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Abstract

There is currently a lot of interest in developing Internet query processors that can pose elaborate queries
on XML data on the Web. Such query processors can query data sources that have static XML files, but
they should also be able to query “hidden Web” data sources that export an XML view of data stored in a
database. To optimize queries that involve these hidden Web data sources, we need to have XML statistics
that can be used to estimate the selectivity of queries posed to these sources. Since we can only access the
data at a hidden Web data source by issuing queries, we need to develop on-line XML statistics that are built
by observing queries to a hidden Web data source and their result sizes.

In this paper, we assume that queries to a hidden Web data source are XPath selections from a virtual
XML document that represents all the data at this source. We observe the user XPath queries to the data
source and convert them to a more abstract and generalized form that we call annotated path expressions.
We describe an on-line statistics structure that stores such annotated path expressions and information about
their selectivity for use in estimating the selectivity of future XPath queries. We experimentally demonstrate
the convergence and accuracy of our proposed on-line statistics using real and synthetic XML data sets.
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Figure 1: Querying the Web using XML

1 Introduction

There is currently a lot of interest in developing Internet query processors that can “query the Web.” Such
query processors would retrieve and integrate data from multiple Web sources. They would provide the user
with high-quality information that is much more useful than that which can be obtained today, even with
advanced search engines.

The emergence of XML as a standard data representation format for Web data is a key factor in facilitat-
ing the development of such Internet query processors. XML provides a common format for all Web sources
to export their data, so Internet query processors can be built assuming that all the data that they query will
be in XML. Examples of systems that query XML data over the Internet include Niagara [NDM+01] and
Xyleme [Xyl01].

These Internet query processors can easily query data that is in XML files on the Web. We call this
static XML data. However, most of the data on the Web is not in static XML files, or even HTML files.
Most of the data on the Web is “hidden” in databases and can only be accessed by posing queries over these
databases [Bright, RGM01]. This portion of the Web is known as the hidden Web. Sometimes it is also
referred to as the deep Web.

XML has gained almost universal acceptance as the standard format for interchanging data between data
sources on the Internet [FLM98]; even more so than as a format for storing static data. As such, we can
expect that hidden Web data sources will export the data they produce in response to user queries in XML
format. Therefore, it should be possible – and highly desirable – for Internet query processors like Niagara
to query hidden Web data using the same XML query processing framework that they use to query the static
Web, as shown in Figure 1.

Querying the hidden Web is of particular importance because the size of the hidden Web is up to 400
to 500 times larger than the size of the “static Web.” Furthermore, data in the hidden Web is typically
very high-quality data [Bright]. Examples of hidden Web data sources include the FactFinder database of
census information from the U.S. Census Bureau [Census] and the EDGAR database of company financial
statements from the Securities and Exchange Commission [EDGAR].

These data sources do not currently present their responses to user queries as as XML, but rather as
HTML. However, as XML gets deployed on a wider scale, we can expect that many hidden Web data
sources will start exporting their data as XML. Furthermore, it is often possible to build wrappers around
Web sites that can present an XML view of the HTML data at these sites [PGMW95]. As such, even though
XML data from hidden Web data sources is not widely available yet, it should be useful to include the ability
to pose queries over such data in Internet query processors like Niagara. Optimizing queries over hidden
Web data sources requires XML statistics about these sources. Existing solutions fall short of providing such

1



FOR $r IN document("http://www.nhtsa.gov/")//safety/car[year=2003 and rating=5]

$q IN document("http://autos.yahoo.com/")//newcar/quote[city="Madison"]

WHERE $r/make=$q/make and $r/model=$q/model and $q/price<25000

RETURN $q/dealer

Figure 2: An example query in the XQuery language

statistics, and in this paper we propose a fist step toward a solution to this problem.

1.1 A Motivating Example

As an example of the queries that can be made possible by XML based Internet query processors querying
hidden Web data sources, consider the query in Figure 2 expressed in the XQuery language [BCF+02]. This
is a join query that asks for price quotes under $25,000 from car dealers in Madison for year 2003 cars
that received a 5 star rating in the government crash tests. The URLs in this query are for actual Web sites
that can be queried to provide the required information, albeit in HTML not XML. However, as mentioned
above, it would be reasonable to expect that this information may be available in XML in the near future,
thereby making such a query feasible.

Without an Internet query processor, the only way to answer this query is to retrieve the data from
these sites and manually do the selection and the join. It would clearly be useful to have an Internet query
processor that could automatically contact the data sources, retrieve the data, and answer the query.

The query in Figure 2 uses XPath [BBC+02] path expressions to query the hidden Web data sources.
Each path expression specifies a navigation through the structure of the XML data based on a sequence
of tags, with possible conditions at each step to filter out some of the XML elements encountered at this
step. For example, the path expression //newcar/quote[city="Madison"] specifies finding XML
elements with newcar tags anywhere in the specified XML document, and finding all XML elements
directly contained within these newcar elements that have a quote tag. The condition between braces
specifies that we should only return quote elements that directly contain an element with a tag city
whose value is “Madison.” The XQuery language uses XPath path expressions to navigate through XML
data, and we assume that queries to hidden Web data sources are in the form of XPath path expressions (we
present more details in Section 3.1).

In this paper, we focus on the problem of estimating the selectivity of such XPath path expressions issued
to hidden Web data sources. This is required for optimizing queries like the one in Figure 2. Estimating the
selectivity of these XPath path expressions requires statistics about the data at the hidden Web data sources.
More accurately, it requires statistics about the XML view of the data at these sources.

1.2 On-line XML Statistics for the Hidden Web

The typical approach for building statistics for relational or XML data is to scan the entire data and sum-
marize it in a structure that occupies a small amount of memory. This does not work for the hidden Web
because we do not have access to the entire data. We only have access to queries on this data and their
results.

