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ABSTRACT
A data integration system offers a single interface to mul-
tiple structured data sources. Many application contexts
(e.g., searching structured data on the web) involve the in-
tegration of large numbers of structured data sources. At
web scale, it is impractical to use manual or semi-automatic
data integration methods, so a pay-as-you-go approach is
more appropriate. A pay-as-you-go approach entails using a
fully automatic approximate data integration technique to
provide an initial data integration system (i.e., an initial me-
diated schema, and initial mappings from source schemas to
the mediated schema), and then refining the system as it gets
used. Previous research has investigated automatic approxi-
mate data integration techniques, but all existing techniques
require the schemas being integrated to belong to the same
conceptual domain. At web scale, it is impractical to clas-
sify schemas into domains manually or semi-automatically,
which limits the applicability of these techniques. In this
paper, we present an approach for clustering schemas into
domains without any human intervention and based only
on the names of attributes in the schemas. Our clustering
approach deals with uncertainty in assigning schemas to do-
mains using a probabilistic model. We also propose a query
classifier that determines, for a given a keyword query, the
most relevant domains to this query. We experimentally
demonstrate the effectiveness of our schema clustering and
query classification techniques.
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1. INTRODUCTION
As the number of structured data sources on the web con-

tinues to increase, so does the difficulty of organizing them
and making them accessible. A prominent example of struc-
tured data sources on the web is the large number of web
sites that provide access to databases through web forms.
Such databases hidden behind web forms are usually called
the deep web or the hidden web, and are believed to sur-
pass the surface web in quantity and quality [4]. Recent
studies by Google estimate an order of 10 million high qual-
ity HTML forms [13]. Many other types of structured data
sources spanning a wide spectrum of domains are also avail-
able on the web, such as HTML tables and downloadable
spreadsheets. The need to provide access to a large num-
ber of heterogeneous structured data sources also arises on a
smaller scale in personal information management and sci-
entific data management applications [9].

One of the approaches used to access such large num-
bers of heterogeneous structured data sources is to treat
their data as mere documents and apply keyword search on
them using information retrieval (IR) techniques. For the
deep web, various techniques have been proposed to surface
it, making it searchable via traditional IR techniques [14].
This approach, however, does not take much advantage of
the structure of data sources. Another approach that takes
advantage of such structure is to use data integration. Data
integration systems provide the user with a unified inter-
face to access a set of data sources that provide informa-
tion about the same real-world domain but have different
schemas. Typically, a data integration system is established
by first defining a mediated schema that represents the do-
main that is being considered and acts as the user’s interface
to the system. Mappings are then defined from the schemas
of the various data sources to that mediated schema. Cre-
ating and maintaining data integration systems has always
been an expensive process that consumes much effort. Con-
sequently, much research has been done to facilitate that
process by developing techniques that recommend mediated
schemas and schema mappings to the user [16].

Different data integration techniques require different lev-
els of user involvement. At web scale, the massive number
of data sources makes even semi-automatic data integra-
tion techniques impractical. For example, attempts to use
semi-automatic integration techniques by Google [14] indi-
cate that a human annotator working on data integration
with the help of semi-automatic tools can integrate only 100
schemas on average per day. The other alternative, which is
fully automatic data integration, produces imprecise medi-



ated schemas and schema mappings. Therefore, it was sug-
gested [13] that a pay-as-you-go data integration approach is
the only way to deal with web-scale data integration. A pay-
as-you-go data integration system accepts approximate and
incomplete integration as a starting point, and allows fur-
ther enhancements to be introduced later, whenever deemed
necessary. The system starts providing services, e.g. key-
word search, without having to wait until full and precise
integration takes place. To deal with imprecision in fully
automatic integration, prior research [6, 7] proposes using a
probabilistic model where several possible mediated schemas
are generated, each assigned a probability value. Then, from
each data source to each of the generated mediated schemas,
several possible mappings are generated, and each mapping
is also assigned a probability value. However, all existing
fully automatic integration techniques assume that the data
sources to be integrated belong to the same domain, so a
preprocessing phase is still needed to cluster data sources
into domains before data integration takes place [13]. With-
out such a step, data integration is more likely to produce
semantically incoherent mediated schemas and inaccurate
mappings to these schemas. Surprisingly, there has been
very little work on automatic clustering of data sources into
domains.

