
RemusDB: Transparent High Availability for Database
Systems

Umar Farooq Minhas · Shriram Rajagopalan · Brendan Cully · Ashraf

Aboulnaga · Kenneth Salem · Andrew Warfield

Abstract In this paper we present a technique for

building a high-availability (HA) database management

system (DBMS). The proposed technique can be ap-
plied to any DBMS with little or no customization,

and with reasonable performance overhead. Our ap-

proach is based on Remus, a commodity HA solution

implemented in the virtualization layer, that uses asyn-
chronous virtual machine (VM) state replication to pro-

vide transparent HA and failover capabilities. We show

that while Remus and similar systems can protect a

DBMS, database workloads incur a performance over-

head of up to 32% as compared to an unprotected
DBMS. We identify the sources of this overhead and

develop optimizations that mitigate the problems. We

present an experimental evaluation using two popular

database systems and industry standard benchmarks
showing that for certain workloads, our optimized ap-

proach provides fast failover (≤ 3 seconds of downtime)

with low performance overhead when compared to an

unprotected DBMS. Our approach provides a practi-

cal means for existing, deployed database systems to
be made more reliable with a minimum of risk, cost,

and effort. Furthermore, this paper invites new discus-

sion about whether the complexity of HA is best im-

plemented within the DBMS, or as a service by the
infrastructure below it.

U.F. Minhas, A. Aboulnaga, K. Salem
University of Waterloo
E-mail: {ufminhas, ashraf, kmsalem}@cs.uwaterloo.ca

S. Rajagopalan, B. Cully, A. Warfield
University of British Columbia
E-mail: {rshriram, brendan, andy}@cs.ubc.ca

1 Introduction

Maintaining availability in the face of hardware failures
is an important goal for any database management sys-

tem (DBMS). Users have come to expect 24×7 avail-

ability even for simple non-critical applications, and

businesses can suffer costly and embarrassing disrup-
tions when hardware fails. Many database systems are

designed to continue serving user requests with little or

no disruption even when hardware fails. However, this

high availability (HA) comes at a high cost in terms

of complex code in the DBMS, complex setup for the
database administrator, and sometimes extra special-

ized hardware. In this paper, we present a reliable, cost-

effective HA solution that is transparent to the DBMS,

runs on commodity hardware, and incurs a low perfor-
mance overhead. A key feature of our solution is that

it is based on virtual machine (VM) replication and

leverages the capabilities of the underlying virtualiza-

tion layer.

Providing HA guarantees as part of the DBMS can

add a substantial amount of complexity to the DBMS

implementation. For example, to integrate a simple
active-standby approach, the DBMS has to support

propagating database updates from the active to the

standby (e.g., by shipping log records), coordinating

transaction commits and aborts between the active and
standby, and ensuring consistent atomic handover from

active to standby after a failure.

In this paper, we present an active-standby HA so-
lution that is based on running the DBMS in a virtual

machine and pushing much of the complexity associ-

ated with HA out of the DBMS, relying instead on the

capabilities of the virtualization layer. The virtualiza-
tion layer captures changes in the state of the whole

VM at the active host (including the DBMS) and prop-

agates them to the standby host, where they are ap-

2 Umar Farooq Minhas et al.

plied to a backup VM. The virtualization layer also de-

tects failure and manages the failover from the active

host to the standby, transparent to the DBMS. During

failover, all transactional (ACID) properties are main-

tained and client connections are preserved, making the
failure transparent to the DBMS clients.

Database systems are increasingly being run in vir-

tual machines for easy deployment (e.g., in cloud com-

puting environments [1]), flexible resource provision-
ing [31], better utilization of server resources, and sim-

pler administration. A DBMS running in a VM can take

advantage of different services and capabilities provided

by the virtualization infrastructure such as live migra-

tion, elastic scaleout, and better sharing of physical re-
sources. These services and capabilities expand the set

of features that a DBMS can offer to its users while at

the same time simplifying the implementation of these

features. Our view in this paper is that adding HA to
the set of services provided by the virtualization infras-

tructure continues down this road: any DBMS running

on a virtualized infrastructure can use our solution to

offer HA to its users with little or no changes to the

DBMS code for either the client or the server. Our de-
sign decisions ensure that the setup effort and perfor-

mance overhead for this HA is minimal.

The idea of providing HA by replicating machine

state at the virtualization layer is not new [5], and our
system is based on Remus [8], a VM checkpointing sys-

tem that is already part of the Xen hypervisor [4]. Re-

mus targets commodity HA installations and transpar-

ently provides strong availability guarantees and seam-

less failure recovery. However, the general VM repli-
cation used by systems such as Remus imposes a sig-

nificant performance overhead on database systems. In

this paper, we develop ways to reduce this overhead and

implement them in a DBMS-aware VM checkpointing
system that we call RemusDB.

We identify two causes for the performance over-

head experienced by a database system under Remus

and similar VM checkpointing systems. First, database

systems use memory intensively, so the amount of state
that needs to be transferred from the primary VM to

the backup VM during a checkpoint is large. Second,

database workloads can be sensitive to network latency,

and the mechanisms used to ensure that client-server

communication can survive a failure add latency to the
communication path. RemusDB implements techniques

that are completely transparent to the DBMS to re-

duce the amount of state transferred during a check-

point (Section 4). To reduce the latency added to the
client-server communication path, RemusDB provides

facilities that are not transparent to the DBMS, but

rather require minor modifications to the DBMS code

Hypervisor (Xen)

Unmodi!ed DBMS Clients

Active VM

Server 1 Server 2

Hypervisor (Xen)

DBMSDBMS

queries and

responses
queries and

responses

(after failover)

Standby VM
VM Checkpoints

Complete state

of memory and

disks.

Transparent Failover

DBMS IP Address and

state unchanged.

Fig. 1 RemusDB System Architecture

(Section 5). We also describe how RemusDB reprotects

a VM after failure by synchronizing the primary VM

with the backup VM after the primary VM comes back

online (Section 6). We use RemusDB to add high avail-
ability to Postgres and MySQL, and we experimen-

tally demonstrate that it effectively recovers from fail-

ures and imposes low overhead on normal operation

(Section 7). For example, as compared to Remus, Re-
musDB achieves a performance improvement of 29%

and 30% for TPC-C workload running under Postgres

and MySQL, respectively. It is also able to recover from

a failure in ≤ 3 seconds while incurring only 3% perfor-

mance overhead with respect to an unprotected VM.

An earlier version of this paper appeared in [21]. In

this extended version, we add more details about the
background and motivation for our work (Section 3), a

proof of correctness of our approch for reducing com-

munication latency (Section 5.1), and a description of

reprotection after failure (Section 6).

2 Background and System Overview

In our setup, shown in Figure 1, two servers are used

to provide HA for a DBMS. One server hosts the active
VM, which handles all client requests during normal

operation. As the active VM runs, its entire state in-

cluding memory, disk, and active network connections

are continuously checkpointed to a standby VM on a

second physical server. Our objective is to tolerate a
failure of the server hosting the active VM by failing

over to the DBMS in the standby VM, while preserv-

ing full ACID transactional guarantees. In particular,

the effects of transactions that commit (at the active
VM) before the failure should persist (at the standby

VM) after the failover, and failover should not compro-

mise transaction atomicity.

RemusDB: Transparent High Availability for Database Systems 3

During normal operation, Remus takes frequent, in-

cremental checkpoints of the complete state of the vir-

tual machine on the active server. The time between

two checkpoints is referred to as an epoch. These check-

points are shipped to the standby server and “installed”
in the virtual machine there. The checkpoints also act

as heartbeat messages from the active server (Server

1) to the standby server (Server 2). If the standby

times out while waiting for a checkpoint, it assumes
that the active server has failed. This causes a failover,

and the standby VM begins execution from the most

recent checkpoint that was completed prior to the fail-

ure. This failover is completely transparent to clients.

When the standby VM takes over after a failure, it has
the same IP address as the active VM, and the standby

server’s hypervisor ensures that network packets going

to the (dead) active VM are automatically routed to

the (live) standby VM after the failure, as in live VM
migration [7]. In checkpoint-based whole-machine pro-

tection systems like Remus, the virtual machine on the

standby server does not mirror the execution at the

active server during normal operation. Rather, the ac-

tivity at the standby server is limited to installation of
incremental checkpoints from the active server, which

reduces the resource consumption at the standby.

A detailed description of Remus’s checkpointing

mechanism can be found in [8]. Here we present a brief
overview. Remus’s checkpoints capture the entire state

of the active VM, which includes disk, memory, CPU,

and network device state. For disk checkpointing, Re-

mus uses an asynchronous disk replication mechanism

with writes being applied to the active VM’s disk and at
the same time asynchronously replicated and buffered

in memory at the standby VM, until the end of the

current epoch. When the next checkpoint command

is received at the standby VM, it flushes the buffered
writes to its local disk. If failure happens in the middle

of an epoch, the in-memory state is discarded and the

standby VM is resumed with a consistent state from

the last committed checkpoint on its local disk. Mem-

ory and CPU checkpoints are implemented very similar
to live VM migration [7] with several optimizations dis-

cussed in [8].

