
Database Systems on Virtual Machines: How Much do You Lose?

Umar Farooq Minhas

University of Waterloo

Jitendra Yadav

IIT Kanpur∗
Ashraf Aboulnaga

University of Waterloo

Kenneth Salem

University of Waterloo

Abstract

Virtual machine technologies offer simple and practical

mechanisms to address many manageability problems in

database systems. For example, these technologies allow

for server consolidation, easier deployment, and more flex-

ible provisioning. Therefore, database systems are increas-

ingly being run on virtual machines. This offers many op-

portunities for researchers in self-managing database sys-

tems, but it is also important to understand the cost of virtu-

alization. In this paper, we present an experimental study of

the overhead of running a database workload on a virtual

machine. We show that the average overhead is less than

10%, and we present details of the different causes of this

overhead. Our study shows that the manageability benefits

of virtualization come at an acceptable cost.

1. Introduction

Virtual machine technologies are increasingly being

used to improve the manageability of software systems,

including database systems, and lower their total cost of

ownership. These technologies add a flexible and pro-

grammable layer of software, the virtual machine monitor

(VMM), between software systems and the computing re-

sources (such as CPU and disk) that they use. The VMM

allows users to define virtual machines (VMs) that have in-

dependent operating systems and can run different software,

and it guarantees that these VMs will be isolated from each

other: Faults in one VM will not affect other VMs, and

the performance of a VM will not be affected by the ac-

tivity in other VMs. The VMM also adds flexibility to the

computing environment by providing capabilities such as

dynamically changing the resource allocation to different

VMs, suspending and resuming VMs, and migrating VMs

among physical machines.

By running database systems in VMs and exploiting the

flexibility provided by the VMM, we can address many

of the provisioning and tuning problems faced by self-

managing database systems. For example, we can allow

many different database systems running in VMs to share

∗Work done while the author was a summer intern at the University of

Waterloo.

the same physical machine while providing them with a

guaranteed share of the resources of this machine [13]. This

server consolidation is already widely used by many en-

terprises and service providers, since it reduces the num-

ber of servers required by an organization, which also re-

duces space, power, and cooling requirements. We could

also use the VMM to change the resource allocation to a

database system in response to fluctuations in the work-

load. As another example, we could use virtualization to

simplify deploying database systems by providing VM im-

ages (i.e., suspended and saved VMs) with pre-installed and

pre-configured database systems. In this case, deploying a

database system is simply a matter of starting a VM from

the saved VM image. Such pre-configured VM images are

known as virtual appliances and are increasingly being used

as a model for software deployment [16].

These are but a few examples of the benefits that vir-

tual machine technologies can provide to database systems

and other software systems. These benefits are widely rec-

ognized in the IT industry, which has led to users adopt-

ing virtual machine technologies at an increasing rate, and

to hardware and software vendors providing new features

aimed specifically at improving support for virtualization.

However, the benefits of virtualization come at a cost since

virtualization adds performance overhead. Our goal in this

paper is to quantify this overhead for database systems. We

ask the question: How much performance do we lose by

running a database system in a virtual machine? What is

the cost of the manageability benefits of virtualization?

To answer this question, we present a detailed exper-

imental study of the performance of the TPC-H bench-

mark [15] on PostgreSQL. We compare the performance on

Linux without virtualization to the performance in a VM

using the Xen hypervisor [18], currently one of the most

popular VMMs. We show that the average overhead is less

than 10% and we report details on the nature and causes of

this overhead. We view this as an encouraging result, since

it means that the benefits of virtualization do not come at

a high cost. Ours is not the first study to report the over-

head of virtualization [1, 12]. However, to the best of our

knowledge, we are the first to provide a detailed study of

this overhead for database systems.



The rest of this paper is organized as follows. In Sec-

tion 2 we present an overview of related work. Section 3

describes our experimental setup, and Section 4 reports our

experimental results. Section 5 concludes.

2. Related Work

There has recently been an increasing interest in virtual-

ization technologies [1, 17]. Virtualization provides flexi-

bility and improved manageability by enhancing availabil-

ity [3], performance isolation [5], security [4], memory

management, and control of resources [11].

In this paper, we focus on the Xen VMM [18]. Xen was

proposed in [1], where the authors provide a comparative

performance evaluation against base Linux (with no virtu-

alization), the VMWare VMM [17], and User Mode Linux.

