ReStore: Reusing Results of MapReduce Jobs in Pig

Iman Elghandour
University of Waterloo

ielghand@cs.uwaterloo.ca

ABSTRACT

Analyzing large scale data has become an important activ-
ity for many organizations, and is now facilitated by the
MapReduce programming and execution model and its im-
plementations, most notably Hadoop. Query languages such
as Pig Latin, Hive, and Jaql make it simpler for users to
express complex analysis tasks, and the compilers of these
languages translate these complex tasks into workflows of
MapReduce jobs. Each job in these workflows reads its in-
put from the distributed file system used by the MapReduce
system (e.g., HDFS in the case of Hadoop) and produces
output that is stored in this distributed file system. This
output is then read as input by the next job in the work-
flow. The current practice is to delete these intermediate
results from the distributed file system at the end of execut-
ing the workflow. It would be more useful if these interme-
diate results can be stored and reused in future workflows.
We demonstrate ReStore, an extension to Pig that enables
it to manage storage and reuse of intermediate results of the
MapReduce workflows executed in the Pig data analysis sys-
tem. ReStore matches input workflows of MapReduce jobs
with previously executed jobs and rewrites these workflows
to reuse the stored results of the matched jobs. ReStore also
creates additional reuse opportunities by materializing and
reserving the output of query execution operators that are
executed within a MapReduce job. In this demonstration we
showcase the MapReduce jobs and sub-jobs recommended
by ReStore for a given Pig query, the rewriting of input
queries to reuse stored intermediate results, and a what-if
analysis of the effectiveness of reusing stored outputs of pre-
viously executed jobs.

Categories and Subject Descriptors

H.2 [Database Management]: Miscellaneous

Keywords
MapReduce, Data Reuse

Permission to make digital or hard copies of al or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

S GMOD '12, May 20-24, 2012, Scottsdale, Arizona, USA.

Copyright 2012 ACM 978-1-4503-1247-9/12/05 ...$10.00.

Ashraf Aboulnaga
University of Waterloo

ashraf@cs.uwaterloo.ca

1. INTRODUCTION

Massive scale data analysis has become a required activ-
ity for many enterprises. Companies such as Facebook, Ya-
hoo, and Google now own petabyte-scale data warehouses
that are accessed using ad hoc queries and periodic batch
jobs, and terabyte-scale data warehouses are now common
in many smaller organizations. This large scale data analy-
sis is currently supported by the MapReduce programming
and execution model [3] and its implementations such as
Hadoop [1]. However, the data analysis tasks performed
by Hadoop users are usually complex and require high-level
query languages such as Pig Latin [5] to express them. The
compilers of these query languages translate queries into
workflows of MapReduce jobs. FEach MapReduce job im-
plements multiple physical operators such as Load, Filter,
and Join. A DAG of these operators comprises the physical
query execution plan of a job. The output of each MapRe-
duce job in a workflow is stored in the distributed file system
used by the MapReduce system, and is consumed as input
by the next job in the workflow. When the final result of the
workflow is produced, these intermediate results are deleted.

In this demonstration, we present ReStore [4], a system
that enables the Pig data analysis system to reserve (i.e.,
store) intermediate results generated during workflow exe-
cution instead of deleting them, and to reuse these stored
results in future workflows executed by the system. This re-
sult reuse leads to significant performance improvements for
Pig Latin queries, which we showcase during the demonstra-
tion. ReStore extends Pig to achieve two goals: (1) rewrit-
ing workflows of MapReduce jobs to reuse any past results
reserved by ReStore and (2) maximizing the reuse opportu-
nities between MapReduce jobs that are independently exe-
cuted in the system. It is important to note that matching
and sub-job enumeration are based on physical plans. Even
though we developed ReStore as an extension to Pig, the
techniques that it uses can be applied in any dataflow sys-
tem that generates workflows of MapReduce jobs for input
queries such as Hive and Jaql.