Most hidden Web data is stored in relational databases, and sometimes in document databases. It is not
stored as native XML. Rather, the XML view of the data is computed only in response to user queries. Thus,
we cannot scan the entire data to build statistics. Moreover, even if this data were to be fully converted to
native XML (which is highly unlikely), we would still not have access to the entire data due to proprietary
rights. The owners of data are typically not willing to export their entire data, even if they are willing to
export answers to queries over this data. For example, we can easily get the price of an individual book from
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Amazon.com but not their entire price list.
For this environment, we need on-line XML statistics, which are constructed by observing user queries

to hidden Web data sources and their results. The statistics are built per hidden Web data source. They use
information from past queries to a data source to estimate the selectivity of different future queries to this
data source. In this paper, we propose a type of on-line XML statistics which we call on-line annotated path
tables. We do not require any cooperation from the hidden Web data sources in building these statistics;
the statistics are based solely on feedback from user queries. To reduce the construction overhead and the
complexity of the statistics, we assume that we can only use the sizes of the query results (i.e., the number
of XML elements they contain) for constructing the on-line XML statistics, and not the actual XML data in
these results.

The problem we have described is daunting in the extreme: we are asking for statistics about an enor-
mous, complex, opaque data set; we cannot even view this data set, being able only to observe it indirectly
as queries and their results hint at its structure and size. In such a situation, it is unrealistic to expect solu-
tions of the same quality as those that have been developed for the highly constrained environment of query
optimization for relational data or static XML data. That is not our goal. Instead, we seek to take the first
step toward developing techniques that yield statistics that are substantially better than having no statistics
at all for hidden Web data sources, which is the only other alternative. The information that these statistics
provide should, hopefully, be useful in optimizing queries over the hidden Web.

The rest of this paper is organized as follows. Section 2 presents an overview of related work. Section 3
contains a detailed definition of the problem that we are addressing. Section 4 introduces path annotations,
which we use in our on-line statistics. Section 5 describes these statistics. Section 6 presents an experimental
evaluation of our proposed technique. Section 7 contains concluding remarks.

2 Related Work

Different techniques for building statistics for static XML data have recently been proposed in [CJK+01],
[AAN01], [WPJ02], [FHR+02], [PG02a], and [PG02b]. The techniques in [CJK+01] build statistics that
are used to estimate the selectivity of twig queries, or branching path expressions. The techniques we
propose in [AAN01] provide more accurate selectivity estimates for the case of simple path expressions,
which are path expressions that have one branch and navigate in the XML data based on structure, without
conditions. [WPJ02] proposes a histogram structure based on the encoding of XML element positions in
the document. [FHR+02] proposes a statistics framework that leverages information from the XML schema
of a document. [PG02a] proposes a synopsis data structure for graph structured XML data, and [PG02b]
extends this framework to handle data values. While these papers represent significant advances in the area
of statistics for static XML data, the techniques they propose are not applicable to the hidden Web, because
they require access to the XML data, and sometimes its schema, to construct the statistics.

To the best of our knowledge, the only paper proposing an on-line technique for constructing XML
statistics is [LWP+02]. The technique proposed in that paper can only handle very simple conditions in the
path expressions of the form tag="value", whereas we focus on handling complex conditions. Also, the
technique in [LWP+02] only captures local information about the steps of the path expressions, whereas our
technique relies on capturing information about entire path expressions.

Querying multiple hidden Web data sources in an Internet query processor is similar to querying multiple
data sources in data integration systems such as Tukwila [IFF+99], Garlic [ROH99], or HERMES [ACPS96].
Data integration systems optimize and execute queries over diverse data sources, so they must address the
problem of obtaining statistics for these sources.

Some systems require the data sources to explicitly export the statistics required for query optimiza-
tion [NGT98, ROH99]. This is not applicable to our problem of building statistics for the hidden Web,
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because the hidden Web data sources are autonomous and provide no information beyond answers to user
queries. We cannot require these data sources to export their statistics. Furthermore, the data sources them-
selves may not have the required information about the XML data, because this data is materialized only in
response to user queries.

Another approach is to design the data integration system to allow for run-time re-optimization of
queries [IFF+99]. This approach assumes that the query optimizer will have little or no statistics about
the data sources, so it may choose an inefficient query execution plan. As the plan is executed, more in-
formation about the data sources is obtained, and the query processor may choose to re-optimize the query
based on this new information. Providing statistics at query optimization time, as we do in this paper, helps
the query optimizer choose a good initial plan. Starting with this good plan, it may still be possible to im-
prove the performance of the query by run-time re-optimization, although the need for such re-optimization
will be less because the initial plan is good.

The HERMES system records the result sizes of queries issued to data sources and uses the recorded
values to estimate the selectivity of future queries issued to these sources [ACPS96]. We also use the result
sizes of queries to build statistics, but we focus on XML path expressions over hidden Web data sources,
while the HERMES system focused on function calls to external programs or data sources in a distributed
mediator system. Their techniques for gathering, summarizing, and using statistics do not extend to our
problem.

Building statistics for relational data by observing selection queries and their results has been studied
in [AC99] and [BCG01]. The techniques proposed in these papers are very specific to the problem of
capturing the potentially multi-dimensional distribution of relational attributes. These techniques cannot be
used in the context of building XML statistics for the hidden Web.

3 Problem Definition

3.1 Our Model for Hidden Web Queries

We view a hidden Web data source as a virtual XML document. This virtual XML document represents all
possible XML query results that the data source can produce in response to user queries. If the data source
can present different XML views of the same data, each of these views is considered to be a separate part
of the virtual XML document. For example, the car safety rating data source we accessed in the query in
Figure 2 may be able to present an XML view of the safety ratings of cars grouped by make, and another
XML view of the different cars grouped by safety rating. Each of these two XML views of the data would
be a different part of the virtual XML document representing the data source, and the car safety data would
be replicated in both these parts.

