching policy decides not to load

the segment into the cache, then FPDB exploits com-

putation pushdown to process the segment. Otherwise,

if the caching policy decides to cache the segment, the

DBMS can either wait for the cache load or push down

the computation. FPDB adopts the former option to

minimize network traffic.

4.2.2 Weighted-LFU Cache Replacement Policy

As discussed previously, the hybrid caching and push-

down design in FPDB changes a fundamental assump-

tion of cache replacement—cache misses for different

segments incur different costs. Specifically, consider two

segments, A and B, where A is accessed slightly more

frequently thanB, so that an LFU policy prefers caching

A. However, it can be the case that segment A can ben-

efit from computation pushdown so that a cache miss is

not very expensive, while segment B is always accessed

with no predicate hence cannot benefit from pushdown.

In this case, it might be more beneficial if the DBMS

prefers B over A when considering caching.

Following this insight, we can tailor the standard

LFU specifically for the pushdown context. Instead of

incrementing the frequency counter by 1/segment.size

for each access of a segment (assuming the standard

LFU is size-sensitive), we increment the counter by a

weight, which depends on whether the segment can be

pushed down and if so, what cost the pushdown is. In-

tuitively, the more costly the pushdown is, the more

benefit we get from caching, hence the higher weight.

While there are many different ways to calculate

the weight, in FPDB, we choose a straightforward for-

mulation to represent a weight by the estimated to-

tal amount of work (measured in time) of pushdown

computation, which is modeled by three components:

time of network transfer, time of data scanning, and

time of computation, as shown in Equation 1. The to-

tal time is divided by the segment size to indicate the

size-normalized benefit of caching.

w(s) =
total work(s)

size(s)
=

tnet(s) + tscan(s) + tcompute(s)

size(s)
(1)

We estimate the time of each component using the

following simple equations (Equations 2–4).

tnet(s) =
selectivity(s)× size(s)

BWnet
(2)

tscan(s) =
Ntuples(s)× size(tuple)

BWscan
(3)

tcompute(s) =
Ntuples(s)×Npredicates

BWcompute
(4)

The equations above assume the data within the

cloud storage is in a row-oriented format (e.g., CSV)

— they can be easily accommodated for columnar data

(e.g., Parquet) by adjusting data scan amount to the

size of columns accessed instead of the whole object.

The time of each component is essentially the total

amount of data transfer or computation divided by the

corresponding processing bandwidth. Most of the pa-

rameters in the numerators can be statically determined

from the statistics (e.g., size(s), size(tuple), Ntuples(s))

or from the query (e.g., Npredicates), except for selec-

tivity(s) which can be derived after the corresponding

segment has been processed by the executor.

For the bandwidth numbers in the denominators,

we run simple synthetic queries that exercise the cor-

responding components to estimate their values. This

process is performed only once before all the experi-

ments are conducted.

5 Adaptive Pushdown

This section presents the detailed design of the adap-

tive pushdown mechanism, which performs computa-

tion pushdown in storage adaptively, by taking into ac-

count the storage-layer resource utilization status. The

high level workflow is depicted in Figure 8, where only

a portion of tasks that the pushdown engine can sustain
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are offloaded. For the rest computation tasks, only the

accessed raw data is returned to the compute nodes and

no pushdown occurs. The two portions of computation

results are then combined at the compute layer.

One major challenge of adaptive pushdown is that it

is hard for the compute nodes to collect accurate statis-

tics from the storage to decide whether a pushable task

should be offloaded. Furthermore, even if such informa-

tion can be accurately collected at planning time, the

resource utilization in the storage layer may change at

runtime. In this section, we develop a pushback mech-

anism to let the storage layer instead of the compute

layer to make the pushdown decision at runtime.

Fig. 8: High Level Workflow of Adaptive Pushdown — The
adaptive pushdown arbitrator determines whether to accept
a pushdown request for execution or push it back.

5.1 Theoretical Analysis

We begin by analyzing the theoretical optimal bound of

adaptive pushdown—the optimal division of the com-

putation tasks between pushdown and non-pushdown

to achieve the best overall performance. Specifically, we

analyze the workload under the following assumptions.

– The workload (which may consist of multiple con-

current queries) contains N pushdown requests sub-

mitted to the storage layer in parallel.

– Each pushdown request consumes the same amount

of computational resource bwpd when admitted, or

the same amount of network resource bwpb when

pushed back. The total available CPU and network

bandwidth in the storage are BW cpu and BW net.

– The overall execution time of the pushable query

plan portion is T pd with pushdown enabled, and

Tnpd with pushdown disabled, where
Tnpd

Tpd
= k. In-

tuitively, k determines the maximum speedup that

any pushdown technique can possibly achieve.

We use the following terms to describe the push-

down decisions made at the storage layer.

– Among N pushdown requests arriving at the stor-

age, n requests are admitted and N−n requests are

pushed back.

– The admitted pushdown requests result in an over-

all execution time of Tpd part, and requests that are

pushed back take Tpb part to finish.

Since the admitted pushdown requests at the stor-

age layer and the pushback requests at the compute

layer are executed in parallel, the overall execution time

of the pushable portion in the query plan can be for-

mulated as follows (Equation 5).

T = max{Tpd part , Tpb part} (5)

In the optimal case, the storage layer would have a

global view of all requests that it will receive ahead of

the query execution. Therefore, an optimal split of the

pushdown requests for admission and pushback can be

constructed. Intuitively, with more pushdown requests

admitted at the storage, Tpd part becomes larger, and

Tpb part gets smaller, and vice versa. The overall execu-

tion time obtains the minimum when these two terms

are equal, namely:

Topt = Tpd part = Tpb part (6)

We assume the pushdown tasks are bounded by

CPU computation and pushback tasks are bounded by

network. Therefore, Equation 6 can be further expanded

as follows (Equation 7).

n · bwpd

BWcpu
=

(N − n) · bwpb

BWnet
(7)

T pd and Tnpd can be expressed similarly (Equa-

tion 8).

Tpd =
N · bwpd

BWcpu
, Tnpd =

N · bwpb

BWnet
(8)

Since we know
Tnpd

Tpd
= k by assumptions, we plug it

into Equation 8 and obtain Equation 9.

kN · bwpd

BWcpu
=

N · bwpb

BWnet
(9)

Combining Equation 9 and Equation 7, we can ex-

press n as follows (Equation 10).

n =
k

k + 1
N (10)

Additionally, the optimal execution time can be ex-

pressed as follows (Equation 11).

Topt =
k

k + 1
Tpd =

1

k + 1
Tnpd (11)

Intuitively, a larger k means a higher speedup with

pushdown, leading to more tasks executed in the stor-

age (n being larger). Even when the pushdown layer

processes tasks slower than the compute layer (k < 1),
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it can still accelerate the system by offloading some

computation. When the pushdown layer is extremely

slow or does not exist (k = 0), all tasks are pushed back

to the compute layer and no pushdown occurs. Note the

optimum (Equation 10) can only be approximately sat-

isfied in practice, since the number of pushdown and

pushback tasks can only be integers. For example, as-

sume a query submits ten requests to storage, and the

optimal division of pushdown and pushback tasks is 7.7

versus 2.3. In practice we have to round them to the

closest integers, i.e., execute eight requests at the stor-

age and push back the rest two requests.

5.2 Pushback Mechanism

In our design, the compute nodes always try to offload

all pushdown tasks as if the storage has abundant com-

putational resource. When the storage server receives

a pushdown request, the adaptive pushdown arbitra-

tor (Fig. 8) determines whether the pushdown request

should be accepted and executed. If the storage server is

busy, the pushdown request is rejected and the compu-

tation task is pushed back, in which case the raw data is

returned and processed at the compute node as if push-

down did not happen. The query plan at the compute

layer is then adjusted to accommodate the pushback.