In the next section, we present a high-level overview of Re-
Store and describe its components that extend Pig. More de-
tails are available in [4]. In Section 3, we describe our demon-
stration scenario, which showcases the details of preparing
a Pig query to be executed, with a special focus on: (1)
rewriting the workflow of MapReduce jobs created by Pig
for an input query to reuse outputs of past jobs reserved
by ReStore, (2) generating additional reuse opportunities in
ReStore, and (3) the tools provided to analyze the perfor-
mance of the queries that are rewritten by ReStore.

MapReduce HadOOp MapReduce
job job stats
Pig
Prepare
MapReduce
Jobs
MapReduce
plan with
Workflow of Rewritten injected
MapReduce MapReduce tore
Jobs Plan plan Sub-job Enumerated
(physical plan) Matchgr and Enumerator Sub-job
Rewriter Selector
ReStore

Repository of MapReduce]
Job Outputs

Figure 1: ReStore system architecture.

2. THE RESTORE SYSTEM

Pig [5] is a dataflow system that accepts queries in a SQL-
like query language called Pig Latin, and it compiles these
queries into workflows of MapReduce jobs that are executed
on Hadoop. The Hadoop job manager of Pig is responsible
of submitting the MapReduce jobs in the compiled workflow
to Hadoop for execution, taking into account the dependen-
cies between them. One of the Hadoop job manager com-
ponents is the JobControlCompiler that takes as input the
compiled workflow of MapReduce jobs and iterates though
it to decide on the jobs that can be run concurrently. Every
iteration, the JobControlCompiler creates MapReduce Java
objects from the physical plans of the selected jobs and sub-
mits these objects to Hadoop for execution. The outputs
of the MapReduce jobs that are used as input to other jobs
in the workflow are stored in the Hadoop Distributed File
System (HDFS). After executing all the MapReduce jobs in
the workflow, these intermediate results are deleted.

ReStore (Figure 1) extends the JobControlCompiler com-
ponent of Pig. The input to ReStore is a workflow of MapRe-
duce jobs generated by Pig for an input query. The outputs
of ReStore are: (1) a modified MapReduce workflow that ex-
ploits the results of past jobs executed by Hadoop and stored
by ReStore, and (2) a new set of MapReduce job outputs to
store in HDFS. ReStore keeps a repository of metadata for
the reserved job outputs, in which it stores for each reserved
job output: (1) the physical plan of the MapReduce job
that was executed to produce this output, which contains
information about the input data, the output data, and the
operators that were executed to compute this output data,
(2) the filename of the output in HDFS, and (3) statistics
about the cost of the MapReduce job and the frequency of
use of its output by different workflows.

ReStore has three main components: (1) plan matcher and
rewriter, (2) sub-job enumerator, and (3) enumerated sub-
job selector. For each job in the input workflow of MapRe-
duce jobs, the plan matcher and rewriter searches the Re-
Store repository for results of past jobs that can partially
or fully compute the answer to the input job, and rewrites
the input MapReduce job to reuse any results that it finds.
Hence, we exploit any opportunity to reuse results of past
jobs. The second component of ReStore, the sub-job enu-
merator, enumerates for a given input MapReduce job the

subsets of the physical operators within this job (DAGs of
physical operators, or sub-jobs) that can be materialized and
stored in the repository. After executing the rewritten job
in the MapReduce system (i.e., Hadoop), the enumerated
sub-job selector, which is the third component of ReStore,
examines statistics collected during job execution about the
run time and input/output data sizes of the MapReduce
job, and uses these statistics to select some of the enumer-
ated sub-jobs for reserving their output in the repository.
Next, we discuss these three components of ReStore in more
detail.