The virtual XML document representing a hidden Web data source can be very large, since it contains
the answers to all possible user queries that the data source can support, with the data replicated possibly
many times. However, this is not a problem because this virtual XML document is never materialized. Only
parts of this document are ever materialized, and only in response to user queries.

We assume that queries to a hidden Web data source are in the form of XPath path expressions [BBC+02]
that select parts of the virtual XML document representing this data source. XPath is the standard path ex-
pression language for selecting parts of an XML document based on structure and content. It is a powerful
language that can express many kinds of selections, including most queries that can be input using cur-
rent HTML forms. Furthermore, XPath is used in XML query standards such as XQuery [BCF+02] and
XSLT [Clark99].

We consider XPath path expressions of the form //a1/a2/ · · · /an. Each step, ai, of the query path
expression is either of the form ti, where ti is a tag name, or of the form ti[ci] where ti is a tag name and ci
is an arbitrarily complex condition. Such queries find element nodes with tag name t1 anywhere in the XML
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Figure 3: On-line XML statistics

tree representing the document. If there is a condition c1, element nodes that do not satisfy it are filtered out.
From the remaining nodes, the queries navigate down to all t2 children, then down to all t3 children, and so
on until they reach tn element nodes. At each step, if there is a condition, nodes that do not satisfy it are
filtered out. Our goal is to estimate the number of tn nodes that are reached by this navigation. Examples of
XPath queries that we consider are //safety/car[make="Saturn" and year=2003]/rating,
and //chapter[@title="Introduction"]/section[1]/paragraphs.

3.2 Problem Definition

We consider the following setting: As part of answering user queries, an Internet query processor issues
queries to a hidden Web data source. These queries are in the form of XPath path expressions that select
parts of the virtual XML document representing this source. The XPath queries are executed by the data
source, and their results (the XML elements they select) are returned to the Internet query processor, where
they are used to answer the user queries.

We observe the XPath queries issued to a hidden Web data source and their result sizes (the number of
XML elements they return). Our objective is to use these observations to construct on-line XML statistics
for the hidden Web data source (Figure 3). These statistics should leverage the information obtained from
past XPath queries to estimate the selectivity of future XPath queries issued to the data source, including
XPath queries that are seen for the first time. Selectivity estimation accuracy should increase as more queries
are observed. Furthermore, there should be a mechanism for bounding the amount of memory consumed by
the statistics to any given value.

4 Path Annotations

A simple way of building on-line XML statistics would be to cache the XPath queries issued to a data
source and their result sizes. This way, if an XPath query whose selectivity is being estimated is identical
to a query that was previously issued, we would find this query and its exact result size in the query cache.
We would, therefore, have a fully accurate selectivity estimate for this query, assuming a read-only data
source. However, for this technique to work, it must cache every query and its result size. If the query
workload consists of a large number of queries, the statistics data structure will grow unacceptably large.
Furthermore, this simplistic solution is of no use for XPath queries that are seen for the first time. Our on-line
XML statistics must fit in a small amount of memory, and they must be able to generalize the information
obtained from previously seen XPath queries to estimate the selectivity of future XPath queries that are seen
for the first time. To allow for this, we use path annotations.

We syntactically analyze the XPath path expressions and convert them into more abstract and general
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annotated path expressions, and we use these annotated path expressions for selectivity estimation. An
annotated path expression represents all XPath path expressions that have a particular form, so it provides
a degree of summarization. The annotated path expression for one or more observed XPath queries can
be used to estimate the selectivity of different future XPath queries that correspond to this annotated path
expression. The intuition behind annotated path expressions is that it is unlikely that we will see the exact
same XPath query over and over in a query workload, but it is highly likely that we will see XPath queries
of the same form. Next, we describe the details of two types of path annotations: condition annotations and
structure annotations.

4.1 Condition Annotations

We consider XPath path expressions of the form //a1/a2/ · · · /an, where each step, ai, of the path expres-
sion can be of the form ti[ci], where ti is a tag name and ci is an arbitrary condition. Allowing arbitrary
conditions in the XPath path expressions creates the problem of how to deal with these conditions in the
on-line XML statistics.

On the one hand, to be realistic, we must allow conditions in the XPath queries that we consider. Without
conditions, users would be able to express only a very limited and weak form of selections from the virtual
XML document corresponding to a hidden Web data source. For example, without conditions, users would
be able to ask a car safety data source for “the safety rating of all cars” (//safety/car/rating) but not
for “the safety rating of 2003 Saturns”
(//safety/car[make="Saturn" and year=2003]/rating).

On the other hand, conditions complicate the construction of statistics because we cannot ignore their ef-
fect, nor can we isolate it. The selectivity of the XPath query
//safety/car[make="Saturn" and year=2003]/rating is much smaller than the selectivity
of the unconditional query //safety/car/rating. Thus, we cannot ignore the effect of the condition
[make="Saturn" and year=2003]. This is generally true of all conditions in typical XPath steps:
their effect on selectivity is large and cannot be ignored. But at the same time, the effect of conditions on
selectivity cannot be isolated as would be possible for static XML data.

When building statistics for static XML data, we can – conceptually, at least – traverse the data and count
the number of XML elements that are reachable by the path //safety/car, and the number of these
elements that satisfy the condition [make="Saturn" and year=2003]. Thus, we can conceptually
isolate the effect of the condition on selectivity. However, when building statistics for hidden Web data
sources, we can only observe the entire XPath queries and their result sizes, with no opportunity for isolating
single conditions or navigation steps. Furthermore, a condition on a tag in a particular XPath query can have
a different effect on selectivity from the same condition on the same tag in a different XPath query. For
example, the condition on tag C in the XPath query //B/C[cond1] can have a different effect on selectivity
from the same condition in the query //A/B[cond2]/C[cond1].