Algorithm 1: Pushback Mechanism of Storage

State: wait queue: Qwait

pushdown execution slots: S exec-pd

pushback execution slots: S exec-pb

Assume: all incoming requests first enter Qwait

1 while Qwait is not empty do
2 req = Qwait .front()
3 tpd = estimate pushdown time(req)
4 tpb = estimate pushback time(req)
5 if tpd < tpb then
6 success = try pushdown(req, S exec-pd) or
7 try pushback(req, S exec-pb)

8 else
9 success = try pushback(req, S exec-pb) or

10 try pushdown(req, S exec-pd)

11 if success then
12 Qwait .dequeue()
13 else
14 break

Algorithm 1 illustrates the pushback mechanism de-

ployed in the storage layer. It is invoked when a new re-

quest arrives or a running request completes. The state

maintained in the pushdown node includes a wait queue

(Qwait), which is used to buffer excess pushdown re-

quests when the server is under heavy load, and a finite

set of execution slots (S exec-pd, S exec-pb) for both push-

down and pushback executions, to help isolate perfor-

mance among different executions and avoid throttling.

We assume all incoming requests first enter Qwait.

For each request in the wait queue (line 1–2), we

begin by estimating the execution time for both push-

down and pushback (lines 3–4), which are classified as

the faster path and slower path respectively through

comparison (line 5). The adaptive pushdown arbitra-

tor first tries to assign the request to the faster path

(line 6 and line 9). If the assignment is not success-

ful due to resource contention, e.g., the corresponding

execution slots are full, the arbitrator then tries to as-

sign the request to the slower path (line 7 and line 10).

If at least one assignment is successful, the request is

removed from the wait queue and executed correspond-

ingly, and we start evaluating the next request in the

wait queue. The process pauses when both computation

and network resources are saturated. The intuition here

is that the storage server should balance the resource

utilization between CPU and network adaptively.

Time estimation (line 3–4) follows the same method-

ology adopted byWeighted-LFU cache replacement pol-

icy (Section 4.2.2), where the pushdown time (tpd) con-

sists of three components: data scanning, computation,

and network transfer of pushdown results. Similarly, the

pushback time (tpb) contains data scanning, network

transfer of raw data, and compute-layer computation.

Note data scanning is included in both pushdown time

and pushback time, and will cancel each other when

compared in Algorithm 1 (line 5).

We further simplify the time estimation by ignor-

ing compute-layer computation in pushback time, based

on two observations. First, in a storage-disaggregated

architecture, usually raw data transfer dominates the

pushback time so the computation component has lit-

tle effect (in Section 6.1 we observe most existing push-

down operators are bounded). Second, the storage layer

is unaware of the computation bandwidth of the com-

pute nodes, which can vary across different users. This

may bring some inaccuracies into the estimation, but

overall we observe a near-optimal result on how ag-

gressive pushdown should be and better performance.

Section 8.3 will show the pushback mechanism closely

aligns with the theoretical analysis in Section 5.1.

5.3 Awareness of Pushdown Amenability

The wait queue deployed in Algorithm 1 manages the

arriving pushdown requests in a FIFO order — whether

the request will be accepted is purely based on cur-

rent resource utilization status. However, some requests

may benefit more on pushdown compared to other re-

quests (e.g., the request has a selective filter but in-
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curs little computation). Intuitively, these pushdown-

amenable requests should be given a higher priority to

be executed in the pushdown path than the requests

that cannot benefit a lot by pushdown.

Consider a scenario where the wait queue contains

two requests: r1 with tpd = 3 and tpb = 4, followed by

r2 with t′pd = 1 and t′pb = 4. The two requests have

the same estimated pushback time but differs on the

estimated pushdown time. Assume at a moment one

request can be admitted for pushdown execution and

the other needs to be pushed back. Algorithm 1 would

first evaluate r1 and places it into the pushdown path,

then evaluate r2 with it pushed back. However, a better

solution would be to push back r1 instead of r2, since

r2 incurs a lower execution time by pushdown.

Given a request, we define Pushdown Amenability

(PA) as the potential benefit of pushdown compared to

pushback, which can be expressed as Equation 12.

PA = tpb − tpd (12)

At runtime, the arbitrator keeps the wait queue

sorted by the PA value of the requests. Pushdown ex-

ecution always consumes the request with the highest

PA value, and pushback execution does the reverse. In

the example shown above, PA(r1) = 1 and PA(r2) = 3,

which means the storage server would consider execut-

ing r2 in the storage and pushes r1 back. Compared to

Algorithm 1, the invariant here is the full utilization of

both the computational and network resources. How-

ever, the total amount of consumed CPU and network

resources are potentially decreased.

6 Advanced Pushdown Operators

In this section, we aim to obtain a comprehensive un-

derstanding of the effects of computation pushdown to

cloud OLAP DBMSs. We collect the supported push-

down operators in existing cloud DBMSs, and by ob-

serving the common patterns, we derive a general prin-

ciple about whether an operator is amenable to push-

down (Section 6.1). Based on the principle and several

observations in query execution of FPDB, we further

identify two operators that can benefit from pushdown

to the storage (Section 6.2).

6.1 Key Characteristics

Table 1 collects the pushdown support in existing cloud

OLAP DBMSs. Selection, projection, and aggregation

are mostly considered due to the wide usage and ease

of design and development. Beyond this, different sys-

tems adopt a customized set of pushdown operators.

For instance, grouped aggregation can be pushed to the

storage by Redshift Spectrum. PushdownDB supports

pushdown of grouped aggregation, top-K, and Bloom

filters using existing APIs of S3 Select. However, due

to the intrinsic restrictions of S3 Select interfaces, the

implementations are not as efficient as they could be.

First, pushdown of grouped aggregation has to be pro-

cessed in two phases, resulting two rounds of data ex-

change. Second, Bloom filters are required to be seri-

alized explicitly into strings with 0s and 1s, which is

space- and computation-inefficient. Finally, PolarDB-X

enables pushdown for a specific join type which requires

both tables co-partitioned on the join key.

We conclude the following key characteristics from

Table 1 that contribute to the suitability of a pushdown

operator.

Key Characteristics of Pushdown. The required

storage-layer computation is local and bounded.

Characteristic 1: Locality. Locality means the com-

putation tasks placed at the storage layer do not in-

cur any network traffic across the storage servers—the

traffic occurs only between the storage layer and the

compute layer.

Analysis of Operators. Popular pushdown operators like

selection, projection, and scalar aggregation comply with

locality, since no network traffic is incurred across stor-

age nodes. The same rationale also applies to opera-

tors including grouped aggregation, Bloom filter, top-

K, sort, where the computation functionality can be

performed on each individual data object.

General join does not embrace locality, unless the

two joining relations are co-partitioned using the join

key. Otherwise the data needs to be shuffled across the

network to redistribute the tables. PolarDB-X supports

pushdown of co-partitioned joins. Another example of

non-local operator is Merge, which combines the out-

put of multiple upstream operators (e.g., select, project,

aggregate, sort, etc.). Merge requires data exchange

within the storage layer since data objects are typically

spread across multiple storage severs, making it a non-

local operation. As Table 1 shows, none of the existing

cloud DBMSs supports pushing merge to the storage.

Potential Advantages. We believe locality is an impor-

tant characteristic for pushdown operators for three

reasons. First, a pushdown environment must support

multi-tenancy. Forbidding data exchange across stor-

age servers can reduce the performance variations in

pushdown tasks (e.g., due to network interference and

queueing). Second, cloud storage must be encrypted us-

ing protocols like TLS [69] during data transfer. Local
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Table 1: Supported Pushdown Operators in Existing Cloud OLAP DBMSs — Systems supporting pushdown via S3 Select
with no additional enhancement are represented as S3 Select (e.g., Presto). Marked with *: Pushdown of grouped aggregation
and Bloom filters are not efficiently supported by PushdownDB, join pushdown in PolarDB-X requires both tables co-located
on the join key, and top-K pushdown in PolarDB-MySQL requires indexes on the sort key.

Operator Selection Projection Scalar Agg. Grouped Agg. Bloom Filter Top-K Sort Join Merge

Redshift Spectrum ✓ ✓ ✓ ✓

AQUA ✓ ✓ ✓

S3 Select ✓ ✓ ✓

PushdownDB ✓ ✓ ✓ ✓∗ ✓∗ ✓

Azure Data Lake
Query Acceleration

✓ ✓ ✓

PolarDB-X ✓ ✓ ✓ ✓ ✓ ✓ ✓∗

PolarDB-MySQL ✓ ✓ ✓ ✓∗

operators avoid the complexity of encryption and de-

cryption across storage servers (e.g., distributing pri-

vate keys). Third, local pushdown keeps the design of

the storage layer simple, since otherwise it needs to sup-

port the server-side functionalities of client-server APIs.