Remus’s checkpoints capture both the state of the

database and the internal execution state of the DBMS,

e.g., the contents of the buffer pool, lock tables, and
client connection state. After failover, the DBMS in

the standby VM begins execution with a completely

warmed up buffer pool, picking up exactly where the

active VM was as of the most recent checkpoint, with
all session state, TCP state, and transaction state in-

tact. This fast failover to a warm backup and with no

loss of client connections is an important advantage of

A B C

checkpoints failure
primary

time backup begins execution here

Fig. 2 A Primary Server Execution Timeline

our approach. Some DBMS-level HA solutions provide
similar features, but these features add more code and

complexity to the already complex systems. With our

approach, these features are essentially free.

Figure 2 shows a simplified timeline illustrating
checkpoints and failover. In reality, checkpoint trans-

mission and acknowledgement is carefully overlapped

with execution to increase performance while main-

taining consistency [8]. However, the simplified timeline

shown in Figure 2 is sufficient to illustrate the impor-
tant features of this approach to DBMS high availabil-

ity. When the failure occurs in Figure 2, all of the work

accomplished by the active server during epoch C is

lost. If, for example, the active server had committed
a database transaction T during epoch C, any trace of

that commit decision will be destroyed by the failure.

Effectively, the execution of the active server during

each interval is speculative until the interval has been

checkpointed, since it will be lost if a failure occurs.
Remus controls output commit [32] to ensure that the

external world (e.g., the DBMS clients) sees a consistent

view of the server’s execution, despite failovers. Specif-

ically, Remus queues and holds any outgoing network
packets generated by the active server until the com-

pletion of the next checkpoint. For example, outgoing

packets generated by the active server during epoch B

in Figure 2 will be held by Remus until the completion

of the checkpoint at the end of B, at which point they
will be released. Similarly, a commit acknowledgement

for transaction T, generated during epoch C, will be

held by Remus and will be lost when the failure occurs.

This network buffering ensures that no client will have
been able to observe the speculative commit of T and

conclude (prematurely or incorrectly) that T is durably

committed. The output commit principle is also applied

to the disk writes generated at the active server during

an epoch. At the standby server, Remus buffers the
writes received from active server during epoch B and

releases them to its disk only at the end of the epoch.

In the case of failure during epoch C, Remus discards

the buffered writes of this epoch, thus maintaining the
overall consistency of the system.

For a DBMS, the size of a Remus checkpoint may

be large, which increases checkpointing overhead. Addi-

4 Umar Farooq Minhas et al.

tionally, network buffering introduces message latency

which may have a significant effect on the performance

of some database workloads. RemusDB extends Remus

with optimizations for reducing checkpoint size and for

reducing the latency added by network buffering. We
present an overview of RemusDB in Section 3, and dis-

cuss the details of these optimizations in Sections 4

and 5.

3 Adapting Remus to Database Workloads

While the simplicity and transparency with which Re-
mus provides high availability is desirable, applying Re-

mus to database workloads is not an ideal fit for a num-

ber of reasons. First, as described above, Remus con-

tinuously transmits checkpoints of the running virtual

machine to the backup host, resulting in a steady flow
of replication traffic that is proportional to the amount

of memory that has changed between checkpoints; the

large amount of memory churn in database workloads

results in a high degree of replication traffic. The large
amount of replication data makes checkpoints slower

and results in a significant performance overhead for

database workloads.

Second, the fact that Remus controls output com-

mit by buffering every transmitted packet is over-
conservative for database systems, which already pro-

vide higher-level transactional semantics. Client-server

interactions with a database system typically involve

several round trips on the fast, local area network.
Within a transaction, the delay introduced by network

buffering on messages from the server in each round trip

results in an amplification of Remus’s existing latency

overheads. Moreover, the high memory churn rate of

database workloads compounds this problem by requir-
ing longer checkpoint epochs, resulting in longer delays

for network buffering. For example, in a run of the TPC-

C benchmark on Postgres in our experimental setting

(described in Section 7) we observed that Remus intro-
duced an overhead of 32% compared to the unprotected

case. Turning off network buffering for this benchmark

run reduced the overhead to 7%.

In designing RemusDB, we aimed to adapt Remus

to address these two issues. In both cases, we observed
that Remus’s goal of providing HA that is completely

transparent to the DBMS was excessively conservative

and could be relaxed, resulting in a large reduction in

overhead. More precisely, we made the following two
observations:

1. Not all changes to memory need to be sent
to the backup. In attempting to maintain an ex-

act replica of the protected VM on the backup sys-

tem, Remus was transmitting every page of memory

whose contents changed between epochs. However,

many page updates can either be reconstructed, as

with clean pages in the buffer pool that can be

reloaded from disk, or thrown away altogether, in

the case of working memory that can be recomputed
or safely lost.

2. Not all transmitted messages need output com-

mit.Buffering transmitted messages until the check-

point that generated them has been protected pre-
vents the system from exposing execution state that

is rolled back (and so lost) in the event of failure. In

a DBMS environment, this intermediate state is al-

ready protected by transaction boundaries. In light

of this, we may relax output commit to the point
that it preserves transactional semantics.

In addition to relaxing the comprehensiveness of
protection in Remus to reduce overhead, our analysis

of database workloads revealed one additional insight

about these workloads that allowed further optimiza-

tion:

3. While changes to memory are frequent, they

are often small. Remus uses hardware page pro-

tection to identify the pages that have changed in
a given checkpoint, and then transfers those pages

to the backup at page granularity. Our analysis re-

vealed that memory updates in database workloads

were often considerably smaller than page size, and
could consequently be compressed fairly effectively.

Remus was adapted in light of each of these observa-
tions, in order to provide more efficient high availability

for database workloads. Section 4 discusses optimiza-

tions related to how memory is tracked on the primary

VM and replicated over the network to the backup.

Section 5 describes how latency overheads have been
reduced by relaxing network buffering in some situa-

tions.

4 Memory Optimizations

Remus takes a deliberately simple approach to mem-
ory checkpointing: at every checkpoint, it copies all the

pages of memory that change from the active host and

transmits them over the network to the backup host.

The authors of Remus argue that this simplicity is desir-

able: it provides high availability with an acceptable de-
gree of overhead, with an implementation that is simple

enough that one can have confidence in its correctness,

regardless of the target application or hardware archi-

tecture. This is in stark contrast to the complexity of
previous systems, even those implemented in the hyper-

visor [5]. And while this argument for simplicity holds

for database systems, the overhead penalty is higher:

RemusDB: Transparent High Availability for Database Systems 5

database workloads tend to modify more memory in

each checkpoint epoch than other workloads. This sec-

tion describes a set of optimizations designed to reduce

this overhead.

4.1 Sending Less Data

Compressing checkpoints is beneficial when the amount

of data to be replicated is large, and the data contains

redundancy. Our analysis found that both of these con-

ditions apply to database workloads: (a) they involve a

large set of frequently changing pages of memory (most
notably buffer pool pages), and (b) the memory writes

often change only a small part of the pages on which

they occur. This presents an opportunity to achieve

a considerable reduction in replication traffic by only
sending the actual changes to these pages.

When the Xen hypervisor runs on a physical ma-

chine, it creates a privileged VM called domain 0 for

controlling other VMs running on that physical ma-
chine. Domain 0 serves as an administrative front-end

for the Xen hypervisor and manages the creation, con-

figuration, and control of other VMs on the physical

machine. In RemusDB, we implement checkpoint com-

pression by maintaining in domain 0 an LRU-based
cache of frequently changing pages in the protected VM

obtained from previous checkpoints in that VM. A per-

VM cache is maintained in domain 0 if there are multi-

ple protected VMs. Our experimentation showed that a
cache size of 10% of VM memory offers the desired per-

formance improvement while maintaining an acceptable

memory footprint in domain 0. When sending pages to

the backup, we first check to see if the previous version

of the page exists in this cache. If it does, the contents
of the two pages are XORed, usually resulting in a page

that contains mostly zeros, reflecting the large amount

of identical data. The result is then run-length encoded

for transmission. If the page is not found in the cache,
it is sent uncompressed, and is added to the cache using

the standard LRU eviction policy.

The original Remus work maintained that asyn-

chronous, pipelined checkpoint processing while the ac-

tive VM continues to execute is critical to minimizing
the performance impact of checkpointing. The benefits

of this approach were evident in implementing check-

point compression: moving the implementation into an

asynchronous stage and allowing the VM to resume ex-
ecution in parallel with compression and replication in

domain 0 halved the overhead of RemusDB. Figure 3

illustrates the workflow for checkpoint compression.

Protected VM

Xen

Dirty Pages

(epoch i)

2. Copy

LRU Cache

Dirty pages from

epochs [1 … i 1]

to backup
4. XOR + RLE

Compression

Domain 0

1. Suspend

3. Resume

Buffer

5. Update

Cache

Fig. 3 Checkpoint Compression Workflow

4.2 Protecting Less Memory

Compressed checkpoints help considerably, but the work

involved in taking and sending checkpoints is still pro-
portional to the amount of memory changed between

checkpoints. In this section, we discuss ways to reduce

checkpoint size by selectively ignoring changes to cer-

tain parts of memory. Specifically, a significant fraction

of the memory used by a DBMS goes into the buffer
pool. Clean pages in the buffer pool do not need to

be sent in Remus checkpoints if they can be regener-

ated by reading them from the disk. Even dirty buffer

pool pages can be omitted from Remus checkpoints if
the DBMS can recover changes to these pages from the

transaction log.