Using a variety of benchmarks, including database bench-

marks, they show that the overhead of Xen is quite small

compared to these other platforms. Their results are inde-

pendently reproduced in [2].

In a more recent study, Padala et al. [12] provide an

evaluation of the performance of the Xen and OpenVZ vir-

tualization platforms for server consolidation. They use

multi-tier applications that run on a web server and database

server, and they report that the performance overhead for the

database server is small for both virtualization platforms.

Gupta et al. [6] present XenMon, a performance moni-

toring tool for Xen. Using XenMon, they study the perfor-

mance of a web server running in a Xen VM. In a similar

study, Menon et al. [8] present Xenoprof, a toolkit to facil-

itate system-wide statistical profiling of a Xen system. The

authors use Xenoprof to analyze the performance overhead

of running a networking application on Xen.

These papers all study the performance overhead of Xen

virtualization, but none of them provides a detailed study of

this performance overhead for database systems.

3. Experimental Testbed

We use two identical machines for our experiments, one

with Linux without virtualization and one with Xen virtu-

alization. The machines are Sun Fire X4100 x64 servers,

each with two 2.2GHz AMD Opteron Model 275 dual core

processors, 8GB memory, and two 73GB SCSI 10K RPM

drives. Our Linux system without virtualization runs SUSE

Linux 10.1 with version 2.6.18 of the kernel and the Reis-

erFS file system. We refer to this system as the Base system.

Our Xen system uses Xen 3.1, the latest release of Xen

at the time of this writing. Xen uses a special VM (a do-

main in Xen terminology) to control other VMs. This con-

trol domain is known as Dom0, and we allocate it 4GB of

memory. We create a single VM (DomU) for running the

database system, and we give it 3GB of memory and a sin-

gle 10GB virtual disk mounted as a file in Dom0. Dom0

and DomU run the same version of Linux as the Base sys-

tem, and their file systems are also ReiserFS. In addition to

the operating system, the DomU file system contains Post-

greSQL and the test database. Dom0 and DomU use one

virtual CPU each, and these virtual CPUs are mapped to

different physical CPUs on the machine, which ensures that

Dom0 has enough resources to do its work without throt-

tling DomU or competing with it for resources. We refer to

this system in our experiments as the Xen system.

For our database system, we use PostgreSQL 8.1.3,

which we refer to simply as Postgres. The workload we

use for our experiments is the OSDL implementation of

the TPC-H benchmark [10], with scale factor 1 (i.e., 1GB).

We use the 22 queries of the benchmark, and not the up-

date streams. This benchmark implementation is optimized

for Postgres and utilizes several indexes to improve perfor-

mance. The total size of the database on disk, including all

tables and indexes, is 2GB. We set the Postgres buffer pool

size (the shared buffer parameter) to 2GB, ensuring

that we can fit the entire database in memory in our warm

buffer pool experiments. All the other Postgres configura-

tion parameters are left at their default values. Postgres was

identically configured for the Base and Xen systems. The

Postgres client and server are both run on the same machine,

and in the same domain for Xen (DomU). The client adds a

negligible overhead to the machine, consuming well below

1% of the CPU and very little memory.

For our experiments, we run the 22 benchmark queries

in identical settings on the Base and Xen systems, and we

compare the performance of these two systems. Our perfor-

mance measurements use Linux tools that are not Xen spe-

cific, so we use the same tools and measurement method-

ology for both systems. We conducted two different sets

of experiments to measure the Xen overhead for different

cases. In the warm experiments, the Linux file system cache

and the Postgres buffer pool are warmed up before we do

the measurement, and in the cold experiments we start with

cold file system caches and buffer pool. For all our mea-

surements, we repeat the experiment five times and report

the average measurement obtained from these five runs. The

variance in our measurements was very low in all cases.

4. Experimental Results

4.1. Warm Experiments

For these experiments, we run the 22 TPC-H queries

once to warm up the buffer pool and file system cache,

then we run them again and measure their performance.

Table 1 presents the run time reported by Postgres for

each query in the Base and Xen systems. The table also

shows the absolute slowdown, defined as (XenRunT ime−
BaseRunT ime), and the relative slowdown, defined as

(XenRunT ime− BaseRunT ime)/BaseRunT ime.