2.1 Matching Input MapReduce Jobs with
Plans from the Repository

The first phase of ReStore is the plan matcher and
rewriter, which works on the physical plan of the input work-
flow of MapReduce jobs. Matching and rewriting processes
one MapReduce job at a time, and before a job is matched
against the repository, all other jobs whose output this job
reads as input have to be matched and rewritten to use the
job outputs stored in the repository. For every job in an
input workflow of MapReduce jobs: (1) the plan matcher
checks the physical plans stored in the repository for pre-
viously executed MapReduce jobs to decide which of them
can best be used to rewrite the physical plan of the input
MapReduce job, and (2) the plan rewriter uses the chosen
plans from the repository to rewrite the job.

For each input MapReduce job, ReStore scans sequen-
tially through the physical plans in the repository and tests
whether each plan matches the input MapReduce job. It is
possible that the physical plan in the repository matches the
entire input MapReduce job, and therefore we rewrite the
other MapReduce jobs in the workflow that use the output of
this job to load the data from the output of the matched job
stored in the repository. The other possibility is that the
physical plan in the repository matches part of the input
MapReduce job, and therefore the input MapReduce job is
rewritten to use the output of the matched job stored in the
repository, and ReStore continues matching the rewritten
plan with plans in the repository.

ReStore implements an algorithm that is based on op-
erator equivalence to test whether a physical plan in the
repository is contained in the physical plan of the input
MapReduce job. Two operators are equivalent if: (1) their
inputs are read from operators that are equivalent or from
the same data files, and (2) they perform functions that pro-
duce the same output data. To match two physical plans,
both plans are traversed simultaneously starting from the
Load operators, which read the data from HDFS files, and
recursively finding matching operators until either the full
plans are matched or the first mismatching operator is found.
Several physical plans from the repository can be potential
matches to any input physical plan, and multiple plans from
the repository can be used together to rewrite the physi-
cal plan of the input MapReduce job. Every time ReStore
matches an input MapReduce job with the plans stored in
the repository, it uses the first match that it finds in the
repository to rewrite the input job. This makes matching
more efficient, but requires us to order the physical plans
in the repository so that the first match found is the best
match (i.e., the one that achieves the maximum reduction
in the execution time of the input workflow) [4].

I s)

File Properties Execute Repository

Pig Query

register pigperfjar.

A=load 'page_views' using org.apache.pig.testudf storefunc.PigPerformanceLoader()
as (user. action, imespent, query_term, ip_addr. timestamp, estimated_revenue. page_info. page_links):

B =foreach A generate user.

C = distinct B parallel 40;

alpha = load ‘widerow' using PigStorage('\u0001):

beta = foreach alpha generate $0 as name:

gamma = distinct beta parallel 40;

D = union C. gamma:

E = distinct D parallel 40;

store Einto 'L11_out"

Execute Query

File Properties Execute Repository

MapReduce Physical Plan

MR process ‘page_views’

page-
views mapper

MR union
@

MR process ‘widerow’

widerow |y @

ok

Figure 2: Input Pig query.

2.2 Generating New Reuse Opportunities

The output of a whole MapReduce job may be useful for
future workflows that are executed in the system. This out-
put can be reserved for free because it is already stored
in HDFS, and therefore, it is a candidate for reservation
in ReStore. However, it may not be easy to find a com-
plete MapReduce job occurring in multiple workflows. Each
MapReduce job in Pig and similar systems implements a
sequence of physical operators, and it is more likely to find
a sequence of physical operators that forms part of a MapRe-

duce job in one workflow occurring again in a different MapRe-

duce job in another workflow. To take advantage of this
reuse opportunity, ReStore has the ability to reserve the out-
puts of individual physical operators within a MapReduce
job, which we refer to as outputs of sub-jobs. ReStore can
materialize the output of a sequence of physical operators in
a MapReduce job and store it in HDFS.