In this paper, we present an approach for clustering struc-
tured data sources into domains based on their schemas.
When working on structured web data sources, we are faced
with many challenges. First, the only information guaran-
teed to be available about a data source is attribute names.
Even simple information like attribute data types is not al-
ways easy to determine. Therefore, our clustering approach
relies entirely on attribute names to cluster schemas into
domains. Second, we do not know in advance all the do-
mains we should have or how many they are, since the web
is essentially about everything. Consequently, we use a clus-
tering algorithm that does not make assumptions about the
number or the types of domains in advance. Third, since we
are proposing a fully automatic technique, we need to han-
dle uncertainty in deciding which domain a schema should
be assigned to. We use a probabilistic model to deal with
this uncertainty, where each data source may belong to mul-
tiple domains with different probabilities. Typically, after
schemas are clustered into domains, existing techniques of
schema mediation and mapping will be run on each domain
separately. Our work integrates well with previous work on
schema mediation and mapping with uncertainty [6, 7].

At query time, we need to give the user the capability to
search for relevant domains. For example, a search engine
needs to detect when a keyword query contains attribute
names that are relevant to one or more of the domains con-
structed in the clustering phase. More concretely, a keyword
query like “departure Toronto destination New York” con-
tains two attribute names that are relevant to the ‘travel’
domain, namely ‘departure’ and ‘destination’. The search
engine can then retrieve the mediated schemas of relevant
domains and present them to the user in the form of struc-
tured query interfaces as part of the search results page,
ranked by their relevance to the query. The user can then
pose structured queries over any of those query interfaces
and retrieve structured data. We present a technique based
on naive Bayes classification to determine the domains rel-
evant to a query and rank these domains according to their

Figure 1: System architecture illustrated via an ex-
ample of typical use case.

relevance to the query. The probabilistic nature of the do-
mains adds more challenges to classification.

Figure 1 illustrates the architecture of our system with
an example of a typical use case. Our contributions in this
paper can be summarized as follows:

1. A fully automatic technique for clustering schemas into
domains based on attribute names only.

2. A probabilistic approach for handling uncertainty in
clustering. Our approach integrates seamlessly with
existing approaches for schema mediation and map-
ping with uncertainty.

3. A technique based on naive Bayes classification to de-
termine the domains relevant to a keyword query and
rank those domains according to their relevance to the
query. Our classifier takes into account the fact that
the domains are probabilistic.

4. An experimental evaluation on schemas from a wide
spectrum of domains.

The rest of the paper is organized as follows. Section 2 dis-
cusses related work. Section 3 provides a more formal prob-
lem definition, while Section 4 provides an overview of our
solution. Section 5 explains our schema clustering approach.
Section 6 explains our approach for retrieving domains that
are relevant to a keyword query. Our experimental evalua-
tion is presented in Section 7, and we conclude in Section 8.



2. RELATED WORK
We use machine learning techniques from the domain

of document clustering [2] to deal with schema clustering.
When determining which domains are relevant to a query,
we use naive Bayes classification, which is a machine learn-
ing technique that has been used extensively in document
classification and other applications [15]. The idea of using
probabilistic models to deal with uncertainty in data inte-
gration was considered in [6] and [7]. However, it was used in
the context of probabilistic schema mediation and mapping,
while the problem of clustering schemas into domains was
left open. Our using of probabilistic models in clustering
integrates seamlessly with [6] and [7]. Clustering schemas
into domains has been considered in [12]. However, while
[12] presents a customized algorithm that is designed to fit
eight predefined domains (like cars and movies), our cluster-
ing approach is designed to handle any number of arbitrary
and overlapping domains. Furthermore, the approach in [12]
assumes that for each domain there are anchor attributes
that do not occur except in that domain, while we do not
rely on the existence of anchor attributes. Additionally, our
approach deals with uncertainty in clustering via probabilis-
tic models, and uses simple (yet effective) distance measures
in clustering. Schema clustering is also mentioned in [13] as
part of the proposed pay-as-you-go architecture, but with-
out details on how to deal with the numerous challenges that
arise when clustering web data sources. Finally, clustering
is also used as a tool in another phase of data integration,
namely schema mediation, where it is the attributes that are
clustered not the schemas [1, 6, 18].

3. PROBLEM DEFINITION
Existing techniques of automatic data integration assume

that the data sources to be integrated belong to the same
domain. For these techniques to work on a large number
of data sources from multiple domains, there has to be an
initial step in which the data sources are clustered into do-
mains. The objective of this paper is to automate the clus-
tering step. Therefore, we consider the two problems of
(1) clustering schemas into domains, and (2) retrieving and
ranking relevant domains at query time. For the purpose of
our research, we define the notion of a domain as follows:

Definition 3.1 (Domain). A domain is a set of
single-table schemas with sufficiently large intra-domain
similarity and sufficiently large inter-domain dissimilarity,
according to some measure of similarity.