In addition to the buffer pool, a DBMS uses memory

for other purposes such as lock tables, query plan cache,

working memory for query operators, and connection
state. In general, memory pages whose contents can be

regenerated, or alternatively can be safely thrown away

may be ignored during checkpointing. Based on these

observations, we developed two checkpointing optimiza-
tions: disk read tracking and memory deprotection.

4.2.1 Disk Read Tracking

Remus, like the live VM migration system on which

it is based [7], uses hardware page protection to track

changes to memory. As in a copy-on-write process fork,

all of the page table entries of a protected virtual ma-

chine are set to read only, producing a trap when any
page is modified. The trap handler verifies that the

write is allowed, then updates a bitmap of “dirty” pages,

which determines the set of pages to transmit to the

backup server at each checkpoint. This bitmap is cleared
after the checkpoint is taken.

Because Remus keeps a synchronized copy of the

disk on the backup VM, any pages that have been read

6 Umar Farooq Minhas et al.

from disk into memory may be safely excluded from

the set of dirty pages, as long as the memory has not

been modified after the page was read from disk. im-

plementation interposes on disk read requests from the

virtual machine and tracks the set of memory pages
into which the reads will be placed, and the associated

disk addresses from which those pages were read. Nor-

mally, the act of reading data from disk into a memory

page would result in that page being marked as dirty
and included in the data to be copied for the check-

point. Our implementation does not mark that page

dirty, and instead adds an annotation to the replica-

tion stream indicating the sectors on disk that may be

read to reconstruct the page remotely.

Normally, writes to a disk pass through the operat-

ing system’s (or DBMS’s) buffer cache, and this will

inform Remus to invalidate the read-tracked version

of the page and add it to the set of pages to trans-
mit in the next checkpoint. However, it is possible that

the contents of the sectors on disk that a read-tracked

page refers to may be changed without touching the in-

memory read-tracked page. For example, a process dif-
ferent from the DBMS process can perform a direct (un-

buffered) write to the file from which the read-tracked

page is to be read after failure. In this case, read track-

ing would incorrectly recover the newer version of the

page on failover. Although none of the database sys-
tems that we studied exhibited this problem, protect-

ing against it is a matter of correctness, so RemusDB

maintains a set of backpointers from read-tracked pages

to the associated sectors on disk. If the VM writes to
any of these sectors, we remove the page from the read

tracking list and send its contents normally.

4.2.2 Memory Deprotection

Our second memory optimization aims to provide the
DBMS with a more explicit interface to control which

portions of its memory should be deprotected (i.e., not

replicated during checkpoints). We were surprised to

find that we could not produce performance benefits

over simple read tracking using this interface.

The idea for memory deprotection stemmed from

the Recovery Box [3], a facility for the Sprite OS that

replicated a small region of memory that would provide

important recent data structures to speed up recovery
after a crash (Postgres session state is one of their ex-

amples). Our intuition was that RemusDB could do the

opposite, allowing the majority of memory to be repli-

cated, but also enabling the DBMS to flag high-churn
regions of working memory, such as buffer pool descrip-

tor tables, to be explicitly deprotected and a recovery

mechanism to be run after failover.

The resulting implementation was an interesting,

but ultimately useless interface: The DBMS is allowed

to deprotect specific regions of virtual memory, and

these addresses are resolved to physical pages and ex-

cluded from replication traffic. On failover, the system
would continue to run but deprotected memory would

suddenly be in an unknown state. To address this, the

DBMS registers a failover callback handler that is re-

sponsible for handling the deprotected memory, typi-
cally by regenerating it or dropping active references

to it. The failure handler is implemented as an idle

thread that becomes active and gets scheduled only af-

ter failover, and that runs with all other threads paused.

This provides a safe environment to recover the system.
While we were able to provide what we felt was

both a natural and efficient implementation to allow

the deprotection of arbitrary memory, it is certainly

more difficult for an application writer to use than our
other optimizations. More importantly, we were unable

to identify any easily recoverable data structures for

which this mechanism provided a performance benefit

over read tracking. One of the reasons for this is that

memory deprotection adds CPU overhead for tracking
deprotected pages during checkpointing, and the sav-

ings from protecting less memory need to outweigh this

CPU overhead to result in a net benefit. We still believe

that the interface may be useful for other applications
and workloads, but we have decided not to use it in

RemusDB.

To illustrate our reasoning, we ran a TPC-H bench-

mark on Postgres with support for memory deprotec-

tion in our experimental setting. Remus introduced
80% overhead relative to an unprotected VM. The

first data structure we deprotected was the shared

memory segment, which is used largely for the DBMS

buffer pool. Unsurprisingly, deprotecting this segment
resulted in roughly the same overhead reduction we

achieved through read tracking (bringing the overhead

down from 80% to 14%), but at the cost of a much

more complicated interface. We also deprotected the

dynamically allocated memory regions used for query
operator scratch space, but that yielded only an addi-

tional 1% reduction in overhead. We conclude that for

the database workloads we have examined, the trans-

parency vs. performance tradeoff offered by memory de-
protection is not substantial enough to justify investing

effort in complicated recovery logic. Hence, we do not

use memory deprotection in RemusDB.

5 Commit Protection

Irrespective of memory optimizations, the single largest

source of overhead for many database workloads on the

RemusDB: Transparent High Availability for Database Systems 7

unmodified Remus implementation was the delay intro-

duced by buffering network packets for controlling out-

put commit. Client-server interactions in DBMS envi-

ronments typically involve long-lived sessions with fre-

quent interactions over low-latency local area networks.
For example, a TPC-C transaction on Postgres in our

experiments has an average of 32 packet exchanges be-

tween client and server, and a maximum of 77 packet

exchanges. Remus’s network buffering delays all these
packets; packets that might otherwise have round trip

times on the order of hundreds of microseconds are held

until the next checkpoint is complete, potentially intro-

ducing two to three orders of magnitude in latency per

round trip.

In RemusDB, we exploit database transaction se-

mantics to avoid much of Remus’s network buffering,

and hence to eliminate much of the performance over-

head that network buffering introduces. The purpose
of network buffering in Remus is to avoid exposing the

client to the results of speculative server processing un-

til it has been checkpointed. In RemusDB, we relax

this behavior by allowing server communications result-

ing from speculative processing to be released immedi-
ately to the client, but only within the scope of an ac-

tive database transaction. If the client attempts to com-

mit a transaction, RemusDB will buffer and delay the

commit acknowledgement until that transaction is safe,
i.e., until the processing of that transaction has been

checkpointed. Conversely, if a failure occurs during the

execution of such a transaction, RemusDB will ensure

that the transaction is aborted on failover. Relaxing Re-

mus’s network buffering in this way allows RemusDB to
release most outgoing network packets without delay.

However, failover is no longer completely transparent

to the client, as it would be in Remus, as a failover may

necessitate the abort of some in-progress transactions.
As long as failures are infrequent, we expect this to be

a desireable tradeoff.

To implement this approach in RemusDB, we mod-

ified the hosted DBMS to implement a protocol we

call commit protection. The commit protection pro-
tocol requires fine (message level) control over which

outgoing messages experience network buffering and

which do not. To support this, RemusDB generalizes

Remus’s communication abstraction. Stream sockets,

which are implemented on top of TCP, guarantee in-
order message delivery, and database systems normally

use stream sockets for communication with clients. In

RemusDB, each stream socket can be in one of two

states: protected or unprotected. RemusDB provides the
hosted DBMS with protect and deprotect operations

to allow it to change the socket state. Outgoing mes-

sages sent through a protected socket experience nor-

At COMMIT WORK:

protect the client’s socket

perform normal DBMS commit processing

send the COMMIT acknowledgement

deprotect the socket

On failover (at the standby host):

for each active transaction t do

if t is not committing then ABORT t

end for

Fig. 4 The Commit Protection Protocol

mal Remus network buffering, i.e., they are delayed un-

til the completion of the next Remus commit. Messages

sent through an unprotected socket are not subjected

to network buffering and are released immediately. Re-

musDB preserves in-order delivery of all messages de-
livered through a socket, regardless of the state of the

socket when the message is sent. Thus, an unprotected

message sent shortly after a protected message may be

delayed to ensure that it is delivered in the correct or-
der.

The hosted DBMS implements the commit protec-

tion protocol using the socket protection mechanism.
The commit protocol has two parts, as shown in Fig-

ure 4. The first part of the protocol runs when a client

requests that a transaction commit. The server protects

the transaction’s socket before starting commit process-
ing, at it remains protected until after sending the com-

mit acknowledgement to the client. All transaction out-

put up until the arrival of the commit request is sent

unprotected. The second part of the protocol runs at

the standby server after a failover, and causes all active
transactions that are not committing to abort. Remus

is designed to run a recovery thread in the standby VM

as soon as it takes over after a failure. In RemusDB,

the recovery thread runs inside the standby DBMS and
implements the failover part of the commit protection

protocol. Once the recovery thread finishes this work,

the DBMS resumes execution from state captured by

the most recent pre-failover checkpoint. Note that, on

failover, the recovery handler will see transaction states
as they were at the time of the last pre-failure check-

point.