Our solution to the problem of handling conditions in the XPath queries when building on-line XML
statistics is to make the assumption that conditions have a uniform effect on selectivity. This means that a
condition on a tag in an XPath path expression has the same effect on selectivity as any other condition on
this tag. To use an XPath path expression in our statistics, we annotate every tag in this path expression with
U or C depending on whether or not this tag has a condition. If a tag, A, has no condition, we annotate it
with a U , for unconditional. If the tag, A, has a condition (i.e., the XPath step is A[cond], for some condition
cond), we annotate the tag, A, with a C , for conditional. Thus, for selectivity estimation purposes, a tag, A,
becomes either AU or AC . We treat AU and AC as distinct tags.

Since we assume that conditions have a uniform effect on selectivity, selectivity information obtained
from AC tags can be used to estimate the selectivity of subsequent AC tags, regardless of the condition that
caused the C annotation. However, since we treat AU and AC as distinct tags, information about AU cannot
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be used to estimate the selectivity of AC , and vice versa.
The assumption that conditions have a uniform effect on selectivity is admittedly a strong one, especially

since we allow arbitrarily complex conditions. For example, this assumption implies that the conditions in
the two XPath queries //safety/car[make="Saturn" and year=2003] and
//safety/car[body style="sedan"] will be considered to have the same effect on selectivity.
However, this assumption reduces the difficult problem of handling conditions in the XPath queries to a
tractable problem for which we propose a simple and uniform solution. Furthermore, many hidden Web
data sources allow only very stylized kinds of queries, such as those corresponding to HTML forms. In
this case, all conditions will have a similar form, so the assumption that they all have the same effect on
selectivity may well hold. Also, our experiments demonstrate that our statistics converge to an adequate
accuracy, even with this assumption.

4.2 Structure Annotations

Another problem that we face when designing on-line XML statistics for hidden Web data sources is that the
result of an XPath query does not give any information about the part of the XML tree that was navigated to
get this result.

For example, consider the XPath query //A/B/C . Figure 4 shows an XML tree in which the path
//A/B/C occurs a certain number of times with only one A node and one B node for all the C nodes.
Figure 5 shows a different XML tree in which the path //A/B/C occurs the same number of times as in
the first XML tree, but with one A node and one B node per C node. Knowing the result of the XPath
query //A/B/C does not help us to distinguish between these two cases. The result of this query gives
us information about the number of C nodes, not the number of A or B nodes. The result of an XPath
path expression gives no information about its prefixes. This is different from the case of static XML data,
in which we have full access to the XML tree and can explore it any way we want to get the required
information.

In our on-line XML statistics, we do not make any guesses about the structure of the XML tree. Such
guesses would be hard to justify given the limited information about the structure of the tree provided by
XPath queries. Instead, we only consider the selectivity of full XPath path expressions.

We distinguish between the target tag of an XPath path expression and the tags used for navigating the
XML tree to get to this target tag. In an XPath query, say //A/B/C , we annotate the final tag, C , with
an annotation D, for destination, and the preceding tags, A and B, with an annotation N , for navigation.
Thus, the XPath query becomes //AN/BN/CD. We only have selectivity information for destination tags.
Navigation tags are needed to get to the destination tag, but we do not have selectivity information for them.
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In general, we treat AN and AD as distinct tags. Information about A as the destination of an XPath query
does not help us for XPath queries that use A for navigation.

We combine the condition annotations and structure annotations for path expression tags. Thus, a tag,
A, gets annotated as ANU , ANC , ADU , or ADC . These annotated tags are treated as four distinct tags.
Selectivity information for one does not help us for queries involving another. As an example of path
annotation, the XPath path expression //A[2]/B/C[@a = ”val”] becomes //ANC/BNU/CDC . We call
this an annotated path expression.

5 On-line Annotated Path Tables

In this section, we describe a novel kind of on-line XML statistics for hidden Web data sources, which we
call on-line annotated path tables. An on-line annotated path table stores information for one hidden Web
data source. The table stores the annotated path expressions corresponding to the XPath queries issued to
this data source and information about their selectivities. This information is used to estimate the selectivity
of XPath queries subsequently issued to the data source, and the table is updated with feedback information
from the execution of these queries.

Every entry in an on-line annotated path table corresponds to one annotated path expression. The en-
try stores information about all previously executed XPath queries that correspond to this annotated path
expression. In particular, an entry, i, stores the annotated path expression it represents, pi, the number of
observed XPath queries that correspond to this annotated path expression, ni, and the total result size of all
these ni queries, si (i.e., the sum of all the individual result sizes). To reduce the amount of memory required
by the table, the entries can store hash values of the annotated path expressions they represent instead of the
full path expressions themselves. Using this optimization, each entry requires 3 integers (12 bytes), one for
each of hash(pi), ni, and si.

Figure 6 shows an example on-line annotated path table. For clarity of exposition, the figure shows the
table storing actual annotated path expressions. In our implementation of on-line annotated path tables, we
do not store the full annotated path expressions but only their hash values.

When an XPath query is issued to a hidden Web data source, we observe the actual result size of the
query and use it to update and refine the on-line annotated path table corresponding to this data source.
First, we determine the annotated path expression corresponding to the XPath query. Next, we look up this
annotated path expression in the on-line annotated path table. If the annotated path expression is found in
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pi ni si

//ANU/BNC/CDU 5 25
//ANC/BNC/CDU 7 90
//ANU/BNU/CDC 13 67
//CDU 2 19
//FNC/GNC/HDU 2 2

· · · · · · · · · · · ·
//BNC/CDU 4 90

Figure 6: An on-line annotated path table

the table, the corresponding ni value is incremented by 1, and the result size of the XPath query is added to
the corresponding si value. If the annotated path expression is not found in the table, a new entry is created
for this path expression, with ni equal to 1 and si equal to the result size of the XPath query.