Characteristic 2: Boundedness. Bounded implies

that pushdown tasks should only require at most linear

amount of CPU and memory resources with regard to

the accessed data size.

Analysis of Operators. Selection, projection, and scalar

aggregation are linearly bounded since the CPU con-

sumption is linear to the size of the processed data,

and the memory consumption is a constant. Grouped

aggregation consumes linear CPU and linear memory

capacity. Bloom filter can be regarded as a special reg-

ular filter which is thus also linearly bounded. Top-

K is typically implemented using a max or min heap

which consumes O(K) memory and O(NlogK) execu-

tion time, where N is the size of the input data. The
variable K is a constant and typically much smaller

than N , making the time complexity also linear in N .

The computation complexity of the sort operation

is not linearly bounded. The boundedness of the join

operator depends on the cardinality of its output. In

a key-foreign key join, the output size is bounded by

the larger table, which also serves as the upper bound

for both memory usage and computational complexity.

However, if the join is not an equi-join, it needs be com-

puted using a nested loop, resulting in complexity that

grows beyond linear. Only PolarDB-X incorporates join

pushdown for co-partitioned tables.

Potential Advantages. Supporting only bounded opera-

tors preserves the key benefits of storage-disaggregation,

where the storage service scales only based on the vol-

ume of the stored data, regardless of the computational

resource consumption of the workloads. If pushdown

operators are not bounded (linearly), the computational

resource consumption may grow beyond the scale of the

store data, which requires the storage servers to bal-

ance between storage and computational needs, which

defeats the purpose of storage-disaggregation.

6.2 Proposed Pushdown Operators

Following the key characteristics derived from existing

systems, we identify two commonly used operators in

modern distributed query processing that can also ben-

efit from pushdown to storage, but have not been deeply

investigated previously. First, we observed the hybrid

pushdown and caching execution (Section 4) may waste

some cached segments when they cannot cover the fil-

ter predicates entirely. To tackle this, we leverage late

materialization to push down selection bitmap instead

of the filter predicate to better use the cached data.

Second, we noticed that existing pushdown operator

are not specifically designed for distributed execution.

Therefore, we propose to offload distributed data shuffle

operation to the storage layer to reduce network traffic.

Selection Bitmap. Late materialization is adopted

by columnar OLAP engines broadly, as demonstrated

by various previous studies [71,67,62,34,68]. Selection

bitmaps are one common technique embracing late ma-

terialization, and DBMSs frequently filter columnar data

using selection bitmaps. For instance, when selecting a

column based on a filter predicate on another column,

the predicate column is read in first to generate a se-

lection bitmap. This bitmap is then used to filter the

selection column. Similar ideas appear in joins, where

the join columns will generate a bitmap, which is used

to select the non-join columns.

Storage-disaggregation opens up new design space

and optimization opportunities to better utilize late

materialization — bitmap construction and bitmap ap-

ply may not happen in the same layer, since modern

columnar query engines cache individual columns within

the compute nodes [38,42,23,18]. Selection bitmap push-
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down essentially is a variant of regular filtering push-

down, and hence is both local and bounded. In the fol-

lowing discussion, we will delve deeper into this larger

design space by demonstrating with two prevalent cases,

and then formulate a comprehensive solution that can

be applied more broadly.

Case 1: Selection Bitmap from the Storage Layer. Se-

lection bitmaps can be transferred from the storage to

the compute layer when they can only be created at

the storage layer — bitmaps are constructed at stor-

age via predicate evaluation, and then leveraged by the

compute nodes to filter columns in the local cache.

W.l.o.g., we use the filtering query below to demon-

strate how selection bitmap pushdown works, which es-

sentially evaluates a set of filter predicates on attribute

set B and returns both columns of both attribute sets A

and B. In more general cases, the filtering query can be

a subquery in more complicated queries, for example,

producing a input joining relation.

SELECT A, B FROM R

WHERE [predicates on B]

Listing 2: A General Filtering Query (A and B refer two at-
tribute sets).

(a) Conventional (b) Selection Bitmap Pushdown

Fig. 9: Selection Bitmap Pushdown (from the Storage Layer)
— The selection bitmap constructed at storage can be used
to filter cached data at the compute layer.

Assume columns A are stored in the local cache,

as Figure 9 shows. Conventionally, the DBMS needs

to load the missing columns B to evaluate the filter

(Figure 9(a)) (it is also possible that the DBMS pushes

down the entire scan and loads both filtered columns

A and B). The hybrid solution proposed in [85] also

requires the predicate column B loaded to the compute

node. Figure 9(b) illustrates the case when selection

bitmap pushdown is enabled. The storage layer first

constructs a selection bitmap by evaluating the filter

predicates on columns B. Then the bitmap is sent to

the compute node, where columns A are loaded from

the cache and filtered by directly applying the bitmap.

At the same time, filtered columnsB are returned to the

compute node, forming the final result together with

filtered columns A.

Case 2: Selection Bitmap from the compute layer. Con-

versely, when the selection bitmap can be constructed

in the compute layer, it can be sent to the storage layer

to do filtering without touching the predicate columns

from the disks.

Specifically, assume columns B are cached when ex-

ecuting Listing 2, as Figure 10 shows. Conventionally,

the storage layer must scan both columns A and B to

get the result back to the compute layer (Figure 10(a)).

With selection bitmap pushdown, as Figure 10(b) demon-

strates, the compute node now can construct a selection

bitmap when filtering columns B from the local cache.

The bitmap is then sent to storage such that the storage

server can perform filtering without loading columns B

from disks. Moreover, the CPU cycles used to evaluate

filter predicates are eliminated at the storage layer.

(a) Conventional (b) Selection Bitmap Pushdown

Fig. 10: Selection Bitmap Pushdown (from the compute layer)
— Storage can use the compute-layer selection bitmap to per-
form filtering without touching the predicate column.

Complete Fine-Grained Solution. Selection bitmap push-

down from the storage layer and the compute layer com-

plements each other, as one of them is always applicable

depending on what data columns are cached. In prac-

tice, filter predicates are often composed of multiple

sub-predicates connected by ‘AND’ or ‘OR’, and these

sub-predicates may themselves be composite. In these

situations, a fine-grained execution framework can be

used to combine the benefits of both storage-side and

compute-side selection bitmaps. For example, on evalu-

ating the predicate “(A or B) and C”, assume columns

A and B are cached. We can assign the sub-predicate

“A or B” to be evaluated at the compute layer, and

leave the rest “C” to the storage layer. Selection bitmap

are constructed in both layers and then exchanged, al-
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lowing for the formation of a complete selection bitmap

that corresponds to the input filter predicate, through

inexpensive bitwise operations. Subsequently, the com-

plete selection bitmap is used to filter both the cached

columns at the compute layer and the uncached columns

at the storage layer.

Distributed Data Shuffle. Shuffle is a commonly

used operator to redistribute data among compute nodes,

for example, when the downstream operator is an equi-

join and the two joining relations need to be redis-

tributed based on the join key. In a traditional shared-

nothing architecture, shuffle moves data from one node

to another based on a partition function (hash-based,

range-based, etc), so each data record experiences one

network transfer. However, in a storage-disaggregation

architecture, as Fig. 11(a) shows, existing systems (e.g.,

Presto) involve two network transfers—load data from

the storage (Step 2) which is pre-filtered within the stor-

age (Step 1, e.g., selection and projection pushdown),

and then exchange data across compute nodes (Step 3).

(a) Conventional (b) Shuffle Pushdown

Fig. 11: Distributed Data Shuffle Pushdown — Data is di-
rectly redistributed to the target compute node from the stor-
age layer.