5.1 Correctness of Commit Protection

In this section we state more precisely what it means

for the commit protection protocol to behave correctly.
Essentially, if the client is told that a transaction has

committed, then that transaction should remain com-

mitted after a failure. Furthermore, if an active trans-

8 Umar Farooq Minhas et al.

Virtualization Layer Guest VM Kernel DBMS
Commit Protection 13 396 103(Postgres), 85(MySQL)
Disk Read Tracking 1903 0 0

Compression 593 0 0

Table 1 RemusDB Source Code Modifications (Lines of Code)

action has shown speculative results to the client and

a failure occurs, then that transaction must ultimately

abort. These guarantees are formalized in the following

lemmas.

Lemma 1 (Fail-safe Commit) For each transaction

T that is created at the active server prior to the point of

failure, if a client receives a commit acknowledgement
for T , then T will be committed at the standby site after

failover.

Proof COMMIT WORK acknowledgements are always

sent using a protected socket, which does not release
messages to the client until a checkpoint has occurred.

If the client has received a commit acknowledgement

for T , then a server checkpoint must have occurred af-

ter T ’s commit message was sent and thus after the
active server made the commit decision for T . Thus,

the active server’s commit decision for T (and T ’s ef-

fects) will be captured by the checkpoint and reflected

at the standby site after the failure. Furthermore, at the

time of the checkpoint, T will either have been commit-
ting at the active site or it will have finished. Since the

recovery thread at the standby site only aborts active

transactions that are not committing, it will not at-

tempt to abort T . ⊓⊔

Lemma 2 (Speculation) For each transaction T that

is created at the active server prior to the point of fail-

ure, if T ’s client does not submit a COMMIT WORK

request for T prior to the failure, then either T will be
aborted at the standby server after the failure, or it will

not exist there at all.

Proof Let C represent the last checkpoint at the active
server prior to its failure. There are three cases to con-

sider. First, T may have started after C. In this case,

T will not exist at the time of the checkpoint C, and

therefore it will not exist at the standby server after

failover. Second, T may have started before C and re-
mained active at C. In this case, some of T ’s effects may

be present at the standby site because they are captured

by C. Since the client has not submitted a COMMIT

WORK request, T cannot have been committing at the
time of C. Therefore, the recovery thread will see T as

an active, non-committing transaction at failover and

will abort T . The third case is that T may have started,

aborted, and finished prior to C. In this case, the check-

point will ensure that T is also aborted at the standby

site after failover. ⊓⊔

5.2 Implementation of Protection and Deprotection

To provide a DBMS with the ability to dynamically

switch a client connection between protected and un-

protected modes, we added a new setsockopt() op-

tion to Linux. A DBMS has to be modified to make use
of protection and deprotection via the commit protec-

tion protocol shown in Figure 4. We have implemented

commit protection in Postgres and MySQL, with minor

modifications to the client connection layer. Because

the changes required are for a small and well-defined
part of the client/server protocol, we expect them to be

easily applied to any DBMS. Table 1 provides a sum-

mary of the source code changes made to different sub-

systems to implement the different optimizations that
make up RemusDB.

One outstanding issue with commit protection is

that while it preserves complete application semantics,
it exposes TCP connection state that can be lost on

failover: unbuffered packets advance TCP sequence coun-

ters [33] that cannot be reversed, which can result in the

connection stalling until it times out. In the current

implementation of RemusDB we have not addressed
this problem: only a small subset of connections are

affected, and the transactions occurring over them will

be recovered when the connection times out just like

any other timed out client connection. In the future,
we plan to explore techniques by which we can track

sufficient state to explicitly close TCP connections that

have become inconsistent at failover time, in order to

speed up transaction recovery time for those sessions.

6 Reprotection After Failure

When the primary host crashes, the backup host takes

over and becomes the new primary. When the original,

now-crashed primary host comes back online, it needs

to assume the role of backup host. For that to hap-
pen, the storage (i.e., disks) of the VMs on the two

hosts must be resynchronized. The storage of the VM

on the host that was failed and is now back online must

RemusDB: Transparent High Availability for Database Systems 9

catch up with the storage of the VM on the other, now-

primary host. After this storage synchronization step,

checkpointing traffic can resume between the primary

and backup host.

For the protected DBMS to remain available dur-

ing storage synchronization, this synchronization must

happen online, while the DBMS in the primary VM is
running. The storage replication driver used by Remus

is based on Xen’s Blktap2 driver [38] and does not pro-

vide a means for online resynchronization of storage.

One way to perform the required online resynchroniza-

tion is to use a brute-force approach and copy all the
disk blocks from the primary to the backup. This is suf-

ficient to ensure correctness, but it would impose un-

necessary load on the disk subsystem and increase the

time to restart HA. A better approach, which we adopt
in this paper, is used by the SecondSite system [29]. In

this approach, only the disk blocks changed by the new

primary / old backup VM after failure are copied over.

The system also overwrites disk blocks written by the

old primary VM during the last unfinished checkpoint
with data from the backup.

7 Experimental Evaluation

In this section we present an evaluation of RemusDB.

The objectives of this evaluation are as follows:

– First, we wish to demonstrate that RemusDB is able

to survive a failure of the primary server, and to

illustrate the performance of RemusDB during and

after a failover.
– Second, we wish to characterize the performance

overhead associated with RemusDB during normal

operation. We compare the performance of unopti-

mized Remus and optimized RemusDB against that
of an unprotected DBMS to measure this overhead.

We also consider the impact of specific RemusDB

optimizations on different types of database work-

loads.

– Third, we consider how key system parameters and
characteristics, such as the size of the DBMS buffer

pool and the length of the Remus checkpoint inter-

val, affect the overhead introduced by Remus.

7.1 Experimental Environment

Our experimental setup consists of two servers each

equipped with two quad-core Intel Xeon processors,
16GB RAM, and two 500GB SATA disks. We use the

Xen 4.0 hypervisor (64-bit), Debian 5.0 (32-bit) as the

host operating system, and Ubuntu 8.04 (32-bit) as the

guest operating system. XenLinux Kernel 2.6.18.8 is

used for both host and guest operating systems, with

disks formatted using the ext3 filesystem.

We evaluate RemusDB with PostgreSQL 8.4.0 (re-

ferred to as Postgres) andMySQL 5.0, using three widely
accepted benchmarks namely: TPC-C [35], TPC-H [36],

and TPC-W [37]. We run TPC-C experiments on both

Postgres and MySQL while TPC-H and TPC-W exper-

iments are run on Postgres only. We use a Remus check-
pointing interval (CPI) of 50ms, 100ms, and 250ms for

TPC-C, TPC-W, and TPC-H experiments, respectively.

These different CPIs for each type of benchmark are

chosen because they offer the best trade-off between

overhead during normal execution and availability re-
quirements of that particular workload. We evaluate

the effect of varying CPI on the TPC-C and TPC-H

benchmarks in Section 7.6.

Our default settings for TPC-C experiments are as
follows: The virtual machine is configured with 2GB

memory and 2 virtual CPUs. For MySQL, we use the

Percona benchmark kit [27] with a database of 30 ware-

houses and 300 concurrent clients (10 clients per ware-

house). The total size of the database on disk is 3GB.
For Postgres, we use the TPCC-UVa benchmark kit [20]

with a database of 20 warehouses (1.9GB database on

disk) and 200 concurrent clients. We modified the TPCC-

UVa benchmark kit so that it uses one TCP connec-
tion per client; the original benchmark kit uses one

shared connection for all clients. We choose different

scales for MySQL and Postgres due to differences in

how they scale to larger workloads when provided with

fixed (equal) resources. The database buffer pool is con-
figured to be 10% of the database size on disk. We do

not use connection pooling or a transaction monitor;

each client directly connects to the DBMS.

Our default settings for TPC-H experiments are a

virtual machine with 1.5GB memory, 2 virtual CPUs,
and a database with TPC-H scale factor 1. The total

size of the database on disk is 2.3GB. We configure

Postgres with a buffer pool size of 750MB. Our TPC-

H experiments consist of one warmup run where we
execute the 22 read-only TPC-H queries sequentially,

followed by one power stream run [36] where we execute

the queries sequentially and measure the total execution

time. We do not perform TPC-H throughput tests or

use the refresh streams.

Lastly, for TPC-W experiments we use the TPC-W

implementation described in [15]. We use a two tier ar-

chitecture with Postgres in one tier and three instances

of Apache Tomcat v6.0.26 in the second tier, each run-
ning in a separate VM. Postgres runs on a virtual ma-

chine with 2GB memory, and 2 virtual CPUs. We use

a TPC-W database with 10,000 items (1GB on disk).