Base Xen Abs Rel

Runtime Runtime SlwDwn SlwDwn

(secs) (secs) (secs) (%)

Q1 14.19 15.30 1.11 7.82

Q2 0.12 0.17 0.05 40.39

Q3 5.20 6.98 1.78 34.35

Q4 0.74 1.07 0.33 44.00

Q5 4.53 5.99 1.46 32.21

Q6 1.40 2.12 0.73 52.03

Q7 4.09 5.32 1.23 30.14

Q8 1.39 1.98 0.59 42.05

Q9 10.99 12.81 1.81 16.49

Q10 5.04 6.36 1.32 26.17

Q11 0.78 0.94 0.16 20.82

Q12 1.85 2.73 0.88 47.32

Q13 14.02 15.27 1.25 8.93

Q14 0.66 0.90 0.24 37.12

Q15 1.24 1.66 0.42 34.32

Q16 1.89 2.18 0.29 15.17

Q17 0.39 0.47 0.08 19.45

Q18 9.38 11.54 2.17 23.12

Q19 5.26 6.33 1.07 20.41

Q20 0.59 0.94 0.35 60.03

Q21 2.79 3.65 0.86 31.03

Q22 1.59 1.70 0.10 6.58

Table 1. Overhead: Base vs. Xen.

The table shows that most queries experience a fairly

large overhead when moving from the Base system to Xen,

as indicated by the relative slowdown. We focus next on

explaining this overhead. In the interest of space, we only

present results for the ten queries whose run time in the Base

system in Table 1 exceeds 2 seconds. The results for the

other queries are similar, and can be found in [9].

In order to get an insight into the cause of the overhead,

we use the mpstat tool to break down the overall run time

of each query into user time and system time. Figure 1

shows the relative slowdown (defined similarly to Table 1)

in user and system time for the ten selected queries.We can

see that both the user time and the system time of almost

all queries experience slowdown in Xen compared to Base.

However, the slowdown in user time is very small compared

to the slowdown in system time. This is expected since Xen

adds overhead to system level operations and does not af-

fect user level operations. User level code only experiences

a minor slowdown that has been attributed in previous stud-

ies to the increased number of CPU cache misses under

Xen [12], since the Xen code and data compete for CPU

cache with user code and data. On the other hand, the slow-

down in system time is quite significant (up to 154%) and

can explain the run time overhead of Xen. So we focus next

on the question: Where does the slowdown in system time

come from? For these queries, system time is attributable

to either system calls or page fault handling. We look into

these two components next.

Figure 1. Slowdown: User vs. system time.

4.1.1 System Call Time

It is expected that system calls will be slower in the Xen sys-

tem than the Base system. The way Xen is designed, many

system calls have to go through the Xen hypervisor (which

is why Xen virtualization is called para-virtualization). In

the Base system, system calls are directly handled by the

operating system. A longer system time can therefore be

attributed to a longer execution path for system calls inside

Xen. In this section, we are interested to know: (a) How

much slower are system calls in Xen?, and (b) How much

of the overhead of virtualization can be attributed to slow-

down in system calls?

With a focus on these questions, we use the strace

tool to collect the number of system calls made by

each query (more precisely, by the Postgres process ex-

ecuting the query) and the time to serve these sys-

tem calls. Table 2 presents these results for the

ten selected TPC-H queries in the Base and Xen sys-

tems. The table also presents the relative slowdown in

serving system calls, defined as (XenSysCallT ime −

BaseSysCallT ime)/BaseSysCallT ime.

As expected, the total time to serve system calls is higher

inside Xen, increasing up to 871% compared to the Base

system (except for Q13). Also as expected, the number

of system calls in the Base and Xen systems is very sim-

ilar since the program behavior of Postgres does not change

when it is run in a VM. The strace tool consistently re-

ports a small difference between Base and Xen of around 15

system calls. Most importantly, we note that for all queries,

system call time is a minor fraction of the total system time.

Thus, while system calls in Xen are significantly slower

than the Base system, this is not a major cause of slowdown

for database queries, since these queries do not spend that

much time on system calls. We next look into the second

component of system time: time to handle page faults.