Figure 11(b) presents the proposed design where we

push the shuffle operators into the storage layer. In this

case, the processing of the pushdown tasks is initiated

on the storage servers without shuffling (Step 1). Before

returning the pushdown results to the compute layer,

the data is partitioned and directly forwarded to the

appropriate target computation nodes (Step 2). Essen-

tially, the new shuffle design merges steps 2 and 3 in

the previous design into a single step, which reduces

two network transfers to one.

The compute layer needs to send some key param-

eters to the storage layer for it to conduct the shuffle

operation. These include a partition function, the parti-

tion key, and the identifiers of the target compute nodes

(such as IP addresses and keys) which the shuffled re-

sults are returned to. In our implementation, pushdown

requests are sent per data partition, and the parameters

used in shuffle processing are attached to each push-

down request when sent to the storage layer. For ex-

ample, assume there are four compute nodes and eight

data partitions in the storage layer. Each compute node

would have two corresponding data partitions, and thus

send two pushdown requests accordingly. The shuffle

operation for a data partition is initiated once its up-

stream operators are finished (e.g. scan, filter).

There are two approaches for a storage server to

transfer shuffled data to target compute nodes: (1) ac-

tively pushing the data to the compute nodes, or (2)

buffering the shuffled results locally and waiting for

compute nodes to request. We chose the latter approach

since the target compute nodes may not be immediately

ready to receive the data when the storage server issues

the transmission. However, the storage server has lim-

ited memory space and should not indefinitely write

shuffled results to the local buffer. The storage server

will set an upper bound on its local buffer size; when

the buffer is full, the shuffle process will throttle until

the buffer is drained by the target computation node.

Pushdown of distributed data shuffle is local since it

does not incur network traffic across the storage servers—

data is solely transferred from storage to the compute

layer. It is also bounded because essentially it involves

scanning of the input data and assigning records to

their corresponding partitions, which consumes CPU

and memory resources linearly.

Interact with Cached Data. It is non-trivial to exploit

the data in the cache while performing shuffle push-

down, since the shuffle operation changes the data dis-

tribution, which means the cached data may not be

directly applicable to downstream operators.

The most straightforward method is to ignore the

cached data when pushing shuffle to the storage layer —

the entire table is redistributed to the compute nodes

from the storage. A better solution is to perform the

same shuffle function to the cached columns within the

compute cluster, and only brings back shuffle results on

uncached columns from the storage. The advantages

are two-fold. First, in an n-node cluster, a portion of

roughly 1
n network traffic of redistributed data can be

saved, assuming the raw data is initially uniformly dis-

tribute into the n nodes and the shuffle function evenly

partitions the data across the cluster. This is because in

each node, around 1
n of the data will be redistributed to

the node itself. Second, the network bandwidth within

the compute cluster is usually higher than the band-

width between the computation and storage layer, and

reading cached data is more efficient than loading data

from the storage devices.

However, it may not be directly applicable to per-

form the shuffle function over the cached data, which
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depends on the existence of the shuffle columns in the

cache. To tackle this, we can resort the similar insight of

selection bitmap pushdown. When processing the par-

titioning function, the storage layer can generate a po-

sition vector, which represents the compute node that

each row should be redistributed to. For a n-node com-

pute cluster, each position value requires log2n bits,

making the position vector a lightweight data structure.

Interact with the Upstream Operator. The rationale afor-

mentioned can be generalized when the shuffle oper-

ation is not the direct downstream operator of data

scan—it may be performed on intermediate results of

computation like filtering and aggregation. The input

data produced by the upstream operator can be divided

into local portion—produced within the compute layer,

and remote portion—produced within the storage layer

(i.e. pushdown), which can also abstractly be regarded

as cached data and uncached data respectively.

Pushdown Framework. Pushdown within FPDB ba-

sically takes the query plan and moves some operators

to the storage layer, which is another physical imple-

mentation of the same logical plan of no pushdown, such

that the result correctness can be guaranteed. In prin-

ciple, any operator can be pushed down if the storage

layer supports it. FPDB pushes down an operator when

(part of) the input data can only be accessed in the

storage layer to reduce network traffic. Note whether

the pushdown actually happens is determined by adap-

tive pushdown (Section 5). Operators that already exist

in the query plan are straightforward to be offloaded—

the optimizer adjusts the placement of the pushdown

operator to the storage layer (e.g., shuffle). For push-

down operators that are not in the query plan (e.g.,

selection bitmap), FPDB transforms the query plan to

be an equivalent plan using such operators (e.g., a filter

operation is transformed as a bitmap-construct opera-

tion and a bitmap-apply operation).

7 Implementation

Given that not many open-source cloud-native OLAP

DBMSs exist, we decided to implement a new proto-

type, FPDB, in C++ and make the code publicly avail-

able to the community1. Fig. 12 shows the distributed

query execution framework of FPDB. FPDB adopts a

storage-disaggregation architecture. Data is stored per-

sistently in the object storage layer like AWS Simple

Storage Service (S3) [5]. FPDB supports querying both

row-based (e.g., CSV) and columnar data formats (e.g.,

1 https://anonymous.4open.science/r/

FlexPushdownDB-Dev-B63D

Fig. 12: Distributed Query Execution in FPDB.

Parquet [10]), and widely used benchmarks including

SSB, TPC-H, and Join Order Benchmark (JOB) [60].

7.1 FPDB Compute Layer

FPDB runs on a cluster of AWS EC2 [3] virtual ma-

chines, which contains a coordinator node and several

executor nodes. When a query arrives, the coordina-

tor is responsible for inspecting the catalog and meta-

data, parsing the query, and optimizing the query plan.

FPDB integrates Apache Calcite [8] as an extendable

cost-based query optimizer.

Actor-Based Parallel Processing. FPDB supports

distributed parallel query execution using C++ Actor

Framework (CAF [41]). CAF is a lightweight and ef-
ficient implementation of the Actor model [36], simi-

lar to those found in Erlang [39] or Akka [1]. Physical

operators are wrapped into actors, which are remotely

spawned at the executor nodes by the Actor Manager.

A query is composed of a number of actors arranged in

a tree. Within each individual executor node, the CAF

scheduler multiplexes active actors over all CPU cores

on the host machine.

Actors communicate via message passing from pro-

ducers to consumers — messages flow from leaves to the

root. FPDB manages actor behaviors using data mes-

sages and control messages. Data messages represent

the execution result of the producer, as well as the data

input of the consumer, which are sent in a pipelined

fashion. Data messages are placed in the shared mem-

ory when the producer and consumer actors are in the

same node. For data transfer among different nodes,

FPDB leverages Apache Arrow Flight [12], which can

achieve a much higher usage of the network bandwidth

over CAF’s builtin cross-node communication. Arrow
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Flight enables wire-speed, zero-copy, and serialization-

free data transfer by sending data in Arrow IPC for-

mat [13], which can be processed directly by FPDB’s

execution runtime. Control message are used to instruct

actors to begin execution, track their completion status,

and collect operators’ execution metrics. Query execu-

tion begins on leaf operators (i.e., scan), and the results

are gathered on the collate operator on completion.

FPDB’s local cache is also implemented as an actor

with cache contents managed by the cache replacement

policy. The cache actor communicates with other oper-

ator actors through message passing to admit and evict

data segments. FPDB performs caching using the main

memory (RAM) of the executor nodes.

Arrow-Based Runtime. Within the database engine

and the cache, we use Apache Arrow [7] to manage

data; table data is converted to Arrow within the scan

operator. Arrow is a language-agnostic columnar data

format designed for in-memory data processing. In the

executor, we encapsulated Arrow’s central type, Array,

to represent a data segment. Arrays are one or more

contiguous memory blocks holding elements of a par-

ticular type. The number of blocks required depends on

several parameters such as the element type, whether

null values are permitted, and so on. Using the same

data format for the processing engine and the cache

eliminates the overhead of extra data conversions.

Arrow provides efficient compute kernels (aggrega-

tion, sorting, join, etc.) using optimization techniques

including prefetching for cache-efficiency and vectoriza-

tion via CPU SIMD instructions. Besides, FPDB uses

Gandiva [19] for efficient expression evaluation, which is

built on top of Arrow and further enhanced by exploit-

ing LLVM and just-in-time expression compilation.