10 Umar Farooq Minhas et al.

Test DB BP VM Remus
DBMS Benchmark Performance Default Duration Size Size Memory vCPUs CPI

Metric Scale (mins) (GB) (MB) (GB) (ms)
Postgres TPC-C TpmC 20W, 200C 30 1.9 190 2 2 50

TPC-H Execution Time 1 – 2.3 750 1.5 2 250
TPC-W WIPSb 10K Items 20 1.0 256 2 2 100

MySQL TPC-C TpmC 30W, 300C 30 3.0 300 2 2 50

Table 2 Experimental Settings

 0

 50

 100

 150

 200

 250

 300

 350

 0 500 1000 1500 2000 2500 3000 3500

T
P

C
-C

 S
co

re
 (

T
pm

C
)

Elapsed Time (seconds)

Unprotected VM
Remus

ASC, RT

Fig. 5 TPC-C Failover (Postgres)

Postgres’s buffer pool is configured to be 256MB. Each
instance of Apache Tomcat runs in a virtual machine

with 1GB memory, and 1 virtual CPU. In these exper-

iments, when running with Remus, only the Postgres

VM is protected. In order to avoid the effects of vir-

tual machine scheduling while measuring overhead, we
place the Tomcat VMs on a separate well provisioned

physical machine.

Table 2 provides a summary of our experimental

settings. We use the following abbreviations to refer to
different RemusDB optimizations in our experiments:

RT – Disk Read Tracking, ASC – Asynchronous Check-

point Compression, and CP – Commit Protection.

7.2 Behaviour of RemusDB During Failover

In the first experiment, we show RemusDB’s perfor-

mance in the presence of failures of the primary host.

We run the TPC-C benchmark against Postgres and
MySQL and plot throughput in transactions per minute

(TpmC).We run the test for 1 hour, a failure of the pri-

mary host is simulated at 30 minutes by cutting power

to it. We compare the performance of a database sys-
tem protected by unoptimized Remus and by RemusDB

with its two transparent optimizations (ASC, RT) in

Figures 5 and 6. The performance of an unprotected

 0

 100

 200

 300

 400

 500

 0 500 1000 1500 2000 2500 3000 3500

T
P

C
-C

 S
co

re
 (

T
pm

C
)

Elapsed Time (seconds)

Unprotected VM
Remus

ASC, RT
Binlog

Fig. 6 TPC-C Failover (MySQL)

database system (without HA) is also shown for refer-

ence. The throughput shown in the figure is the average

throughput for a sliding window of 60 seconds. Note

that MySQL is run with a higher scale (Table 2) than
Postgres because of its ability to handle larger work-

loads when provided with the same resources.

Without any mechanism for high availability in place,
the unprotected VM cannot serve clients beyond the

failure point i.e., throughput immediately drops to zero.

All clients lose connections to the database server and

cannot reconnect until someone (e.g., a DBA) manu-

ally restores the database to its pre-failure state. After
restart, the database will recover from its crash consis-

tent state using standard log recovery procedures [22].

The time to recover depends on how much state needs

to be read from the write-ahead log and reapplied to
the database and is usually in the order of several min-

utes. Furthermore, the unprotected VM will have to go

through a warm-up phase again before it can reach its

pre-failure steady state throughput (not shown in the

graph).

Under both versions of Remus, when the failure

happens at the primary physical server, the VM at

the backup physical server recovers with ≤ 3 seconds
of downtime and continues execution. The database is

running with a warmed up buffer pool, no client connec-

tions are lost, and in-flight transactions continue to exe-

RemusDB: Transparent High Availability for Database Systems 11

cute normally from the last checkpoint. We only lose the

speculative execution state generated at the primary

server since the last checkpoint. In the worst case, Re-

mus loses one checkpoint interval’s worth of work. But

this loss of work is completely transparent to the client
since Remus only releases external state at checkpoint

boundaries. After the failure, throughput rises sharply

and reaches a steady state comparable to that of the

unprotected VM before the failure. This is because the
VM after the failure is not protected, so we do not incur

the replication overhead of Remus.

Figure 6 also shows results with MySQL’s integrated

replication solution, Binlog replication [26, Ch. 5.2.3].

The current stable release of Postgres, used in our ex-
periments, does not provide integrated HA support,

although such a facility is in development for Post-

gres 9. MySQL Binlog replication, in combination with

monitoring systems like Heartbeat [19], provides per-
formance very close to that of an unprotected VM and

can recover from a failure with ≤ 5 seconds of server

downtime. However, we note that RemusDB has certain

advantages when compared to Binlog replication:

– Completeness. On failover, Binlog replication can
lose up to one transaction even under the most con-

servative settings where every write to the binary log

is synchronized to disk [26, Ch. 16.1.1.1]. In case of

a crash, this conservative setting will result in a loss

of at most one statement or transaction from the
binary log. This is because at any given time, the

log record for only a single statement or transcation

will be waiting to be synchronized to disk, and can

be lost in case of a crash before the synchroniza-
tion is complete. In contrast, even with aggressive

optimizations such as commit protection, RemusDB

never loses transactions.

– Transparency. Client-side recovery is more complex

with Binlog replication, which loses all existing client
sessions at failure. To show Binlog performance after

recovery in Figure 6, we had to modify the TPC-

C client to reconnect after the failure event. This

violates the TPC specification, which requires that
clients not reconnect if their server context has been

lost [35, 6.6.2]. Because we are comparing server

overhead, we minimized the client recovery time by

manually triggering reconnection immediately upon

failover. In practice, DBMS clients would be likely
to take much longer to recover, since they would

have to time-out their connections.

– Implementation complexity. Binlog accounts for ap-

proximately 18K lines of code in MySQL, and is in-
tricately tied to the rest of the DBMS implementa-

tion. Not only does this increase the effort required

to develop the DBMS (as developers must be cau-

 0

 50

 100

 150

 200

 250

 300

 350

 0 500 1000 1500 2000 2500 3000 3500

T
P

C
-C

 S
co

re
 (

T
pm

C
)

Elapsed Time (seconds)

Unprotected VM
Remus + Reprotection

ASC + Reprotection

Protected Outage
(Unprotected)

Protected

Resync Storage

Fig. 7 TPC-C Failover and Reprotection After Failure
(Postgres)

tious of these dependencies), but it also results in
constant churn for the Binlog implementation, ul-

timately making it more fragile. Binlog has experi-

enced bugs proportionate to this complexity: more

than 700 bugs were reported over the last 3 years.

7.3 Reprotection After a Failure

In Figure 7, we show RemusDB’s reprotection mecha-

nism in action. Similar to the failover experiment in Sec-

tion 7.2, we run the TPC-C benchmark against Post-

gres and plot throughput in transactions per minute
(TpmC). We run the test for 1 hour, a failure of the pri-

mary host is simulated at 30 minutes by cutting power

to it. The performance of an unprotected database sys-

tem (without HA) is also shown for reference. The set-

ting used for these experiments is slightly different than
the other experiments in this section. In particular, the

storage backend used for reprotection experiments is

different since it supports online resynchronization of

VM disks after a failure. Because of that, the perfor-
mance numbers are slightly lower than other experi-

ments, as can be clearly seen from the line for unmod-

ified Remus.

During the outage period, the VM does not incur

any checkpointing overhead and hence the throughput

rises to that of an unprotected system. After a 15 minute
outage period, the primary host is brought back on-

line. Note that we let the outage last for 15 minutes

in this experiment in order to adequately observe per-

formance during an outage. In reality, we can detect
a failure within 3 seconds, and resynchronize storage

within approximately 29 seconds. The time required

to resynchronize can vary depending on the amount

12 Umar Farooq Minhas et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Remus RT ASC CP ASC, RT ASC, RT, CP

N
or

m
al

iz
ed

 T
PC

-C
 S

co
re

Remus Optimization
PostgreSQL Buffer Pool Size = 10% of DB (DB size 1.9G)

Fig. 8 TPC-C Overhead (Postgres) [Base Score = 243 tpmC]

of data to be resynchronized. Once storage resynchro-

nization completes, we restart the replication process:
all of VM’s memory is copied to the backup (the old

primary is the new backup), and then Remus check-

points are resumed. This process takes approximately

10 seconds in our settings for a VM with 2GB of mem-

ory and a gigabit ethernet. After this point, the VM is
once again HA i.e., it is protected against a failure of

the backup. Note that after reprotection, the through-

put returns back to pre-failure levels as shown in Fig-

ure 7. For implementing reprotection, we utilized a new
storage backend namely DRBD [9] which allows effi-

cient online resynchronization of VM disks. This stor-

age backend does not yet support read tracking. Hence

Figure 7 only shows RemusDB’s performance with the

ASC optimization.

7.4 Overhead During Normal Operation

Having established the effectiveness of RemusDB at
protecting from failure and its fast failover and repro-

tection times, we now turn our attention to the over-

head of RemusDB during normal operation. This sec-

tion serves two goals: (a) it quantifies the overhead im-
posed by unoptimized Remus on normal operation for

different database benchmarks, and (b) it measures how

the RemusDB optimizations affect this overhead, when

applied individually or in combination. For this exper-

iment we use the TPC-C, TPC-H, and TPC-W bench-
marks.