The technique we use to enumerate candidate sub-jobs is
as follows. We parse the physical plan of a MapReduce job
starting from its Load operators. After every parsed oper-
ator in the physical plan, we inject a new Store operator if
the parsed operator is not already a Store or followed by a
Store. The Store operator is a Pig operator that stores its in-
put in HDFS. However, to include this Store operator in the
physical plan of the MapReduce job we need to also insert
an operator that splits the data into two branches, similar
to a Unix tee command. An example of this branching op-
erator is the Split operator in Pig. The output of the last
operator in the sequence of physical operators of the can-
didate sub-job is pipelined into the injected Split operator.
One branch of the output of the Split operator is pipelined
into successor operators in the original physical plan, and
the other branch is pipelined into the new Store operator.
Figure 6 shows a MapReduce plan after injecting a Store
operator after a Project operator.

Treating all possible sub-jobs as candidates and storing
their outputs in the distributed file system during the exe-
cution of the input MapReduce workflow has the following
problems: (1) it would require a substantial amount of stor-
age in the distributed file system, and (2) the overhead of
storing all this intermediate data would considerably slow
down the execution of the input MapReduce job. Further-
more, some of these sub-jobs may not be useful for future
workflows. Thus, we need to select only a subset of the pos-
sible sub-jobs to consider as candidates. To achieve this we

Figure 3: Workflow of MapReduce jobs generated
by Pig.

use one of the following two heuristics for choosing candidate
sub-jobs: (1) Conservative Heuristic: the outputs of opera-
tors that are known to reduce their input size (e.g., Project
and Filter) are used as candidate sub-jobs, and (2) Aggres-
sive Heuristic: the outputs of operators that are known to
reduce their input size and also the outputs of operators that
are known to be expensive (e.g., Join and Group) are used
as candidate sub-jobs.

2.3 Managing the ReStore Repository

It could be expensive to keep the output of all generated
jobs and sub-jobs in the repository in the long run because
of the storage space required and the increasing number of
plans to match with future workflows. Therefore, after ex-
ecuting a workflow of MapReduce jobs that was augmented
with extra Store operators by the sub-job enumerator com-
ponent of ReStore, the enumerated sub-job selector exam-
ines the statistics generated by Hadoop during job execution
and selects the jobs and sub-jobs whose output to keep in
the repository. This decision is made after the workflow is
executed, so it is possible to base it on accurate execution
statistics. The selected job (or sub-job) whose output we
keep in the repository is a job that can reduce the execution
time of a workflow that contains this job when replaced with
a Load from an existing data source. In addition, we also
evict stored job outputs from the repository that have not
been used within a window of time or when one or more of
their inputs is deleted or modified.

3. DEMONSTRATION DESCRIPTION

Our extensions to the Pig system allow us to: (1) rewrite
input workflows of MapReduce jobs to reuse outputs of jobs
reserved by ReStore, and (2) generate new data reuse op-
portunities. Our demonstration illustrates these two capa-
bilities with a focus on how they affect query compilation
and execution in Pig. ReStore also provide tools to ana-
lyze the effectiveness of the data reuse opportunities that it
generates, and we use these tools to demonstrate the ben-
efit that a user derives from result reuse in ReStore. The
demonstration uses data sets and queries from benchmarks
such as PigMix [2]. For a given Pig query, ReStore uses the
Pig compiler to translate the input query into a workflow of
MapReduce jobs. Figures 2 and 3 show an example input
Pig query that a user can input in our demonstration and

=)

Stored MR Physical Plans
Show ﬂ
Plan |~
+ readiwiteratio=92
exectime (sec) = 138
input size (GB) =23
“ bytesreadiwrite=92 ~
exectime (sec) = 187
input size (GB) = 23
4 bytesreadiwrite=39 ~
exec time (sec) = 767 Show
inputsize (GB) =150 _ Plan

+ bytesreadwrite=2 ~
exectime (sec) = 15
_ inputsize (GB)=009 _

readiwrite ratio = 64
exectime (sec) = 750
input size (GB) = 150

A= load 'luserlpigmix/page_views' using
org.apache.pig test udf storefunc. PigPerformanceL oader(:
B = foreach A generate S0