To estimate the selectivity of an XPath query using an on-line annotated path table, we determine the
annotated path expression corresponding to this query and look up this path expression in the table. If
the path expression is found in the table, the estimated selectivity of the XPath query is si/ni. This is
the average selectivity of all previous executions of XPath queries corresponding to this annotated path
expression. Under our assumptions, the result size of a query corresponding to an annotated path expression
can be used as a predictor of the result size of any other query corresponding to the same annotated path
expression. The selectivity estimate si/ni reflects information about all previous queries that correspond to
the same annotated path expression as the current query.

If the annotated path expression corresponding to the XPath query whose selectivity is being estimated
is not found in the table, we estimate the selectivity to be 0. In this case, there is no information about
previous queries that correspond to the same annotated path expression as the current query. The current
query provides the first instance of such information.

An on-line annotated path table collects and aggregates information about the selectivities of XPath
queries issued to a hidden Web data source. The path annotations allow us to aggregate information from
several queries in one table entry. They also allow us to generalize the information obtained from observed
XPath queries to estimate the selectivity of different, previously unseen XPath queries. As more XPath
queries are observed, more and more information is added to the table, so the selectivity estimates it provides
become more accurate.

5.1 Table Summarization

The previous section describes how we add annotated path expressions to an on-line annotated path table. If
we only add path expressions to the table, it will grow indefinitely. This is clearly unacceptable. Hence, we
need a mechanism to remove path expressions from the table so that we can bound the amount of memory it
consumes.

When building statistics for static XML data, a common approach is to build the statistics completely,
with no restrictions on the amount of memory that they consume, and then to summarize the statistics so
that they fit in the available memory [AAN01, CJK+01]. For our on-line statistics, there is no notion of the
construction of the statistics being completed. Information is continuously added to the statistics when user
queries are issued. Thus, we cannot build the statistics “to completion” and then summarize them.

Instead, to bound the amount of memory consumed by an on-line annotated path table, we specify two
memory thresholds: a target threshold, t1, and a trigger threshold, t2, such that t1 ≤ t2. When the table
size reaches t2, a table summarization process is triggered. The table is summarized until its size drops to
t1 or less. t1 can be viewed as the available memory budget at which we want the table size to stabilize.

9



However, we allow the table to grow to t2 so that there is an opportunity for collecting enough information
to improve selectivity estimation accuracy. This additional information that is collected also improves the
accuracy of the table summarization process. Allowing the table to grow to t2 also adds stability to the table
summarization process.

The trigger threshold, t2, can have any value greater than or equal to the target threshold, t1. The greater
the difference t2−t1, the fewer times the table has to be summarized. Fewer summarizations can potentially
mean greater accuracy for the table. In this paper, we set t2 = αt1, where α ≥ 1 is a parameter of the table
construction process. Another alternative could to be to set t2 = min(αt1, β), where β is the maximum
memory size to which we are willing to allow the table to grow.

To summarize an on-line annotated path table when its size reaches the trigger threshold, t2, we remove
from the table the entries with the lowest si values. A low si value for a table entry can mean one of
two things. It can mean that the annotated path expression of this entry occurs only infrequently in the
virtual XML document representing the hidden Web data source, so the total result size of all XPath queries
corresponding to this annotated path expression will be small even if there are many such queries. A low
si value for a table entry can also mean that few XPath queries issued to the data source correspond to
the annotated path expression for this entry. In both these cases, the entry with the low si value is a good
candidate for removal because it represents an infrequently occurring path or an infrequently queried path.

When we remove entries with low si values from an on-line annotated path table, we can aggregate the
information contained in the removed entries in table entries that correspond to special path expressions that
we call star path expressions. An on-line annotated path table can have entries for two star path expressions:
a path expression //∗DU , and a path expression //∗DC . The entry for path expression //∗DU contains the
total ni and si values of all removed entries whose path expressions have only U annotations on their tags
(i.e., path expressions with only unconditional navigation ). The entry for path expression //∗DC contains
the total ni and si values of removed entries whose path expressions have a C annotation on some tag or
tags (i.e., path expressions with some conditional navigation).

We make the distinction between path expressions with conditional and unconditional navigation be-
cause of the high impact that conditions have on selectivity. The table entries for the star path expressions
represent the information contained in the removed table entries at a coarser granularity. They are similar to
the star paths we used in our work on building statistics for static XML data [AAN01].

Another alternative is not to use star paths. In this case, the entries removed from an on-line annotated
path table are simply discarded and the information they contain is lost.

5.1.1 A Table Summarization Example

Figures 7 and 8 present an example of on-line annotated path table summarization. Figure 7 presents an on-
line annotated path table before summarization, and Figure 8 presents the table after summarization. In this
example, the target threshold, t1, is 7 table entries and the trigger threshold, t2, is 12 table entries. Whenever
the table size reaches 12 entries (as is the case in Figure 7) we summarize it by removing entries with low
si values until the table size drops to 7 entries. In this example, we use star path expressions to represent
aggregate information about the entries removed from the table.

Figure 7 shows the on-line annotated path table when its size reaches 12 entries, thereby triggering
summarization. Since the table does not yet have entries for star path expressions, summarization will need
to remove 7 table entries. The 5 extra entries above the target threshold plus 2 additional entries to make
room for the star path entries. Figure 8 shows the table after summarization.