Figures 8 and 9 present TPC-C benchmark results

for Postgres and MySQL, respectively. In each case the

benchmark was run for 30 minutes using the settings
presented in Table 2. On the x-axis, we have different

RemusDB optimizations and on the y-axis we present

TpmC scores normalized with respect to an unprotected

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Remus RT ASC CP ASC, RT ASC, RT, CP

N
or

m
al

iz
ed

 T
PC

-C
 S

co
re

Remus Optimization
MySQL InnoDB Buffer Pool Size = 1G (DB size 3G)

Fig. 9 TPC-C Overhead (MySQL) [Base Score = 365 tpmC]

(base) VM. The normalized score is defined as: (TpmC

with optimization being evaluated)/(Base TpmC). The
TpmC score reported in these graphs takes into account

all transactions during the measurement interval irre-

spective of their response time requirements. Base VM

scores are 243 and 365 TpmC for Postgres and MySQL,
respectively. The score of unoptimized Remus (leftmost

bar) is around 0.68 of the base VM score for both DBM-

Ses – representing a significant performance loss. It is

clear from the graph that without optimizations, Re-

mus protection for database systems comes at a very
high cost. The next three bars in the graph show the

effect of each RemusDB optimization applied individ-

ually. RT provides very little performance benefit be-

cause TPC-C has a small working set and dirties many
of the pages that it reads. However, both ASC and

CP provide significant performance gains. Performance

with these optimizations is 0.9-0.97 of the base per-

formance. TPC-C is particularly sensitive to network

latency and both of these optimizations help reduce la-
tency either by reducing the time it takes to checkpoint

(ASC) or by getting rid of the extra latency incurred

due to Remus’s network buffering for all but commit

packets (CP). The rightmost two bars in the graph
show the effect of combining optimizations. The combi-

nation of all three optimizations (ASC, RT, CP) yields

the best performance at the risk of a few transaction

aborts (not losses) and connection failures. In multiple

variations of this experiment we have observed that the
variance in performance is always low, and that when

the combination of (ASC, RT, CP) does not outright

outperform the individual optimizations, the difference

is within the range of experimental error. The improve-
ment in performance when adding (ASC, RT, CP) to

Remus can be seen not only in throughput, but also in

latency. The average latency of the NewOrder transac-

RemusDB: Transparent High Availability for Database Systems 13

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Remus RT ASC CP ASC, RT ASC, RT, CP

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Remus Optimization
PostgreSQL Buffer Pool Size = 750M (DB Size 2.3G)

Fig. 10 TPC-H Overhead (Postgres) [Base Runtime = 921s]

tions whose throughput is plotted in Figures 8 and 9

for Postgres and MySQL, respectively is 12.9 seconds
and 19.2 seconds for unoptimized Remus. This latency

is 1.8 seconds and 4.5 seconds for RemusDB. Compare

this to the latency for unprotected VM which is 1.2 sec-

onds for Postgres and 3.2 seconds for MySQL. Other

experiments (not presented here) show that on average
about 10% of the clients lose connectivity after failover

when CP is enabled. In most cases, this is an accept-

able trade-off given the high performance under (ASC,

RT, CP) during normal execution. This is also better
than many existing solutions where there is a possibil-

ity of losing not only connections but also committed

transactions, which never happens in RemusDB.

Figure 10 presents the results for TPC-H with Post-
gres. In this case, the y-axis presents the total execu-

tion time of a warmup run and a power test run nor-

malized with respect to the base VM’s execution time

(921 s). The normalized execution time is defined as:

(Base execution time)/(Execution time with optimiza-
tion being evaluated). Since TPC-H is a decision sup-

port benchmark that consists of long running compute

and I/O intensive queries typical of a data warehous-

ing environment, it shows very different performance
gains with different RemusDB optimizations as com-

pared to TPC-C. In particular, as opposed to TPC-C,

we see some performance gains with RT because TPC-

H is a read intensive workload, and absolutely no gain

with CP because it is insensitive to network latency.
A combination of optimizations still provides the best

performance, but in case of TPC-H most of the benefits

come from memory optimizations (ASC and RT). These

transparent memory optimizations bring performance
to within 10% of the base case, which is a reasonable

performance overhead. Using the non-transparent CP

adds no benefit and is therefore not necessary. More-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Remus RT ASC CP ASC, RT ASC, RT, CP

N
or

m
al

iz
ed

 T
PC

-W
 S

co
re

Remus Optimization
PostgreSQL Buffer Pool Size = 256MB (DB Size 1G)

Fig. 11 TPC-W Overhead (Postgres)

over, the opportunity for further performance improve-

ment by using the non-transparent memory deprotec-
tion interface (presented in Section 4.2.2) is limited to

10%. Therefore, we conclude that it is not worth the

additional complexity to pursue it.

Finally, we present the results for TPC-Wwith Post-

gres in Figure 11. Each test was run with the settings
presented in Table 2 for a duration of 20 minutes. We

drive the load on the database server using 252 Emu-

lated Browsers (EBs) that are equally divided among

three instances of Apache Tomcat, which in turn access
the database to create dynamic web pages and return

them to EBs, as specified by the TPC-W benchmark

standard [37]. We use the TPC-W browsing mix with

image serving turned off at the clients. The y-axis on

Figure 11 presents TPC-W scores,Web Interactions Per
Second (WIPS), normalized to the base VM score (36

WIPS). TPC-W behaves very similar to TPC-C work-

load: ASC and CP provide the most benefit while RT

does not provide any benefit.
RemusDB has a lot to offer for a wide variety of

workloads that we study in this experiment. This ex-

periment shows that a combination of memory and net-

work optimizations (ASC and CP) work well for OLTP

style workloads, while DSS style workloads gain the
most benefit from memory optimizations alone (ASC

and RT). It also shows that by using the set of opti-

mizations that we have implemented in RemusDB, we

gain back almost all of the performance lost when going
from an unprotected VM to a VM protected by unop-

timized Remus.

7.5 Effects of DB Buffer Pool Size

In the previous experiment, we showed that memory op-

timizations (ASC and RT) offer significant performance

14 Umar Farooq Minhas et al.

 0

 500

 1,000

 1,500

 2,000

 2,500

 3,000

 3,500

 4,000

 4,500

250MB 500MB 750MB 1,000MB

 E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

PostgreSQL Buffer Pool Size (50% of VM Memory)

16
.6

%
9.

4%
6.

6% 16
.3

%
5.

8%
5.

8%

19
.8

%
13

.5
%

8.
3% 20

.1
%

6.
7%

7.
0%

24
.2

%
18

.9
%

9.
9% 24

.5
%

8.
6%

8.
5%

28
.1

%
24

.3
%

10
.3

%
30

.4
%

10
.6

%
11

.2
%

Base
Remus
RT
ASC
CP
ASC,RT
ASC,RT,CP

Fig. 12 Effect of DB Buffer Pool Size on RemusDB (TPC-H)

gains for the TPC-H workload. The goal of this experi-

ment is to study the effects of database buffer pool size
on different memory optimizations on a micro level. In

doing so, we hope to offer insights about how each of

these optimization offers its performance benefits.

We run a scale factor 1 TPC-H workload, varying

the database buffer pool size from 250MB to 1000MB.

We measure the total execution time for the warmup

run and the power test run in each case, and repeat this

for different RemusDB optimizations. To have reason-
ably realistic settings, we always configure the buffer

pool to be 50% of the physical memory available to the

VM. For example, for a 250MB buffer pool, we run the

experiment in a 500MB VM and so on. Results are pre-
sented in Figure 12. The numbers on top of each bar

show the relative overhead with respect to an unpro-

tected VM for each buffer pool setting. We calculate

this overhead as:

Overhead (%) = X−B

B
× 100

where B is the total execution time for an unprotected

VM and X is the total execution time for a protected
VM with a specific RemusDB optimization.

Focusing on the results with a 250MB buffer pool in

Figure 12, we see a 16.6% performance loss with unopti-

mized Remus. Optimized RemusDB with RT and ASC
alone incurs only 9.4% and 6.6% overhead, respectively.

The RemusDB memory optimizations (ASC, RT) when

applied together result in an overhead of only 5.8%. As

noted in the previous experiment, CP does not offer

any performance benefit for TPC-H. We see the same
trends across all buffer pool sizes. It can also be seen

from the graph that the overhead of RemusDB increases

with larger buffer pool (and VM memory) sizes. This

is because the amount of work done by RemusDB to
checkpoint and replicate changes to the backup VM

is proportional to the amount of memory dirtied, and

there is potential for dirtying more memory with larger

 0

 20

 40

 60

 80

 100

 120

250M 500M 750M 1,000M

 T
ot

al
 R

ep
lic

at
io

n
D

at
a

Se
nt

 (
G

B
)

PostgreSQL Buffer Pool Size (50% of VM Memory)

Remus
RT
ASC
CP
ASC,RT
ASC,RT,CP

Fig. 13 Effect of DB Buffer Pool Size on Amount of Data
Transferred During RemusDB Checkpointing (TPC-H)

buffer pool sizes. However, this overhead is within a
reasonable 10% for all cases.

Another insight from Figure 12 is that the benefit

of RT decreases with increasing buffer pool size. Since

the database size is 2.3GB on disk (Table 2), with a

smaller buffer pool size (250 and 500MB) only a small

portion of the database fits in main memory, resulting
in a lot of “paging” in the buffer pool. This high rate

of paging (frequent disk reads) makes RT more useful.

With larger buffer pool sizes, the paging rate decreases

drastically and so does the benefit of RT, since the con-
tents of the buffer pool become relatively static. In prac-

tice, database sizes are much larger than the buffer pool

sizes, and hence a moderate paging rate is common.