7.2 FPDB Storage Layer

FPDB supports querying data from object storage in-

cluding AWS S3 and FPDB-Store, a S3-like storage

prototype with pushdown capabilities discussed in Sec-

tion 5 and Section 6.

When querying data from S3, FPDB pushes down

computational tasks through S3 Select [29], a feature

where limited computation can be pushed down onto

S3, including projection, filtering scan, and base table

aggregation. Regular data retrieval is performed by is-

suing S3 GetObject [6] requests. We configure rate lim-

its, timeouts, and connections in AWS ClientConfigu-

ration high enough to saturate the network bandwidth.

Besides, FPDB does not use HTTPS/SSL which incurs

extra overhead, as we expect analytics workloads would

typically be run in a secure environment.

To enable customized pushdown features, we devel-

oped FPDB-Store, an open-source storage layer with

pushdown support. Data objects are stored on file sys-

tems located on locally attached SSDs, which could be

accessed by compute nodes through gRPC [20] calls.

Arrow Flight is utilized to send pushdown requests to

the storage layer and get results back to the compute

layer. Each pushdown request contains a serialized query

plan instead of a plain SQL dialect [29,15], to avoid re-

dundant query parsing and planning in the storage.

For pushdown operators with bitmaps (e.g., selec-

tion bitmap, Bloom filter), FPDB wraps bitmaps into

single-column Arrow tables for low serialization over-

head. FPDB also avoids two-phase processing [86] when

pushing down grouped aggregation to achieve lower la-

tency. In adaptive pushdown, when the storage decides

to push back a request, a special Flight error will be

returned to the computation layer, where the corre-

sponding compute node will issue a another gRPC call

to retrieve the compressed raw data.

8 Evaluation

In this section, we evaluate the performance of FPDB

by focusing on the following key questions:

– How does the hybrid pushdown and caching archi-

tecture perform compared to baseline pushdown-

only and caching-only architectures, and what is the

impact of Weighted-LFU on top of it, compared to

traditional cache replacement policies?

– How does adaptive pushdown perform under differ-

ent resource utilization status?

– What is the performance impact of the two proposed

pushdown operators?

8.1 Experimental Setup

Hardware Configuration. We conduct all the ex-

periments on AWS EC2 virtual machines. The com-

pute layer is deployed on compute-optimized instances

(e.g., c5a.8xlarge) or memory optimized instances (e.g.,

r5.4xlarge), and FPDB-Store is deployed on storage-

optimized instances (e.g., r5d.4xlarge) when used as the

storage layer. All instances run the Ubuntu 20.04 oper-

ating system.

Benchmark.We use the widely adopted data analytics

benchmarks, the Star Schema Benchmark (SSB) [64]

and TPC-H [33]. Each table is partitioned into objects

of roughly 150 MB when in CSV. We use both CSV and

Parquet format in the experiments, and Parquet data

is converted from CSV data. When using FPDB-Store
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as the storage layer, data objects are evenly distributed

to local disks of the storage instances.

Measurement. We measure the execution time and

other relevant metrics (e.g., network traffic). For each

experiment (i.e., a single query or a batch of sequen-

tially executed queries), we run three times and record

the average execution time with the associated metrics.

8.2 Evaluating Hybrid Pushdown and Caching

Execution Framework

This section evaluates the performance of the hybrid

query execution framework and Weight-LFU cache re-

placement policy on SSB (SF = 100). We implement a

random query generator based on SSB queries. A query

is generated based on a query template with parameters

in the filter predicates randomly picked from a specified

range of values (or a set of values for categorical data).

We incorporate skewness into the benchmark by pick-

ing the values following a Zipfian [49] distribution with

tunable skewness that is controlled by a parameter θ.

Skewness is applied to the fact table (i.e. Lineorder)

such that more recent records are accessed more fre-

quently. A larger θ indicates higher skewness. The de-

fault value of θ is 2.0, where about 80% queries access

the 20% most recent data (i.e. hot data).

Each experiment sequentially executes a batch of

generated queries, with a warmup phase and an exe-

cution phase. The warmup phase contains 50 queries

which we found sufficient to warm up the cache. The

execution phase contains 50 queries on which we report

the performance.

8.2.1 Caching and Pushdown Architectures

We start with comparing the performance of the Hy-

brid architecture with traditional Pushdown-only and

Caching-only architectures. We also add a Pullup

baseline, where both pushdown and caching are dis-

abled. We use S3 as the storage layer and leverage S3

Select to perform pushdown computation.

By default, we use LFU cache replacement policy for

Caching-only and Hybrid. We report performance

varying two parameters: cache size and access skewness

of the workload (i.e., θ), on both c5a.8xlarge (32 vCPU,

10 Gbps network) and c5n.9xlarge instances (36 vCPU,

50 Gbps network).

Overall Performance. Fig. 13 shows the runtime com-

parison on the c5a.8xlarge instance using CSV data.

Fig. 13(a) compares different caching/pushdown archi-

tectures when the cache size changes. First, we observe

that the performance of Pullup and Pushdown-only
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Fig. 13: Performance Comparison (c5a.8xlarge) — The run-
time with different (a) cache sizes and (b) access skewness.
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Fig. 14: Performance Comparison (c5n.9xlarge) — The run-
time with different (a) cache sizes and (b) access skewness.

are not affected by the cache size; this is because data is

never cached in either architecture. Pushdown-only

outperforms Pullup by 5.2×, because pushdown can

significantly reduce the network traffic. The Caching-

only architecture, in contrast, can take advantage of a

bigger cache for higher performance. When the cache

is small, its performance is close to Pullup. When

the cache size is bigger than 12 GB, it outperforms

Pushdown-only due to the high cache hit ratio.

Finally, the performance of Hybrid is consistently

better than all other baselines. When the cache is small,

FPDB behaves like Pushdown-only; when the cache

is large enough to hold the working set, FPDB be-

haves like Caching-only. For cache sizes in between,

Hybrid can exploit both caching and pushdown to

achieve the best of both worlds. At the crossing point

of Pushdown-only and Caching-only (i.e., roughly

12 GB), Hybrid outperforms both by 2.2×.

Fig. 13(b) shows the performance of different ar-

chitectures as the access skewness increases (we use

a cache of 8 GB which is enough to cache the hot

data). Pullup and Pushdown-only are not sensitive

to changing skewness. Both Caching-only and Hy-

brid see improving performance for higher skew, due

to a higher cache hit ratio since there is less hot data.

We further evaluate FPDB on the c5n.9xlarge in-

stance which has a 50 Gbps network. Fig. 14(a) com-

pares the performance of different architectures with

different cache sizes. The general trends are similar to

the case of c5a.8xlarge, and Hybrid consistently out-

performs all baselines. With a higher network band-
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width, Pushdown-only is 2× faster than Pullup,

which is lower than the speedup on the c5a.8xlarge in-

stance because loading data from the storage is faster.

The crossing point of Pushdown-only and Caching-

only shifts towards the left to roughly 6 GB, at which

point Hybrid outperforms both baselines by 51%.

The performance results with increasing access skew

on the c5n.9xlarge instance are shown in Fig. 14(b). The

general trend is also similar to c5a.8xlarge.

From the results above, we observe that different

hardware configurations can shift the relative perfor-

mance of pushdown and caching, but the hybrid design

always outperforms both baselines.
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Fig. 15: Per-Query Speedup — The average speedup of each
representative case in different architectures.

Per-Query Analysis. We dive deeper into the behav-

ior of the system by inspecting the behavior of indi-

vidual queries, and observe that they can be catego-

rized into three representative cases: (1) caching has

better performance, (2) pushdown has better perfor-

mance, and (3) both have similar performance. For each

category, we compute the average speedup of differ-

ent architectures compared to Pullup. The results on

c5a.8xlarge are shown in Fig. 15. Although not shown

here, the results on c5n.9xlarge have a similar trend.

In all three cases, Hybrid is able to match the

best of the three baseline architectures. When push-

down (or caching) achieves a higher speedup, Hybrid

slightly outperforms Pushdown-only (or Caching-

only). When the two techniques have similar perfor-

mance,Hybrid outperforms either baseline significantly.

The performance results in Fig. 13 and Fig. 14 are an

aggregated effect of these three categories of queries.