Table summarization creates two entries for the star paths //∗DU and //∗DC . //BNU/DDU , //Y DU ,
and //WNU/XNU/ZDU are all annotated path expressions with low si values that have U annotations
on all tags, so they get added to the //∗DU path expression. //ANC/BNC/CDU , //W NC/XNU/Y DU ,
//MNC/RDU , and //RDC are all annotated path expressions with low si values that have a C annotation
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pi ni si

//ANC/BNC/CDU 5 25
//ANC/BDC 7 68
//ANU/BNC/EDU 87 87
//BNU/DDU 4 12
//ANC/BNC/XDU 1 97
//Y DC 10 70
//Y DU 1 19
//W NC/XNU/Y DU 2 2
//W NU/XNU/ZDU 3 18
//ANU/BNC/MDU 5 27
//MNC/RDU 4 12
//RDC 4 9

Figure 7: An on-line annotated path table before summarization

pi ni si

//ANC/BDC 7 68
//ANU/BNC/EDU 87 87
//ANC/BNC/XDU 1 97
//Y DC 10 70
//ANU/BNC/MDU 5 27
//∗DU 8 49
//∗DC 15 48

Figure 8: The on-line annotated path table in Figure 7 after summarization

on some tag, so they get added to the //∗DC path expression. The ni and si values of the entries for the star
path expressions are the total ni and si values of all the removed path expressions represented by these star
path expressions.

Note that, of the annotated path expressions that are not deleted, some may be path expressions that
have a large result size but do not occur frequently in user queries (e.g., //ANC/BNC/XDU ), while
others may be path expressions that have a small result size but occur frequently in user queries (e.g.,
//ANU/BNC/EDU ). It is important to have accurate selectivity estimates for both these kinds of path
expressions.

6 Experimental Evaluation

6.1 Experimental Setup

6.1.1 Data Sets

Our goal in this paper is to build on-line XML statistics for hidden Web data sources that export their
responses to user queries in XML. Unfortunately, as mentioned earlier, publicly available hidden Web data
sources do not currently export their data in XML, although we can expect them to do so in the near future.
As such, we evaluate our proposed statistics using static XML data.

To evaluate our on-line annotated path tables on a particular static XML document, we issue a sequence
of XPath queries on this document. We build the on-line annotated path table for this XML document
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by observing these queries and their result sizes. In the process, we also use the table for estimating the
selectivity of the queries, just as we would do for a hidden Web data source. Nowhere in our experiments do
we assume that we have access to the XML document. We only use the sequence of XPath queries on the
document and their result sizes. The scenario would be exactly the same for a true hidden Web data source,
except that instead of the queries being on a static XML document, they would be on the virtual XML
document representing the data source. Thus, we are using the static XML documents in our experiments
as proxies for the virtual XML documents that would be queried in the hidden Web.

We present the results of experiments on two real data sets and one synthetic data set. The first real data
set consists of protein sequence data from the SWISS-PROT database [SPROT]. This data set is 141MB in
size, and it contains 4,243,031 XML elements. The second real data set consists of bibliographic entries from
the DBLP bibliography [DBLP]. This data set is 48MB in size, and it contains 1,399,765 XML elements.
In a real deployment of our technique, SWISS-PROT and DBLP would be data sources that export an XML
view of parts of the data that they store in relational or other databases.

The synthetic data set we use in our experiments is generated using the XML data generator described
in [ANZ01]. The tree representing the structure of this data set has 8 levels, and the nodes of this tree (which
correspond to the XML elements) have frequencies that follow a Zipfian distribution with parameter z =
1 [Zipf49]. The data set is 17MB in size, and it contains 1,000,000 XML elements. The values stored within
the XML elements are a total of 1,000,000 text words generated from a Zipfian distribution with 10,000
distinct words and z = 1. More details about this data set can be found in Appendix A

6.1.2 Query Workloads

The query workloads we use in our experiments consist of 1000 XPath queries each. All queries ask for
paths that do occur one or more times in the data. Each query has a random number of navigation steps
between 1 and 4.

To generate a query in our workloads, we choose a random node from the XML tree of the data set
and make it the destination node of the query path expression. This node can be an internal node or a leaf
node of the XML tree. If the length of the query path expression to be generated is greater than 1, the
ancestors of this destination node become navigation steps in the query path expression. This fully specifies
the navigation component of the query path expression (the sequence of tags).

To control the generation of conditions in the query path expressions, we specify a parameter, p, of
the query generation process which we call the condition probability. This parameter is the probability of
any step in the generated XPath query path expressions having a condition on its tag. For every step of a
generated query path expression, we flip a coin with success probability p to determine whether or not this
step includes a condition.

The conditions we generate for XPath steps consist of one to three condition atoms connected by the
logical operators “and” or “or.” 80% of the generated conditions have one condition atom, 10% have two
atoms, and 10% have three atoms. The condition atoms are connected by “and” with probability 50% and
by “or” with probability 50%.

To generate a condition atom for an XPath step corresponding to a particular node in the XML tree, we
check if this node is an internal node or a leaf node. If it is a leaf node, the generated condition atom is
text()="val", where val is the string value contained in this leaf node. This condition atom specifies
that we only want leaf nodes that contain this particular string value. If the node in the XML tree that
corresponds to the XPath step for which we want to generate a condition atom is an internal node, the
generated condition atom depends on whether or not this node has children that contain string values. If the
node has one or more children that contain string values, we choose one of these children at random, say C,
and we generate the condition atom C="val", where val is the string value contained in C. If the node
has no children that contain string values, we choose one of its children at random, say D, and we generate
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p SWISS-PROT DBLP Synth

0% 424,129 56,941 17,753
10% 352,122 49,580 15,986
25% 249,392 36,745 11,324
50% 128,030 25,014 6,737

Table 1: Average result sizes of the query workloads

the condition atom D. This specifies a condition based solely on the structure of the XML data.
Our query generation process generates diverse workloads. Some queries ask for internal nodes and

some ask for leaf nodes. Some have conditions and some do not. The conditions in the queries are
based on both structure and values, and some of them are atomic while others are complex. Examples
of XPath query path expressions generated by our query generation process for the DBLP data set include
//inproceedings[year="1999" and author="Jones"]/booktitle and
//article/journal[text()="Algorithmica"].