A= load "/user/pigmixiwiderow’ using PigStorage(u0001);
[F] B=foreach Agenerate S0:

A=load 'luseripigmixiwiderow’ using PigStorage(1u0001);
B =foreach A generate S0;
C= distinct B:

A=load 'luseripigmix/page_views' using
org.apache.pig.test oader();

gl
B =foreach A generate $0 . $2. $6:

O

A= load 'luserlpigmixjusers' using PigStorage(1u0001') :
[7] B=foreach A generate SO;

Figure 4: Physical plans stored in the ReStore
repository.
o Restore =T

File Properties Execute Repository

Rewritten MapReduce Physical Plan

MR process ‘stored plan 1

stored 4
plan1

MR union

stored
plan 2
Back

Figure 5: MapReduce workflow of the query after
rewriting it using the stored plans.

its corresponding workflow of MapReduce jobs generated by
Pig. Next, we describe the main functionalities of ReStore
that are illustrated in this demonstration and how the user
can make changes to ReStore choices to analyze them.
Matching Input MapReduce Jobs with Plans from
the Repository. The user of ReStore can browse through
the list of physical plans in the repository that can be used
for the jobs in the input workflow (Figure 4) and can choose
another set of physical plans from the ReStore repository
and override the ReStore selected plans. Figure 5 shows the
workflow after rewriting it to use the job outputs stored in
the repository (the rewritten jobs are shown in green).
Generating New Reuse Opportunities. ReStore in-
jects extra Store operators in the plan to reserve the outputs
of sub-jobs (Figure 6). The user of ReStore can choose one of
the heuristic levels described in Section 2.2 or can manually
select the locations in the plan to inject Store operators.
Analyzing the Performance of ReStore. After rewrit-
ing the workflow of MapReduce jobs to reuse stored data and
inject extra Store operators in it, the jobs in the workflow
are prepared by Pig and submitted to Hadoop for execution
(Figure 5). Demo participants will be able to see the execu-
tion time and detailed statistics about the execution of the
workflow of MapReduce jobs. The system provides the abil-
ity to compare the execution time of the original workflow
with no reuse and the workflow recommended by ReStore

a2 MapReduce Physical Plan

Mapper Reducer

@@

Inject Store l I Delete Store] [Refresh

Finish

Figure 6: Injecting Store operators in the MapRe-
duce physical plan.

CCTEES 5 W =)
File Properties Execute Repository
Pig Query Execution Stats
20
18 Change Query
. Rewriting
c 4
£ 16
g4 Show Query
12 Execution Plan
c
210 -
5
§s Show Query
H Execution Detailed
z 67
3
g4
Select
2 Recommended
0
No Data Reuse With Reuse1 ~ With Reuse2 With Reuse 3

Figure 7: Performance monitoring and analysis in
ReStore.

that reuses data stored in the repository. Additional data
reuse choices can be made by the user of the system to over-
ride the choices that ReStore makes, which will result in
alternate workflows. The modified workflows can be exe-
cuted by the system and compared to previous executions
of the input query (Figure 7). Finally the user can view
the enumerated sub-jobs that are generated by ReStore and
decide on those to keep in the repository and those to delete.

4. ACKNOWLEDGMENTS

This work was supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC) through
the Business Intelligence Network strategic networks grant.

5. REFERENCES

[1] Apache Hadoop. http://hadoop.apache.org/.

[2] PigMix. http://wiki.apache.org/pig/PigMix.

[3] J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. In Proc. OSDI, pages
137-150, 2004.

[4] 1. Elghandour and A. Aboulnaga. Restore: Reusing
results of mapreduce jobs. Proc. VLDB Endow.
(PVLDB), 5(6):586-597, 2012.

[5] C. Olston et al. Pig Latin: a not-so-foreign language for
data processing. In Proc. SIGMOD, pages 1099-1110,
2008.