Comparison against Existing Solutions. To fur-

ther validate the performance of our system, we com-

pare FPDB with Presto, a production cloud database.

We use Presto v0.240 which supports computation push-

down through S3 Select and caching through Alluxio

cache service [26]. For Alluxio, we cache data in main

memory, which is consistent with FPDB. We conduct

the experiment using the same workload of Fig. 13 with

an 8 GB cache and a skewness of 2.0.

Table 2: Performance Comparsion between Presto and FPDB
— The runtime (in seconds) of different architectures in both
systems (Pushdown-only as PD-only, Caching-only as
CA-only).

Architecture Pullup PD-only CA-only Hybrid

Presto 588.7 271.3 536.3 -

FPDB 472.1 111.2 225.7 80.8

The result is shown in Fig. 2. FPDB outperforms

Presto by 25% in Pullup and 2.4× in Pushdown-

only, which implies that query processing inside FPDB

is efficient. InCaching-only FPDB is 2.4× faster than

Presto with Alluxio caching. A few reasons explain this

performance gain: First, Alluxio caches data at block

granularity, which is more coarse-grained than FPDB.

Second, Alluxio manages cached data through its file

system, incurring higher overhead than FPDB, which

manages cached data directly using heap memory. We

further note that only FPDB supports Hybrid query

execution. The Alluxio caching layer is unaware of the

pushdown capability of S3 while loading data, thus only

one technique can be used.

Simulating Parquet Performance. In this experi-

ment, we investigate the performance of FPDB on data

in Parquet. The challenge, however, is that current S3

Select has poor performance on Parquet — pushdown

of Parquet processing returns results in CSV, leading

to even worse performance than processing CSV data.

We studied a few other cloud-storage systems but they

either have the same problem [22,16] or do not support

Parquet pushdown at all [15].

In order to estimate the performance of an opti-

mized Parquet pushdown engine, we built an analytical

model to predict the system performance under differ-

ent scenarios [81]. Our model is based on real measure-

ments in software and hardware, and assumes one of

the key hardware resources is saturated (e.g., network

bandwidth, host processing speed, storage IO band-

width). In a separate document [81], we present the

detailed model and verify that it produces very accu-

rate predictions for CSV data under different cache size,

filtering selectivity, among other important configura-

tions. To accurately model Parquet performance, we

implement a program that efficiently converts Parquet

to Arrow format and processes filtering to mimic the be-

havior of Parquet pushdown, and plug into the model

the performance numbers measured through this pro-

gram. The key parametric difference between CSV and

Parquet includes the amount of network traffic and the

speed of pushdown processing.

We perform the estimation for both c5a.8xlarge and

c5n.9xlarge instances and report results in Fig. 16. We
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Fig. 16: Parquet Performance — The runtime estimation of
different architectures with different cache sizes on Parquet
data. Results on CSV data (Fig. 13(a), 14(a)) are added for
reference.

add the performance on CSV data for reference. We

observe that the performance on Parquet is always bet-

ter than the performance on CSV. The gain is more

prominent for Pullup and Caching-only since pro-

jection pushdown is free in the Parquet format, leading

to network traffic reduction. Gains are less significant

for Pushdown-only and Hybrid since both exploit

pushdown already. Comparing Fig. 16(a) and 16(b), we

also observe that the gain of Parquet is more promi-

nent when the network bandwidth is low, in which case

a more severe bottleneck is being addressed.

With Parquet, Hybrid still achieves the best per-

formance among all the architectures. When the net-

work is a lesser bottleneck (e.g., faster network or Par-

quet format), the performance advantage of Hybrid is

smaller and the crossing point of Pushdown-only and

Caching-only shifts towards the left. Even with Par-

quet data and fast network (c5n.9xlarge), at the cross-

ing point, Hybrid outperforms both Pushdown-only

and Caching-only by 47%.

We provide the following intuition as to why Hy-

brid’s advantage remains in Parquet data. In essence,

the performance gain of pushdown mainly comes from

three aspects: (1) network traffic reduction from projec-

tion pushdown; (2) network traffic reduction from selec-

tion pushdown; (3) parsing and filtering data with mas-

sive parallelism. With Parquet, all architectures have

the benefit of (1), but only pushdown processing has

the advantages of (2) and (3). For example, under the

default cache size (i.e. 8 GB), Hybrid reduces network

traffic by 66% over Caching-only on Parquet data (as

opposed to 93% on CSV).

8.2.2 Weighted-LFU Cache Replacement Policy

In this experiment we study the effect of Weighted-LFU

(Section 4.2.2) cache replacement policy. Fig. 17 com-

pares it with conventional cache replacement policies in-

cluding, LFU and Belady [40], an optimal replacement

policy that assumes availability of future information.

We have conducted a separate experiment which shows

that LRU has worse performance than LFU and Belady,

and thus exclude it from this experiment.

In the default SSB queries, predicates on different

attributes have similar selectivity, making the push-

down cost of different segments similar. To measure

the effectiveness of Weighted-LFU, we change the SSB

queries to incorporate different pushdown costs, by vary-

ing the selectivity of filter predicates. Specifically, we

change predicates on some attributes to equality predi-

cates which are highly selective (e.g., lo quantity = 10),

while using range predicates on the other attributes

(e.g., lo discount < 3 or lo discount > 6).
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Fig. 17: Weighted-LFU Cache Replacement Policy — Run-
time comparison of Weighted-LFU (WLFU) and baseline
policies (i.e., LFU and Belady) with varying access skewness.

As Fig. 17 shows, WLFU consistently outperforms

the baseline LFU and Belady. The biggest speedup hap-

pens when θ = 0.3 (i.e., low access skewness), where

WLFU outperforms LFU and Belady by 37% and 47%,

respectively. We further measure network traffic and

find WLFU can achieve a reduction of 66% and 78%,

compared to the baseline LFU and Belady respectively.

Recall that the optimization goal of WLFU is to re-

duce network traffic; this demonstrates that the algo-

rithm achieves the goal as expected. Interestingly, Be-

lady underperforms the baseline LFU and incurs more

network traffic, because Belady keeps prefetching entire

segments for future queries, which takes little advantage

of computation pushdown.

As θ increases, the performance benefit of WLFU

decreases. When θ is small, there is little access skew-

ness, so segments with higher pushdown cost are cached,

leading to the higher effectiveness of WLFU. When θ

is large, the access skewness overwhelms the difference

of pushdown cost among segments. In this case, both

policies cache frequently accessed segments and thus

perform similar.
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8.3 Evaluating Adaptive Pushdown

In this section, we compare the performance of Adap-

tive pushdown with traditional No pushdown and

Eager pushdown baselines under different storage-

layer computational resource conditions, using the TPC-

H benchmark (SF = 50). Since S3 does not support exe-

cution pushdown tasks adaptively, we use FPDB-Store

(Section 7) as the storage layer, which is deployed on

r5d.4xlarge instances (16 vCPU, up to 10 Gbps net-

work, and two 300 GB local NVMe SSDs). We emu-

late the storage-layer computational resource status by

varying the number of available CPU cores for push-

down tasks (with a storage computational power of 1

meaning that all CPU cores are available). The compute

layer is deployed on r5.4xlarge instances (16 vCPU, up

to 10 Gbps network).

Overall Performance. Fig. 18 compares the execu-

tion time of Adaptive pushdown with Eager push-

down and No pushdown baselines. When the com-

putational resource at storage is abundant for push-

down execution (i.e., storage computational power is

higher than 0.5), Eager pushdown outperforms No

pushdown and is only slightly affected by the com-

putational power at storage. As the storage computa-

tional power decreases, pushdown execution gets throt-

tled and gradually becomes the major bottleneck, mak-

ing Eager pushdown underperform No pushdown

when the storage-layer computational resource is scarce.

The performance of Adaptive pushdown is con-

sistently better than both baselines. Specifically, when

the storage computational power is high, it performs

similarly to Eager pushdown, and when the storage

server is tiny or under heavy burden, its performance

degrades less than Eager pushdown and can still

slightly outperformNo pushdown. In situations where

the storage computational power falls between these

two extremes, Adaptive pushdown achieves the best

of both worlds. When the performance of No push-

down and Eager pushdown breaks even, Adaptive

pushdown outperforms both baselines by 1.5× on av-

erage, and a speedup of 1.9× is observed on queries

including Q1, Q6, Q8, Q17, and Q19.