In our experiments, we use workloads with condition probability p = 0%, 10%, 25%, and 50%. The
average result sizes of the 1000 queries in these four workloads on each of the three data sets are presented
in Table 1. We use the Xalan XPath processor [Xalan] to execute the queries in our workloads and obtain
their result sizes.

To simulate a sequence of user queries to a hidden Web data source, we start with an empty on-line
annotated path table and issue the queries in a workload one by one. For every query, we estimate its
selectivity using the on-line annotated path table and we measure estimation accuracy by comparing the
estimated and actual selectivity values. After query execution, the actual result size of the query is used to
update the information in the path table, thereby making it more accurate.

6.1.3 Error Metric

The error metric we use to measure selectivity estimation accuracy is the average absolute error. The
average absolute error for a set of N queries is defined as 1

N

∑N
i=1 |est − act|, where est is the estimated

selectivity and act is the actual selectivity.
Except for the convergence experiment in Section 6.2, we evaluate our techniques based on the average

estimation error of the last 800 queries of each workload. We assume that the first 200 queries are training
queries and the remaining 800 queries are validation queries.

The errors we present may be better viewed in the context of the average result sizes of the queries in
our query workloads (Table 1).

6.1.4 Default Parameters

Our default memory allocation for on-line statistics is to use a target threshold, t1, of 500 bytes, and a trigger
threshold, t2 = αt1. Our default value for α is α = 2, so t2 is 1000 bytes. We use a small memory allocation
because the simple information reflected in on-line annotated path tables does not require a lot of memory
to store, especially for 1000 queries. Furthermore, our statistics represent information about a single hidden
Web data source, and an Internet query processor may deal with thousands of such sources. As such, we
have to be very parsimonious with our memory allocation.

When summarizing on-line annotated path tables, our default is to use star path expressions to represent
the removed table entries.

Unless otherwise specified, we use workloads with the condition probability parameter, p, set to 25%.
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Figure 9: Convergence (SWISS-PROT)
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Figure 10: Convergence (DBLP)

6.2 Convergence

In this section, we study the convergence of the selectivity estimates provided by on-line annotated path
tables. We address the issue of how fast the tables “learn” the structure of the data by observing XPath
queries and their result sizes.

To study convergence, we group the queries in our workloads into batches of 100 queries each, and we
compute the average absolute error for each batch. Figures 9–11 show these errors for all three data sets and
the four different query workloads corresponding to four different condition probabilities. The figures show
that on-line annotated path tables have good convergence properties for all data sets and workloads.

6.3 Memory Requirement and Summarization

In this section, we investigate the effect of the amount of available memory on the accuracy of on-line
annotated path tables. We also study the effectiveness of star paths in table summarization.

Figures 12–14 show the average estimation errors using on-line annotated path tables for the three data
sets and different memory allocations. The figures show the errors for workloads with p = 25% and two
methods of table summarization: using star path expressions, and not using star path expressions (i.e.,
discarding the table entries with low si values and losing the information they contain). The errors shown
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Figure 12: Memory and summarization (SWISS-PROT)

are for the last 800 queries in each query workload (the validation queries). The x-axis in each of these
figures shows the target threshold, t1. The trigger threshold, t2, is always set to 2t1.

The figures show that giving on-line annotated path tables more memory results in an increase in esti-
mation accuracy. However, the figures also show that estimation accuracy does not increase significantly
when increasing the available memory beyond 700 bytes. The information captured by on-line annotated
path tables does not require a lot of memory to represent, so the memory required for maximum accuracy
will typically be in the range of hundreds of bytes. Such a small memory requirement is important if we
have to build statistics for thousands of hidden Web data sources, as we expect the case will be if we want
to query the entire Internet.

As for using star path expressions for summarization, the picture is not as clear. On the one hand, star
path expressions allow us to retain some of the information contained in entries deleted from the path table,
although at a coarser granularity. These star path expressions may, therefore, lead to increased estimation
accuracy. This is the case for the SWISS-PROT data set (Figure 12).

On the other hand, the information contained in the star path expressions may have come from deleted
path table entries with widely varying si values. In this case, the star path expressions can be an inaccurate
representation of the deleted path table entries and may actually lead to a decrease in estimation accuracy.
This is the case for the DBLP and synthetic data sets (Figures 13 and 14).
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Figure 14: Memory and summarization (synthetic)

Fortunately, the difference in estimation accuracy between using and not using star path expressions is
always small. Thus, the decision of whether or not to use these path expressions will have a minimal effect.
We choose to be aggressive about retaining information about entries deleted from the on-line annotated
path table during summarization, so we use star path expressions.

6.4 Effect of Conditions in the XPath Queries

On-line annotated path tables rely on the assumption that conditions have a uniform effect on selectivity. In
this section, we investigate the effect of this simplifying assumption on estimation accuracy.

Figure 15 shows the average selectivity estimation error for the validation queries in workloads with
different values of the condition probability parameter, p, on the SWISS-PROT data set. As p increases,
the number of conditions in the query path expressions in the workload increases, so the assumption that
conditions have a uniform effect on selectivity holds less and less. This leads to an increase in selectivity
estimation error with increasing p, even as the average result size of the queries in the workload decreases
with increasing p. However, the error remains adequately low. At its maximum (p = 50%), the estimation
error is around 20% of the average result size.
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6.5 Sensitivity to the Parameter α

In this paper, we set the trigger threshold, t2, using the formula t2 = αt1. Figure 16 shows the estimation
error for different values of the parameter α on the SWISS-PROT data set. As expected, increasing α
leads to an increase in estimation accuracy, because it allows the on-line annotated path table to grow more
and collect more information before triggering summarization, and because it reduces the number of table
summarizations. However, the error is flat for all values of α. On-line annotated path tables are not sensitive
to this parameter, so any choice of α is acceptable.