4.1.2 Page Fault Handling Time

A page fault is an exception generated by hardware when

the memory page accessed by the current instruction has

not been loaded into physical memory (a major page fault),

or has been loaded into memory for some other process but



Base Xen Rel

Number SysCall System Number SysCall System SysCall

of Time Time of Time Time Time

SysCalls (ms) (ms) SysCalls (ms) (ms) SlwDwn

(%)

Q1 112 0.02 390.34 95 0.03 989.80 82.05

Q3 226 0.40 568.66 209 3.92 1253.02 871.44

Q5 204 0.13 557.38 188 0.42 1144.08 225.51

Q7 221 0.92 536.52 205 5.47 1294.16 491.20

Q9 348943 4.19 782.34 348926 11.45 1768.40 173.35

Q10 224 1.34 542.92 206 6.09 1219.52 353.00

Q13 34974 59.92 751.00 34957 34.92 1085.00 -41.73

Q18 308 16.97 962.12 291 65.89 2123.12 288.34

Q19 149 0.91 392.10 132 2.87 1023.72 215.08

Q21 579 0.02 451.40 562 0.05 1072.00 203.45

Table 2. System Call Time.

Base Xen Page Faults Rel

Page Faults Page Faults per SlwDwn

Second (%)

Q21 272679 272655 74700 31.03

Q7 351018 350303 65817 30.14

Q5 343477 342106 57136 32.21

Q10 344395 340994 53593 26.17

Q3 370884 368685 52814 34.35

Q19 288348 286636 45261 20.41

Q18 476445 473605 41029 23.12

Q9 364944 362777 28326 16.49

Q1 270281 269217 17594 7.82

Q13 98128 97738 6400 8.93

Table 3. Page Fault Handling: Base vs. Xen.

is not mapped to the address space of the faulting process

(a minor page fault). Page fault handling is a significant

source of complexity for VMMs, including the Xen hyper-

visor, so it is important to study their contribution to the ob-

served overhead. To do so, we measure the number of page

faults generated by each query, and we attempt to establish

a relationship between slowdown and page faults.

In our experiments we only observe minor page faults.

Our settings are chosen such that all pages required by the

queries can fit into physical memory and are loaded in the

warmup phase, thus avoiding major page faults. Minor page

faults, on the other hand, can arise due to sharing of code

and data pages between processes.

We use the sar tool to measure the number of page

faults by each query, and we report the results in Table 3.

The table also shows the relative slowdown of the queries

(from Table 1). The number of page faults by each query

shows a slight variation between Base and Xen but this is

not significant. The important observation is that there is

a strong correlation between relative slowdown and page

faults per second, which is also shown in the table and is

defined as the number of page faults generated in Xen di-

vided by the total run time of the query in Xen. In general,

if a query has a higher number of page faults per second, it

will incur a higher run time overhead in Xen. To highlight

this correlation, Table 3 is sorted by the number of page

faults per second. This important conclusion establishes the

fact that page faults are a major cause of database system

slowdown in Xen.

We investigated the reason behind the page faults and

found that the majority of them are caused by accesses to

database pages in the shared buffer cache of Postgres. Like

many database systems, Postgres uses worker processes,

known as postmaster processes, to execute user queries,

and they all use one shared buffer cache for database pages.

When a postmaster process accesses a database page

(from a table or index), this page may already be in the

shared buffer cache, but the memory pages in which this

database page resides may not be mapped to the address

space of the process. The process needs to map these pages

to its address space, which causes minor page faults.

This discussion implies that it takes longer to handle a

page fault in Xen than in the Base system. To verify this,

we measure the time to handle a page fault in the Base and

Xen systems using the lmbench tool kit [7]. The results

indicate that it takes 1.67µs and 3.5µs to handle a page fault

in the Base and Xen systems, respectively. This direct mea-

surement shows that page faults in Xen are more than twice

as expensive as they are in the Base system.

Since the page fault rate (page faults per second) is

strongly correlated to overhead, page fault handling is likely

the major source of overhead for Xen. We turn our attention

next to reducing this overhead.

4.1.3 Reducing Page Fault Overhead

To reduce page fault overhead, we attempt to reduce

the number of minor page faults that happen when a

postmaster process maps pages from the shared buffer

cache to its own process space. The key to reducing these

page faults is to realize that they only happen the first time

the process touches a memory page from the shared buffer

cache. Once a page is mapped to the address space of

a postmaster process, the process can reuse this page

without faulting.



Base Xen Abs Rel

Runtime Runtime SlwDwn SlwDwn

(secs) (secs) (secs) (%)

Q1 13.3 14.04 0.74 5.55

Q3 4.61 5.82 1.21 26.23

Q5 4.14 4.97 0.84 20.22

Q7 3.52 3.66 0.14 3.91

Q9 10.52 11.36 0.83 7.91

Q10 4.57 4.69 0.12 2.58

Q13 13.36 14.1 0.75 5.59

Q18 8.86 10.13 1.27 14.36

Q19 4.84 5.05 0.22 4.46

Q21 2.3 2.48 0.18 7.84

Table 4. Overhead for Single Connection.