In Figure 13, we present the total amount of data

transferred from the primary server to the backup server

during checkpointing for the entire duration of the ex-
periment. The different bars in Figure 13 correspond to

the bars in Figure 12. With a 250MB buffer pool size,

unoptimized Remus sends 113GB of data to the backup

host while RemusDB with ASC and RT together sends

23GB, a saving of 90GB (or 80%). As we increase the
buffer pool size, the network bandwidth savings for Re-

musDB also decrease for the same reasons explained

above: with increasing buffer pool size the rate of mem-

ory dirtying decreases, and so do the benefits of mem-
ory optimizations, both in terms of total execution time

and network savings. Recall that CP is not concerned

with checkpoint size, and hence it has no effect on the

amount of data transferred.

7.6 Effects of RemusDB Checkpoint Interval

This experiment aims to explore the relationship be-

tween RemusDB’s checkpoint interval (CPI) and the

corresponding performance overhead.We conducted this

RemusDB: Transparent High Availability for Database Systems 15

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350 400 450 500 550

T
PC

-C
 S

co
re

 (
T

pm
C

)

Checkpoint Interval (milliseconds)
PostgreSQL Buffer Pool = 10% of DB (DB size 1.9G)

ASC, RT
ASC, RT, CP

Unprotected VM

Fig. 14 Effect of Checkpoint Interval on RemusDB (TPC-C)

experiment with TPC-C and TPC-H, which are rep-

resentatives of two very different classes of workloads.

We run each benchmark on Postgres, varying the CPI
from 25ms to 500ms. Results are presented in Figures 14

and 15 for TPC-C and TPC-H, respectively. We vary

CPI on the x-axis, and we show on the y-axis TpmC

for TPC-C (higher is better) and total execution time
for TPC-H (lower is better). The figures show how dif-

ferent CPI values affect RemusDB’s performance when

running with (ASC, RT) and with (ASC, RT, CP) com-

bined, compared to an unprotected VM.

From the TPC-C results presented in Figure 14, we

see that for (ASC, RT) TpmC drops significantly with
increasing CPI, going from a relative overhead of 10%

for 25ms to 84% for 500ms. This is to be expected be-

cause, as noted earlier, TPC-C is highly sensitive to net-

work latency. Without RemusDB’s network optimiza-

tion (CP), every packet incurs a delay of CPI

2
millisec-

onds on average. With a benchmark like TPC-C where

a lot of packet exchanges happen between clients and

the DBMS during a typical benchmark run, this delay

per packet results in low throughput and high transac-
tion response times. When run with memory (ASC, RT)

and network (CP) optimizations combined, RemusDB’s

performance is very close to that of unprotected VM,

with a relative overhead ≤ 9% for all CPIs.

On the other hand, the results of this experiment

for TPC-H (Figure 15) present a very different story.

In contrast to TPC-C, increasing CPI actually leads
to reduced execution time for TPC-H. This is because

TPC-H is not sensitive to network latency but is sensi-

tive to the overhead of checkpointing, and a longer CPI

means fewer checkpoints. The relative overhead goes
from 14% for 25ms CPI to 7% for 500ms. We see a sim-

ilar trend for both (ASC, RT) and (ASC, RT, CP) since

CP does not help TPC-H (recall Figure 12).

 1400

 1450

 1500

 1550

 1600

 1650

 1700

 1750

 1800

 1850

 0 50 100 150 200 250 300 350 400 450 500 550

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

Checkpoint Interval (milliseconds)
PostgreSQL Buffer Pool = 750M (DB size 2.3G)

ASC, RT
ASC, RT, CP

Unprotected VM

Fig. 15 Effect of Checkpoint Interval on RemusDB (TPC-H)

There is an inherent trade-off between RemusDB’s

CPI, work lost on failure, and performance. Choosing a
high CPI results in more lost state after a failover since

all state generated during an epoch (between two con-

secutive checkpoints) will be lost, while choosing a low

CPI results in a high runtime overhead during normal

execution for certain types of workloads. This experi-
ment shows how RemusDB’s optimizations, and in par-

ticular the network optimization (CP), helps relax this

trade-off for network sensitive workloads. For compute

intensive workloads that are also insensitive to latency
(e.g., TPC-H), choosing a higher CPI actually helps

performance.

7.7 Effect of Database Size on RemusDB

In the last experiment, we want to show how RemusDB

scales with different database sizes. Results for the TPC-

C benchmark on Postgres with varying scales are pre-

sented in Figure 16. We use three different scales: (a) 10
warehouses, 100 clients, 850MB database; (b) 15 ware-

houses, 150 clients, 1350MB database; and (c) 20 ware-

houses, 200 clients, 1900MB database. The Postgres

buffer pool size is always 10% of the database size. As
the size of the database grows, the relative overhead of

unoptimized Remus increases considerably, going from

10% for 10 warehouses to 32% for 20 warehouses. Re-

musDB with memory optimizations (ASC, RT) incurs

an overhead of 9%, 10%, and 12% for 10, 15, and 20
warehouses, respectively. RemusDB with memory and

network optimizations (ASC, RT, CP) provides the best

performance at all scales, with almost no overhead at

the lower scales and only a 3% overhead in the worst
case at 20 warehouses.

Results for TPC-H with scale factors 1, 3, and 5 are

presented in Figure 17. Network optimization (CP) is

16 Umar Farooq Minhas et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

10W/100C/850M 15W/150C/1,350M 20W/200C/1,900M

N
or

m
al

iz
ed

 T
P

C
−

C
 S

co
re

TPC−C Scale (Warehouses/Clients/DB Size)

Base = 129 TpmC Base = 191 TpmC Base = 243 TpmC

 Remus
 ASC,RT
 ASC,RT,CP

Fig. 16 Effect of Database Size on RemusDB (TPC-C)

not included in this figure since it does not benefit TPC-

H. Unoptimized Remus incurs an overhead of 22%, 19%,
and 18% for scale factor 1, 3, and 5, respectively. On the

other hand, RemusDB with memory optimizations has

an overhead of 10% for scale factor 1 and an overhead

of 6% for both scale factors 3 and 5 – showing much

better scalability.

8 Related Work

Widely-used logging and checkpointing techniques, such
as ARIES [22], together with database backups, allow

DBMS to recover from server failures. After a failure,

the DBMS runs a recovery protocol that uses the con-

tents of the log to ensure that the database (or a re-
stored database backup) is in a consistent state that

includes all of the effects of transactions that committed

before the failure. Once the database has been restored,

the DBMS can begin to accept new work. However,

since the DBMS cannot perform new work until the
database has been restored, the recovery process can

lead to an unacceptably long period of unavailability.

Thus, many DBMS provide additional high-availability

features, which are designed to ensure that little or no
down time will result from a server failure.

Several types of HA techniques are used in database
systems, sometimes in combination. In shared access ap-

proachs, two or more database server instances share

a common storage infrastructure, which holds the

database. The storage infrastructure stores data redun-

dantly, e.g., by mirroring it on multiple devices, so that
it is reliable. In addition, the storage interconnect (e.g.,

a SAN), through which the servers access the stored

data, must be made reliable through the use of redun-

dant access pathways. In case of a database server fail-
ure, other servers with access to the same database

can take over the failed server’s workload. Examples

of this approach include Oracle RAC [25], which im-

 0

 0.2

 0.4

 0.6

 0.8

 1

1(2.3G) 3(7G) 5(11.5G)

 N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

TPC−H Scale Factor (DB size)

Base = 921s Base = 10,245s Base = 22,982s

 Remus
 ASC,RT

Fig. 17 Effect of Database Size on RemusDB (TPC-H)

plements a virtual shared buffer pool across server in-

stances, failover clustering in Microsoft SQL Server [17],
and synchronized data nodes accessed through the NDB

backend API in MySQL Cluster [23]. RemusDB dif-

fers from these techniques in that it does not rely on a

shared storage infrastructure.

Active-standby approaches, which we introduced in
Section 1, are designed to operate in a shared-nothing

environment. Many database systems [6,17,23,24] im-

plement some form of active-standby HA. In some cases,

the primary and backup can be run in an active-active

configuration, allowing some read-only application work
to be performed against the slave database, which may

be slightly stale with respect to the primary.

In active-standby systems, update propagation may

be physical, logical (row-based) or statement-based.

Propagation, which is sometimes known as log ship-
ping, may be synchronous or asynchronous. In the for-

mer case, transaction commits are not acknowledged to

the database client until both the active and standby

systems have durably recorded the update, resulting in

what is known as a 2-safe system [14,28]. A 2-safe sys-
tem ensures that a single server failure will not result in

lost updates, but synchronous update propagation may

introduce substantial performance overhead. In con-

trast, asynchronous propogation allows transactions to
be acknowledged as soon they are committed at the pri-

mary. Such 1-safe systems impose much less overhead

during normal operation, but some recently-committed

(and acknowledged) transactions may be lost if the pri-

mary fails. RemusDB, which is itself an active-standby
system, uses asynchronous checkpointing to propagate

updates to the standby. However, by controlling the

release of output from the primary server, RemusDB

ensures that committed transactions are not acknowl-
edged to the client until they are recorded at the

standby. Thus, RemusDB is 2-safe. RemusDB also dif-

fers from other database active-standby systems in that

RemusDB: Transparent High Availability for Database Systems 17

it protects the entire database server state, and not just

the database.