With pushdown enabled, the sensitivity on the stor-

age layer’s CPU utilization status varies among dif-

ferent queries. Most queries (15 of all) expose a high

sensitivity when executed with pushdown. For exam-

ple, the performance of Eager pushdown of Q1, Q12,

Q19, and Q22 is greatly impact by the storage-layer

computational power, and starts to degrade even when

the storage-layer CPU resource is not scarce. In these

queries, the performance improvement of Adaptive

pushdown is prominent since the pushable portion of

the query plan dominates the end-to-end execution time,

and Adaptive pushdown mitigates the issue of re-

source contention at storage when the pushable sub-

query plan is processed. For the remaining queries, the

performance of Eager pushdown is not very sensi-

tive to the storage-layer computational power (e.g., Q2,

Q3, and Q18), where the execution time is dominated

by non-pushable operators. In these queries, Adaptive

pushdown only shows its superiority when the avail-

able computational resource at storage is extremely low.

For example, Adaptive pushdown in Q2 outperforms

both baselines by 1.2× when the storage-layer compu-

tational power is 25%.

Case Study. To get a deeper understanding of the per-

formance benefits, we conduct detailed analysis on two

representative queries. We pick Q14 as the query that

benefits significantly from computation pushdown, and

Q12 as the query that benefits little from pushdown.

We measure the number of admitted pushdown re-

quests at the storage layer in each experiment. Fig. 19

shows the results of the heuristics used in the push-

back mechanism (Algorithm 1). For both queries, with

the the storage computational power decreasing, fewer

pushdown requests are admitted to be executed on the

storage server, and more requests are pushed back to

the compute layer. Compared to Q12, pushbacks in Q14

are less frequent since it achieves a higher maximal

pushdown speedup, such that more tasks are executed

in the storage.

We further evaluate the gap between the pushback

heuristics and the theoretical optimum (Section 5.1),

by comparing the number of actual admitted push-

down requests in the storage with the theoretical re-

sult obtained from Equation 10. Overall we observe a

very small relative gap between the heuristics and op-

timal (1% on Q12 and 2% on Q14), and in some cases

pushback heuristics achieve the optimal bound (e.g., for

Q12 when the storage computational power is less than

25%). This demonstrates that the pushback mechanism

is able to find a proper division of the computation tasks

between pushdown and non-pushdown.

Fig. 20 compares the incurred network traffic be-

tween the storage and compute layers among different

pushdown strategies. The network traffic of No push-

down and Eager pushdown both remain consistent,

and Eager pushdown reduces network traffic up to

an order of magnitude. The network usage of Adap-

tive pushdown is sensitive to the storage-layer com-

putational power, since it adaptively adjusts the ratio

between assigned pushdown and pushback tasks, such

that both CPU and network resources at the storage

server can be fully utilized.
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Fig. 18: Performance Evaluation of Adaptive pushdown on TPC-H (Execution time is normalized to No pushdown).
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Fig. 19: Comparison between Pushback Heuristics and the
Theoretical Optimal Bound.
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Fig. 20: Network Traffic Measured on Two Representative
Queries (Q12 and Q14).
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Fig. 21: Performance Breakdown on Two Representative
Queries (Q12 and Q14).

Fig. 21 shows the performance breakdown on the

two representative queries. We present three cases where

the storage-layer computational power is high, medium,

and low, respectively. The execution time of the non-

pushable portion of the query plan remains stable in all

cases. Compared to fetching raw data from the storage

in No pushdown, the overhead of pushback executions

in Adaptive pushdown is consistently smaller since

less data is returned. Compared to Eager pushdown,

Adaptive pushdown executes pushdown tasks more

efficiently since fewer tasks are actually admitted by the
storage. We further observe in Adaptive pushdown

that, the performance of pushdown and pushback exe-

cutions are close, which means our algorithm is able to

properly divide pushdown and pushback tasks to bal-

ance the usage of CPU and network resources.

Awareness of Pushdown Amenability. Next we

evaluate Adaptive pushdown when the pushdown re-

quests have different pushdown amenability. Within a

single query, pushdown amenability of different requests

is similar, since the TPC-H dataset embraces a uniform

distribution among different data partitions. Therefore,

in this experiment we execute the two representative

queries (Q12 and Q14) concurrently to ingest hetero-

genity of pushdown amenability.
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Fig. 22: Evaluation of Awareness of Pushdown-Amenability
in Concurrent Executions.

Figure 22 compares the original Adaptive push-

down and Adaptive pushdown with awareness of

pushdown amenability. We also add No pushdown

and Eager pushdown baselines for references. Both

original Adaptive pushdown and Adaptive push-

down which is aware of the pushdown amenability (PA-

aware) outperform the two baselines. Compared to the
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Fig. 23: Number of Admitted Pushdown Requests at storage
in Concurrent Executions.
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Fig. 24: Resource Usage of the Storage Layer in Concurrent
Executions (CPU usage is measured by the total CPU time
that is normalized to the time of 1 vCPU).

original Adaptive pushdown, PA-aware Adaptive

pushdown further improves the performance of both

concurrent queries, where Q12 is accelerated by up to

1.2× and Q14 is improved by up to 1.9×. An inter-

esting observation on Q14 is that the performance is

sometimes even improved with lower storage computa-

tion power (e.g., 0.3). This is because the performance

gap between the two concurrent queries are increased,

such that the contention on the non-pushable portion

in the compute layer is mitigated — the slower query

(Q12) has not entered the non-pushable portion when

the faster query (Q14) has completed.

To understand the achieved performance improve-

ment, we trace the number of admitted pushdown re-

quests for both queries respectively, which is shown in

Figure 23. Overall, we observe a decrease for the num-

ber of admitted pushdown requests on Q12 but an in-

crease on Q14. This is because the requests of Q14

have a potentially larger pushdown benefit, and they

are prioritized to be executed at the storage layer. Cor-

respondingly, more requests of Q12 are pushed back to

the compute layer. It is interesting to note that the per-

formance of Q12 does not degrade but is even slightly

improved, where the reasons are two-fold. First, the

difference of the execution time between the pushback

path and pushdown path on Q12 is not significant, so a

small number of more pushback execution do not hurt

the performance. Second, since the requests of Q14 are

executed more efficiently, the time spent in the wait

queue for the requests of Q12 decreases.

We further investigate the resource usage of CPU

and network, which is demonstrated in Figure 24. PA-

aware Adaptive pushdown reduces the CPU usage

by up to 15%, and network usage by up to 31%, com-

pared to the original Adaptive pushdown. The re-

duction is more significant when storage-layer compu-

tational power is lower, since more requests are pushed

back to the compute layer, and PA-aware Adaptive

pushdown is able to capture the most beneficial re-

quests that should be pushed back.

8.4 Evaluating Proposed Pushdown Operators

In this section, we evaluate the performance of new

pushdown operators, namely, selection bitmap and dis-

tributed data shuffle. We implement most existing push-

down operators (selection, projection, aggregation, Bloom

filter, etc.) into FPDB-Store to serve as a baseline.

8.4.1 Evaluating Selection Bitmap Pushdown

We first evaluate the performance of selection bitmap

pushdown on several representative benchmark queries:

Q3, Q4, Q12, Q14, and Q19 (other queries observe sim-

ilar results), using TPC-H (SF = 50). In each experi-

ment, we vary the selectivity of the filter predicate as-

sociated with the fact table Lineitem.
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Fig. 25: Performance Evaluation of Selection Bitmap Push-
down (Results are normalized to Pushdown (baseline)) —
The selection bitmap is constructed at the storage layer.
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The selection bitmap is constructed at the compute layer.
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Fig. 27: Performance Evaluation of Distributed Data Shuffle Pushdown on TPC-H (normalized to No pushdown).

Selection Bitmap from the Storage Layer. We

first simulate the scenario where the selection bitmap

can only be generated in the storage layer. We achieve

this by caching only the output columns of the filter

operator for the fact table. Predicate columns are not

cached. The results are depicted in Figure 25.