In the previous experiments, each query is individu-

ally run from the command line using the pgsql Post-

gres client, which means that there is a different client pro-

cess and a different database connection for each query. In

the Postgres architecture, whenever a new connection to

the database is initiated, the master server process spawns

a child worker process (a postmaster process) that is

responsible for handling requests on the new connection.

This means that in our case each query runs in a new

postmaster process, which needs to map the buffer pool

pages it uses to its address space. Each query thus causes

a large number of minor page faults. To reduce the number

of page faults, we repeat the experiments in Section 4.1, but

we run all queries in one pgsql client, using one database

connection and one postmaster process.

Table 4 presents the overhead in this case for the ten se-

lected queries. In this new setting, the overall run time of all

queries decreases in both Base and Xen. More importantly,

the absolute and relative slowdown values are also lower

compared to Table 1. The decrease in run time is due to a

significant decrease in system time, which in turn is due to

a reduction in the number of page faults. Other components

of run time are not significantly affected.

To verify that the number of page faults is indeed re-

duced, we conduct an experiment in which we establish a

database connection and run the same query multiple times

on this connection, measuring the number of page faults in

each run. Figure 2 presents the results for the ten longest

running TPC-H queries. The number of page faults in the

second and later runs of each query is almost identical, and

is a lot smaller than the number of page faults in the first run.

After the first run, the required pages from the shared buffer

cache are mapped to the address space of the postmaster

process and can be used without faulting.

Using one database connection for all queries is a fairly

simple way to reduce the overhead of virtualization. In-

deed, many applications do use one connection for all their

queries, so these experiments do not suggest a new way of

writing database applications. However, they do show that

Figure 2. Page Faults for Single Connection.

virtualization introduces new types of overheads, and that

there may be simple ways to reduce these overheads.

The average relative slowdown of the 22 TPC-H queries

using one database connection is only 9.8%. This can be

further reduced by using newer server CPUs that have hard-

ware support for virtualization and include features that en-

able, for example, faster page fault handling. The CPUs of

the machines that we use in our experiments do not have

this support, so the 9.8% can be viewed as a worst case per-

formance overhead that can likely be improved.

4.2. Cold Experiments

Next, we turn our attention to the case where the queries

run on a cold database. For this set of experiments, we

restart Postgres and flush the Linux file system caches in

both DomU (the Postgres VM) and Dom0 (the control VM)

before running each query. This ensures that all data re-

quired by a query is read from disk, thereby bringing an

important (and usually very costly) factor into play, namely

physical disk I/O. It is generally accepted that Xen adds a

high overhead to the I/O path. In Xen, every I/O request in

DomU is forwarded to Dom0 where it is serviced. Data that

is read (or written) by Dom0 is copied to (or from) DomU.

This is a complex process, so we expect to see larger slow-

downs in this experiment.

We perform cold runs of the 22 TPC-H queries in the

Base and Xen systems. Table 5 reports the run time of each

query in both cases and the slowdown between Base and

Xen. Surprisingly, the slowdown numbers are not high. The

I/O path in Xen is not as slow as commonly believed, and

the cost of virtualization is low even in the cold case.

We obtain the run time break down of these queries as

in the warm case. In these runs, system call and page fault

numbers are unchanged from the warm case, but they rep-

resent a small fraction of query run time. As expected, most

of the run time of these queries is spent in the iowait

state, waiting for disk I/O. On average, the queries spend

77% and 79% of their run time in the Base and Xen sys-

tems, respectively, waiting for disk I/O. In the warm case,

query run time did not have an iowait component.