6.6 Comparison to Static XML Statistics

In this section, we compare the on-line XML statistics we propose in this paper to the static XML statistics
that we proposed in [AAN01]. In that paper, we identified two types of static XML statistics as winners
among several techniques: path trees with global-* summarization, and Markov tables with m = 2 and
suffix-* summarization (see [AAN01] for details).

We compare the on-line annotated path tables that we propose in this paper to these two kinds of static
XML statistics. Since the static XML statistics can only handle navigations based on the structure of the
XML data and cannot handle conditions in the query path expressions, we only compare them to on-line

17



0

5000

10000

15000

20000

25000

30000

0 200 400 600 800 1000

A
bs

ol
ut

e 
E

rr
or

Memory (Bytes)

On-line
Path tree

Markov Table

Figure 17: Comparison to static statistics (SWISS-PROT)
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Figure 18: Comparison to static statistics (DBLP)

statistics for workloads with no conditions (p = 0%).
Figures 17–19 show the selectivity estimation errors for workloads with no conditions using path trees

and Markov tables as well as on-line annotated path tables. The errors are shown for the last 800 queries
in the workloads (the validation queries) for all three data sets and different memory allocations. For static
statistics, the memory allocations shown on the x-axis are the total number of bytes given to the statistics.
For on-line statistics, the memory allocations shown are the target threshold, t1. The figures show that
on-line XML statistics are comparable in performance to static XML statistics, and sometimes even better.

On-line annotated path tables are built based only on observing user queries and their result sizes. This
is much more limited information than is available for static XML statistics, which are built by reading the
entire XML data set and processing it as needed. We expect the static statistics built using full information to
be more accurate than the on-line statistics built using limited information. This is what we see in Figure 17
and in small memory allocations in Figure 18. However, the good news from these figures is that the on-line
statistics are comparable in accuracy to the static statistics. Thus, even though we cannot use static XML
statistics for hidden Web data sources because we do not have access to the data, this experiment shows that
on-line XML statistics, the only alternative we can use, are not much less accurate.

The surprising result that we see in Figure 18, and more strikingly in Figure 19, is that on-line XML
statistics can be more accurate than static XML statistics. This is because on-line XML statistics are work-
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Figure 19: Comparison to static statistics (synthetic)

load aware. On-line XML statistics try to retain information about paths in the data that are queried by the
user. Static XML statistics, even though they have access to more information, summarize the data without
considering user queries. Thus, they may discard some information during summarization that, while not
significant from the point of view of capturing a data distribution, is frequently queried by the user. If the
on-line statistics keep this information, they can be more accurate than the static statistics.

7 Conclusions

We propose a novel type of XML statistics for hidden Web data sources that we call on-line annotated path
tables. An on-line annotated path table for a hidden Web data source stores the XPath query path expressions
that were issued to this data source in a more generalized form known as annotated path expressions. The
table also stores aggregate information about the result sizes of the queries corresponding to these annotated
path expressions. This information can be leveraged to estimate the selectivity of subsequent user queries,
even if these queries are seen for the first time. A summarization algorithm ensures that the amount of
memory used by the table remains bounded.

We experimentally demonstrate using real and synthetic data sets that on-line annotated path tables have
good convergence behavior, and that they work well across a wide range of parameter values. We also show
that they are comparable to static XML statistics, and sometimes even better.

Our goal in this work was to take a first step toward techniques that solve the daunting problem of
gathering and using statistics for queries over the hidden web. As such a first step, our work opens a wide
range of interesting possibilities for future work.

In this paper, we assume that queries to a hidden Web data source are XPath selections from a virtual
XML document representing the data at this source. This model of querying hidden Web data sources is
easy to incorporate into XML query processors, and it is general and expressive enough to handle current
hidden Web interfaces. However, it would be interesting to investigate other models for querying hidden
Web data sources, and to determine the impact of these models on query optimization and processing and
on statistics gathering.

In this paper, we assume that a condition on a tag in an XPath query has the same effect on selectivity
as any other condition on this tag. Developing more elaborate techniques for handling XPath conditions is a
possible area for future work.

Also, we do not try to infer any information about the structure of the XML tree from the results of the
XPath queries. We only use selectivity information at the granularity of whole path expressions. A possible
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area for future work is inferring information about the structure of the XML tree based on the queries in the
workload and their results. This may involve using heuristics, and it may also involve examining the results
of the user queries in detail, and not relying only on the sizes of these results as we do in this paper.

Finally, it may be possible to utilize semantic knowledge or schema knowledge to construct or refine
statistics for hidden Web data sources.
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A Synthetic Data Set Used in Experiments

In our experiments, we use a synthetic data set generated using the XML data generator described
in [ANZ01]. The tree representing the structure of this data set has 8 levels, with a total of 8643 nodes.
The average fan outs of the 7 internal levels of this tree, from the root down, are 8, 5.2, 4.1, 4.6, 2.4, 2.5,
and 2.5. The tree has 2161 nodes with repeated tag names.

The nodes of the tree have a Zipfian frequency distribution with parameter z = 1 [Zipf49]. The Zipfian
frequencies are assigned to the tree nodes in breadth first order, with the root being assigned the lowest
frequency and the rightmost leaf being assigned the highest frequency. The total frequency of all tree nodes,
which is the total number of XML elements generated, is 1,000,000.

The spread of the number of child XML elements generated within a parent element is 75% around the
mean number of such child XML elements.

The XML elements contain text words that follow a Zipfian distribution with parameter z = 1. We
generate 10,000 distinct text words, and 1,000,000 total text words. All leaf XML elements have text words,
and 25% of the internal XML elements have text words.
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