As Figure 25(a) illustrates, all queries show an im-

provement in performance compared to the baseline.

Selection bitmap pushdown is most effective in Q14 and

Q19. When the filter predicate is non-selective (e.g.,

0.9), these two queries perform over 3.0× better than

baseline pushdown since transferring selection bitmaps

instead of data columns reduces network traffic signifi-

cantly (over 90% of data transfer is saved, as shown in

Figure 25(b)). Q4 also observes a speedup of 2.3×.

When the filter predicate is highly selective, the

speedup is less obvious. This is because baseline push-

down returns less data to the compute layer, such that

the reduction of data transfer is less significant. Despite

this, query execution still gets accelerated. For instance,

when the selectivity is 0.1, the speedups of Q14 and Q19

are 1.8× and 1.3× respectively.

The performance gain on Q3 and Q4 is less substan-

tial compared to the other queries. These queries con-

tain more complex operators downstream of pushdown

(e.g., more intricate joins and aggregations), leading to

a diluted performance benefit.

Selection Bitmap from the Compute Layer. We

next emulate the case where the compute-layer selection

bitmap can be used to accelerate pushdown execution in

the storage layer. In this experiment, only the predicate

columns are cached in the compute nodes. Results are

displayed in Figure 26.

As demonstrated in Figure 26(a), all queries ben-

efit from selection bitmap pushdown when the filter

predicate is selective. For example, when the selectivity

approaches 0, pushdown of selection bitmaps outper-

forms the baseline by 2.0× and 2.6× on Q12 and Q19,

respectively. When the filter predicate becomes less se-

lective, the performance gain decreases, since more data

is transferred to the compute nodes, which dominates

the query execution time.

We also analyze disk metrics by measuring the num-

ber of bytes read and the number of columns accessed

from the disks, which are illustrated in Figure 26(b).

The amount of data scanning is reduced by 36% and

46% on Q4 and Q14 respectively, and by approximately

10% on the rest queries. Additionally, the number of

columns accessed of the Parquet data decreases be-

tween 18% and 56%. The reduction of data scanning

is less substantial compared to column access reduc-

tion, because the columns that can be skipped via selec-

tion bitmap pushdown are typically highly compressed,

such as l shipmode, which only has 7 unique values, and

l quantity, of which the value is within a small range

between 1 and 50. Conversely, columns that must be

transferred are often join keys or have a decimal type,

which usually have a low compression ratio.

8.4.2 Evaluating Distributed Data Shuffle Pushdown

Next we evaluate the performance of distributed data

shuffle pushdown over TPC-H (SF = 100), as Figure 27

shows. The execution time is normalized to the no push-

down baseline. Across all queries, shuffle pushdown re-

sults in an average of 1.3× performance improvement

over baseline pushdown, and 1.8× over no pushdown.

Among all 22 queries, we observe the performance

improvement on 20 of them, with 15 queries are ac-

celerated by over 1.2×, 10 queries accelerated by over

1.3×, and 6 queries accelerated by over 1.5×. Q7, Q8,

and Q17 benefit from shuffle pushdown most signifi-

cantly, which are improved by more than 1.7×. In these

queries, the filter predicates associated with the base ta-

bles are not selective, where a major part of the table

data still needs to be fetched. Shuffle pushdown is able

to eliminate the redistribution of the scanned base ta-

ble data, which occupies a large portion of the overall

execution time. As a result, we observe more than half

of the data exchange across the compute nodes is saved

compared to baseline pushdown.

Conversely, several queries do not benefit a lot from

shuffle pushdown (Q6, Q15, Q19, etc.). These queries

typically have highly selective filter predicates on base

tables, such that the amount of data transferred from
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the storage layer is not significant, and the overhead of

data exchange across the compute nodes is negligible.

We further investigate the incurred network traffic

in different pushdown configurations. On average shuf-

fle pushdown reduces the consumed network resource

by 38%. Specifically, shuffle pushdown reduces the data

exchange across the compute layer by 84% on overage,

while the network traffic between the compute and stor-

age layers is unaffected. Out of all 22 queries, the in-

curred data exchange across the compute layer is re-

duced by over 50% on 20 queries, by over 90% on 16

queries, and by over 99% on 7 queries.

9 Related Work

Cloud Databases. Modern cloud databases adopt an

architecture with storage-disaggregation. This includes

conventional data warehouses adapting to the cloud

(e.g., Vertica [59] Eon [75] mode) as well as databases

natively developed for the cloud (e.g., Snowflake [42,

79], Redshift [51], Redshift Spectrum [4], Athena [2]).

Besides OLAP DBMSs, transactional databases also

benefit from storage-disaggregation. AWS Aurora [77,

78] is an OLTP database deployed on a custom-designed

cloud storage layer where functionalities including log

replay and garbage collection are offloaded to the stor-

age layer. The disaggregation of computation and stor-

age also allows each component to easily adapt the

workload requirements dynamically.

Computation Pushdown. The concept of computa-

tion pushdown has been widely adopted by modern

cloud-native databases, such as AWS Redshift Spec-

trum [4], S3 Select [29], and Azure Data Lake Storage

Query Acceleration [15]. Systems such as Presto [25],

PushdownDB [86] and FlexPushdownDB [85] support

computation offloading via S3 Select [29]. PolarDB-X [24]

incorporates sorting and co-located equi-join pushdown.

AWS Advanced Query Accelerator (AQUA) [11] uses

special hardware accelerators (AWS Nitro chips [14])

to develop pushdown functions.

Beyond cloud databases, computation pushdown has

also been investigated in other research fields. Feder-

ated databases support querying various data sources

which have computation capabilities on their own via

connectors like general ODBC or Data Source APIs [31,

27,28]. In database machines, computation is offloaded

to storage through specialized hardware [44,74,80,45].

Smart Disks/SSDs supports executing relational opera-

tors within the internal processors [70,56,58,50,43,46,

82,84]. Moreover, the concept of computation push-

down is explored in processing-in-memory (PIM) tech-

niques [47,57,61].

Workload Management. General workload manage-

ment techniques have been intensively studied to make

efficient use of system resources in addition to achieving

any performance objectives [63,87,35], and widely de-

ployed in industrial commercial systems. For example,

IBM DB2 workload manager [17] allocates request re-

sources and adjusts the concurrency level based on the

source or type of incoming work. SQL Server Resource

Governor [32] provides multi-tenancy and resource iso-

lation on single instances of SQL Server that serve mul-

tiple client workloads. The same concept can also be

found beyond RDBMSs in big-data systems. YARN [76]

decouples resource management from the programming

model for Hadoop’s [9] compute platform. However, ex-

isting workload managers like fall short of considering

the broader optimization space in an architecture with

storage-disaggregation, where a pushdown task can ei-

ther be executed and pushed back.

Adaptive Query Processing. There is a rich liter-

ature on the topic of adaptive query processing [52,

48,53], which adjusts the query execution dynamically

based on more accurate runtime statistics. For exam-

ple, re-optimization techniques [55,83] are developed to

detect and improve sub-optimal query plans at run-

time. [65,66,88] designed memory adaptive operators

like sorting and hash join. Adaptive query processing is

also integrated into modern commercial systems such

as Spark [30] and SQL Server [21]. However, optimiz-

ing adaptive processing in a pushdown context expose

new design constraints including limited computational

power in the storage, limited network bandwidth be-

tween compute and storage layers, and the coordination

between the two layers, which is addressed in Section 5.

10 Conclusion

We presented FPDB, a cloud-native OLAP database

that optimizes computation pushdown within a storage-

disaggregation architecture in several aspects. We pro-

pose a hybrid execution mode which combines the ben-

efits of caching and pushdown in a fine granularity. We

develop adaptive pushdown that executes pushdown

tasks adaptively based on the storage-layer resource uti-

lization. Moreover, we conduct a systematical analysis

of existing pushdown operators and propose two new

beneficial pushdown operators, selection bitmap and

distribute data shuffle. Evaluation on SSB and TPC-H

shows each optimizations can improve the performance

by 2.2×, 1.9×, and 3× respectively.
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