What is surprising and rather counter-intuitive in the re-

sults is that some queries run faster in Xen than in the Base



Base Xen Abs Rel

Runtime Runtime SlwDwn SlwDwn

(secs) (secs) (secs) (%)

Q1 22.12 22.09 -0.04 -0.17

Q2 2.14 2.25 0.11 5.17

Q3 26.48 29.88 3.39 12.81

Q4 59.62 46.07 -13.55 -22.73

Q5 24.24 27.89 3.66 15.08

Q6 19.86 22.57 2.71 13.62

Q7 25.28 28.89 3.61 14.28

Q8 171.19 178.42 7.23 4.22

Q9 798.9 776.21 -22.69 -2.84

Q10 24.00 28.14 4.14 17.25

Q11 3.11 3.81 0.70 22.35

Q12 51.46 43.92 -7.54 -14.65

Q13 17.10 18.01 0.91 5.35

Q14 20.18 24.06 3.89 19.27

Q15 20.09 22.94 2.85 14.17

Q16 6.94 7.83 0.89 12.81

Q17 29.45 31.83 2.38 8.08

Q18 26.88 31.46 4.58 17.03

Q19 20.67 23.13 2.45 11.87

Q20 277.16 280.71 3.56 1.28

Q21 623.30 612.61 -10.69 -1.71

Q22 26.00 22.03 -3.97 -15.26

Table 5. Overhead for Cold Runs.

system. In our final experiment, we try to explain why this

interesting effect happens. We use the iostat tool to mea-

sure the amount of data read from the database disk by each

query. For the Base system, we only need to monitor the

physical disk storing the database. However, for the Xen

system we need to monitor both the physical disk accessed

by Dom0 and the virtual disk inside DomU.

Table 6 presents the amount of data read in each case

and the iowait time in the Base system and in DomU. It

is clear that for the queries that run faster inside Xen, the

I/O wait time is less than the Base system. The speedup of

these queries can be entirely attributed to this reduction in

I/O wait time. Fortunately, this reduction can be explained

easily by looking at the amount of data read by each query.

The Base system and DomU read almost the same amount

of data. This is expected since Postgres is accessing the

same data in both cases. However, if we look at the amount

of data read in Dom0, we find that for the faster queries,

Dom0 reads a lot more data than required by DomU.

For these queries, Dom0 is aggressively prefetching data

based on the disk access pattern of DomU. This causes more

data than necessary to be read from disk, but it helps perfor-

mance by removing I/O from the critical path of query ex-

ecution and hence reducing I/O wait times. To explain the

cause of this prefetching, we note that the Dom0 file sys-

tem sees the DomU disk as one large file. Reads in DomU

due to Postgres read requests and prefetching requests from

the DomU file system are all translated to reads on this one

file in Dom0. This causes the file system in Dom0 to see

many reads on this file, and to prefetch aggressively from

it. In particular, prefetching requests made by the DomU

file system cause larger amounts of data to be prefetched in

Dom0. If we turn the Linux prefetching mechanism off in

DomU, the amount of data read is very close to the actual

data required by the queries and the queries no longer run

faster inside Xen. More details are available in [9].

The point of this experiment is not to suggest using vir-

tualization to implement prefetching. Instead, the experi-

ment is meant to illustrate that virtualization does not cost

much even for the cold case. The queries that are slower in

Xen experience an average slowdown of 12.2%, and those

that are faster in Xen experience an average “slowdown” of

-9.6%. Overall, the average slowdown for all 22 TPC-H

queries is 6.2%. As in the warm case, these numbers are for

a simple system that is not highly optimized. Optimizations

such as using raw disk in Dom0 for the DomU virtual disk

can improve performance, so this overhead can be viewed

as a worst case overhead that can likely be further improved.

5. Conclusion

There are many advantages to running a database sys-

tem in a virtual machine. In this paper, we demonstrate that

these advantages do not come at a high cost in performance.

Using a TPC-H workload running on Postgres in a Xen vir-

tual machine environment, we show that Xen does indeed

introduce overhead for system calls, page fault handling,

and disk I/O. However, these overheads do not translate to

a high overhead in query execution time. System calls and

page faults represent a minor fraction of the run time of a

query. Disk I/O is a significant fraction of run time in the

cold case, but it is not slowed down by much, and it can

sometimes be taken off the critical path. Our hope is that

these findings will encourage further research in the area of

virtualization and self-managing database systems.

Possible directions for future work include measur-

ing the performance overhead of virtualization for other

database workloads with different applications and resource

demands. For example, we could use TPC-C [14] or other

OLTP workloads. Since OLTP workloads have different

characteristics (e.g., more updates), the results may be dif-

ferent. Additionally, we could evaluate different virtual-

ization environments such as OpenVZ, VMWare, and User

Mode Linux specifically for database workloads. We could

also evaluate different database systems such as MySQL,

Oracle, and DB2. A very interesting direction for future

work is to conduct a study with multiple workloads running

concurrently on different VMs sharing the same physical

machine. This would allow us to investigate the effect of in-

terference among workloads on performance, and to study

how well the VMM isolates the performance of the different

workloads from each other.