Like active-standby systems, multi-master systems

(also known as update anywhere or group systems [13])

achieve high availability through replication. Multi-
master systems relax the restriction that all updates

must be performed at a single site. Instead, all repli-

cas handle user requests, including updates. Replicas

then propagate changes to other replicas, which must
order and apply the changes locally. Various techniques,

such as those based on quorum consensus [12,34] or

on the availability of an underlying atomic broadcast

mechanism [16], can be used to synchronize updates so

that global one-copy serializability is achieved across
all of the replicas. However, these techniques introduce

both performance overhead and complexity. Alterna-

tively, it is possible to give up on serializablility and

expose inconsistencies to applications. However, these
inconsistencies must then somehow be resolved, often

by applications or by human administrators. RemusDB

is based on the simpler active-standby model, so it need

not address the update synchronization problems faced

by multi-master systems.
Virtualization has been used to provide high avail-

ability for arbitrary applications running inside virtual

machines, by replicating the entire virtual machine as it

runs. Replication can be achieved either through event
logging and execution replay or whole machine check-

pointing. While event logging requires much less band-

width than whole machine checkpointing, it is not guar-

anteed to be able to reproduce machine state unless ex-

ecution can be made deterministic. Enforcing determin-
ism on commodity hardware requires careful manage-

ment of sources of non-determinism [5,10], and becomes

infeasibly expensive to enforce on shared-memory mul-

tiprocessor systems [2,11,39]. Respec [18] does provide
deterministic execution recording and replay of multi-

threaded applications with good performance by lazily

increasing the level of synchronization it enforces de-

pending on whether it observes divergence during re-

play, but it requires intricate modifications to the op-
erating system. It also requires re-execution to be per-

formed on a different core of the same physical system,

making it unsuitable for HA applications. For these

reasons, the replay-based HA systems of which we are
aware support only uniprocessor VMs [30]. RemusDB

uses whole machine checkpointing, so it supports mul-

tiprocessor VMs.

9 Conclusion

We presented RemusDB, a system for providing simple

transparent DBMS high availability at the virtual ma-

chine layer. RemusDB provides active-standby HA and

relies on VM checkpointing to propagate state changes

from the primary server to the backup server. It can

make any DBMS highly available with little or no code

changes. Our experiments demonstrate that RemusDB
provides fast failover and imposes little performance

overhead during normal operation.

References

1. Aboulnaga, A., Salem, K., Soror, A.A., Minhas, U.F.,
Kokosielis, P., Kamath, S.: Deploying database appli-
ances in the cloud. IEEE Data Engineering Bulletin
32(1) (2009)

2. Altekar, G., Stoica, I.: ODR: Output-deterministic replay
for multicore debugging. In: Symposium on Operating
Systems Principles (2009)

3. Baker, M., Sullivan, M.: The Recovery Box: Using fast
recovery to provide high availability in the UNIX envi-
ronment. In: USENIX Summer Conference (1992)

4. Barham, P.T., Dragovic, B., Fraser, K., Hand, S., Harris,
T.L., Ho, A., Neugebauer, R., Pratt, I., Warfield, A.: Xen
and the art of virtualization. In: Symposium on Operat-
ing Systems Principles (SOSP) (2003)

5. Bressoud, T.C., Schneider, F.B.: Hypervisor-based fault-
tolerance. In: Symposium on Operating Systems Princi-
ples (SOSP) (1995)

6. Chen, W.J., Otsuki, M., Descovich, P., Arumuggharaj,
S., Kubo, T., Bi, Y.J.: High availability and disaster re-
covery options for DB2 on Linux, Unix, and Windows.
Tech. Rep. IBM Redbook SG24-7363-01, IBM (2009)

7. Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E.,
Limpach, C., Pratt, I., Warfield, A.: Live migration of
virtual machines. In: Symposium on Networked Systems
Design and Implementation (NSDI) (2005)

8. Cully, B., Lefebvre, G., Meyer, D., Feeley, M., Hutchin-
son, N., Warfield, A.: Remus: High availability via asyn-
chronous virtual machine replication. In: Symposium
Networked Systems Design and Implementation (NSDI)
(2008)

9. Distributed Replicated Block Device (DRBD). [online]
http://www.drbd.org/

10. Dunlap, G.W., King, S.T., Cinar, S., Basrai, M.A.,
Chen, P.M.: ReVirt: Enabling intrusion analysis through
virtual-machine logging and replay. In: Symposium on
Operating Systems Design and Implementation (OSDI)
(2002)

11. Dunlap, G.W., Lucchetti, D.G., Fetterman, M.A., Chen,
P.M.: Execution replay of multiprocessor virtual ma-
chines. In: Virtual Execution Environments (VEE)
(2008)

12. Gifford, D.K.: Weighted voting for replicated data. In:
Symposium on Operating Systems Principles (SOSP)
(1979)

13. Gray, J., Helland, P., O’Neil, P., Shasha, D.: The dangers
of replication and a solution. In: International Conference
on Management of Data (SIGMOD) (1996)

14. Gray, J., Reuter, A.: Transaction Processing: Concepts
and Techniques. Morgan Kaufmann (1993)

15. Java TPC-W implementation, PHARM group,
University of Wisconsin (1999). [online]
http://www.ece.wisc.edu/pharm/tpcw/

18 Umar Farooq Minhas et al.

16. Kemme, B., Alonso, G.: Don’t be lazy, be consistent:
Postgres-R, a new way to implement database replica-
tion. In: International Conference on Very Large Data
Bases (VLDB) (2000)

17. Komo, D.: Microsoft SQL Server 2008 R2 High Availabil-
ity Technologies White Paper. Microsoft (2010)

18. Lee, D., Wester, B., Veeraraghavan, K., Narayanasamy,
S., Chen, P.M., Flinn, J.: Respec: Efficient online mul-
tiprocessor replayvia speculation and external determin-
ism. In: International Conference on Architectural Sup-
port for Programming Languages and Operating Systems
(ASPLOS) (2010)

19. Linux-HA Project (1999). [online] http://www.linux-
ha.org/doc/

20. Llanos, D.R.: TPCC-UVa: An open-source TPC-C imple-
mentation for global performance measurement of com-
puter systems. SIGMOD Record 35(4) (2006)

21. Minhas, U.F., Rajagopalan, S., Cully, B., Aboulnaga,
A., Salem, K., Warfield, A.: RemusDB: Transparent high
availability for database systems. Proceedings of VLDB
Endowment (PVLDB) 4(11) (2011)

22. Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H.,
Schwarz, P.: ARIES: A transaction recovery method sup-
porting fine-granularity locking and partial rollbacks us-
ing write-ahead logging. Transactions on Database Sys-
tems (TODS) 17(1) (1992)

23. MySQL Cluster 7.0 and 7.1: Architecture and new fea-
tures. A MySQL Technical White Paper by Oracle (2010)

24. Oracle: Oracle Data Guard Concepts and Administra-
tion, 11g release 1 edn. (2008)

25. Oracle: Oracle Real Application Clusters 11g Release 2.
Oracle (2009)

26. Oracle: MySQL 5.0 Reference Manual (2010). Revision
23486, http://dev.mysql.com/doc/refman/5.0/en/

27. Percona Tools TPC-C MySQL Benchmark (2008).
[online] https://code.launchpad.net/ percona-
dev/perconatools/tpcc-mysql

28. Polyzois, C.A., Garcia-Molina, H.: Evaluation of remote
backup algorithms for transaction processing systems. In:
International Conference on Management of Data (SIG-
MOD) (1992)

29. Rajagopalan, S., Cully, B., O’Connor, R., Warfield, A.:
SecondSite: Disaster tolerance as a service. In: Virtual
Execution Environments (VEE) (2012)

30. Scales, D.J., Nelson, M., Venkitachalam, G.: The design
and evaluation of a practical system for fault-tolerant
virtual machines. Tech. Rep. VMWare-RT-2010-001,
VMWare (2010)

31. Soror, A.A., Minhas, U.F., Aboulnaga, A., Salem, K.,
Kokosielis, P., Kamath, S.: Automatic virtual machine
configuration for database workloads. Transactions on
Database Systems (TODS) 35(1) (2010)

32. Strom, R., Yemini, S.: Optimistic recovery in distributed
systems. Transactions on Computer Systems (TOCS)
3(3) (1985)

33. TCP/IP Tutorial and Technical Overview (2006). [online]
http://www.redbooks.ibm.com/redbooks/pdfs/gg243376.pdf

34. Thomas, R.H.: A majority consensus approach to concur-
rency control for multiple copy databases. Transactions
on Database Systems (TODS) 4(2) (1979)

35. The TPC-C Benchmark (1992). [online]
http://www.tpc.org/tpcc/

36. The TPC-H Benchmark (1999). [online]
http://www.tpc.org/tpch/

37. The TPC-W Benchmark (1999). [online]
http://www.tpc.org/tpcw/

38. Xen Blktap2 Driver. [online]
http://wiki.xensource.com/xenwiki/blktap2

39. Xu, M., Bodik, R., Hill, M.D.: A ”flight data recorder” for
enabling full-system multiprocessor deterministic replay.
Computer Architecture News 31(2) (2003)