Base Xen

Data Read IOWait Dom0 Data DomU Data IOWait

(MB) (secs) (MB) (MB) (secs)

Q1 1040 6.27 1045 1040 6.23

Q2 41 1.93 43 41 2.04

Q3 1386 17.73 1392 1385 23.05

Q4 920 56.16 1347 920 44.6

Q5 1311 16.63 1318 1311 18.13

Q6 1056 15.87 1062 1056 20.58

Q7 1342 17.46 1349 1342 23.58

Q8 623 166.99 955 623 174.34

Q9 1512 778.41 2660 1511 759.66

Q10 1308 16.2 1315 1308 17.93

Q11 145 2.15 147 145 2.96

Q12 1302 46.53 1325 1302 40.24

Q13 269 3.60 271 269 1.79

Q14 539 17.81 998 539 23.00

Q15 871 16.68 1047 871 21.09

Q16 205 4.80 207 205 6.36

Q17 90 28.71 162 90 31.15

Q18 1308 15.19 1315 1308 17.58

Q19 1082 13.39 1088 1082 13.22

Q20 541 273.22 1034 542 277.45

Q21 1127 613.49 2175 1129 604.99

Q22 106 24.18 124 106 20.55

Table 6. Disk Activity and I/O Wait: Base vs. Xen.

References

[1] P. T. Barham, B. Dragovic, K. Fraser, S. Hand, T. L. Harris,

A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and

the art of virtualization. In Proc. ACM Symp. on Operating

Systems Principles (SOSP), 2003.

[2] B. Clark, T. Deshane, E. Dow, S. Evanchik, M. Finlayson,

J. Herne, and J. N. Matthews. Xen and the art of repeated

research. In Proc. USENIX’04, FREENIX Track, June 2004.

[3] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,

C. Limpach, I. Pratt, and A. Warfield. Live migration of vir-

tual machines. In Proc. ACM/USENIX Symp. on Networked

Systems Design and Implementation (NSDI), May 2005.

[4] R. Figueiredo, P. A. Dinda, and J. Fortes. Resource virtual-

ization renaissance. IEEE Computer, 38(1), May 2005.

[5] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat. En-

forcing performance isolation across virtual machines in

Xen. In Proc. ACM/IFIP/USENIX 7th International Mid-

dleware Conf., November 2006.

[6] D. Gupta, R. Gardner, and L. Cherkasova. XenMon: Qos

monitoring and performance profiling tool. Technical Re-

port HPL-2005-187, HP Labs, 2005.

[7] LMbench: Tools for Performance Analysis.

http://lmbench.sourceforge.net/.

[8] A. Menon, J. R. Santos, Y. Turner, G. J. Janakiraman, and

W. Zwaenepoel. Diagnosing performance overheads in the

Xen virtual machine environment. In Proc. Virtual Execu-

tion Environments (VEE’05), June 2005.

[9] U. F. Minhas. A performance evaluation of database systems

on virtual machines. Master’s thesis, University of Waterloo,

2007. Also available as University of Waterloo Computer

Science Technical Report CS-2008-01, January 2008.

[10] OSDL Database Test Suite 3.

http://sourceforge.net/projects/osdldbt.

[11] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Sing-

hal, A. Merchant, and K. Salem. Adaptive control of virtu-

alized resources in utility computing environments. In Proc.

EuroSys Conf., March 2007.

[12] P. Padala, X. Zhu, Z. Wang, S. Singhal, and K. G. Shin. Per-

formance evaluation of virtualization technologies for server

consolidation. Technical Report HPL-2007-59, HP Labs,

April 2007.

[13] A. A. Soror, A. Aboulnaga, and K. Salem. Database virtu-

alization: A new frontier for database tuning and physical

design. In Proc. Workshop on Self-Managing Database Sys-

tems (SMDB’07), April 2007.

[14] TPC-C: An On-line Transaction Processing Benchmark.

http://www.tpc.org/tpcc/.

[15] TPC-H: An Ad-hoc, Decision Support Benchmark.

http://www.tpc.org/tpch/.

[16] Virtual Appliances. http://www.virtualappliances.net/.

[17] VMware. http://www.vmware.com/.

[18] XenSource. http://www.xensource.com/.