We also define a schema as a set of attribute names, and an
attribute name as a set of terms (e.g., the attribute name
‘First Name’ consists of the terms ‘First’ and ‘Name’).

Our system takes as an input a set of single-table schemas,
where each schema is extracted from a structured data
source (e.g., a web form, an HTML table, a downloadable
spreadsheet). We focus on single-table schemas since most
data sources on the web belong to that category. Our ap-
proach works on schemas without assuming any access to
the actual databases behind these schemas, so as to be gen-
eral enough to handle deep web data sources without the
need to surface them. Moreover, the only information we
need to know about a schema is the attribute names, which
is often the only information that is available. So, for ex-
ample, attribute data types are not required. We also do

not assume any prior information about the exact number
or nature of potential domains. Consequently, domains need
to be discovered from the available schemas. Our problem
generally involves uncertainty in determining whether two
schemas belong to the same domain or not. The output of
the clustering phase is a set of domains, where each domain
is a set of schemas as in Definition 3.1. In a typical pay-as-
you-go system, each output domain will be fed as an input
to a schema mediation and mapping algorithm. Schema me-
diation and mapping is already a well-studied problem and
is not a focus of this paper, but we have to ensure that our
solutions integrate well with previous work. At query time,
we need to provide the user with the capability to retrieve
domains relevant to a keyword query, taking in considera-
tion that our domains are constructed with uncertainty. We
define a keyword query as a set of terms. The query pro-
cessing phase takes as an input a keyword query and a set of
domains, and outputs for each domain its degree of relevance
to that query.

4. SOLUTION OVERVIEW
We use hierarchical agglomerative clustering to group

schemas into domains. This algorithm operates by itera-
tively merging similar schemas together into clusters and
merging similar clusters together into larger clusters, until
a maximum level of inter-cluster dissimilarity is reached [8].
Since textual similarity among attribute names is the ba-
sis upon which mediated schemas and schema mappings are
usually generated, it is reasonable to rely on the same basis
when measuring schema-to-schema similarity during schema
clustering. Therefore, we assume that the probability that
two schemas belong to the same domain can be determined
based on the textual similarity between the attribute names
of the two schemas. Previous empirical studies [11] have
shown that attribute names within the same domain tend
to be similar across different schemas. Moreover, relying
only on attribute names makes it possible to apply our ap-
proach on data sources whose data and data types are not
plainly exposed (e.g. the deep web). Our experiments on
the schemas of hundreds of web data sources from diverse
domains show that assigning probabilities based on textual
similarities works well.

We handle uncertainty in schema clustering based on a
probabilistic model. Besides being mathematically appro-
priate, using a probabilistic model is consistent with pre-
vious research that deals with uncertainty in pay-as-you-go
data integration systems [6, 7]. The steps of constructing
the probabilistic model and drawing inferences from it can
be summarized as follows:

1. Each schema is represented by a feature vector, which
we construct based on the terms extracted from the
attribute names of the schema.

2. Hierarchical agglomerative clustering is applied to the
feature vectors of the schemas to group them into do-
mains.

3. Schemas that have equal or close similarities to multi-
ple domains are assigned to each of these domains with
different probabilities. The probabilities are based on
the similarities between schemas and domains.

4. When a user poses a keyword query over the system,
naive Bayes classification is used to determine, for each



domain, the probability that the query belongs to that
domain. Relevant domains are then ranked based on
probability values.

Between Steps 3 and 4, existing techniques from previous
research can be used to generate a mediated schema for each
domain and then generate probabilistic mappings from the
schemas in the domain to the domain’s mediated schema.
The generated schema mappings are also probabilistic so as
to handle the uncertainty in determining which attributes
in a source schema correspond to which attributes in the
mediated schema [6]. A probabilistic mapping from a source
schema to a mediated schema is basically a set of possible
mappings, each assigned a probability.

The probability assigned to any individual tuple retrieved
from a domain at query time is the product of two probabil-
ities: (1) the probability that the schema from which that
tuple is retrieved belongs to that domain (obtained from
our work), and (2) the probability that the schema map-
ping based on which the tuple was mapped to the mediated
schema of the domain is the correct mapping (obtained from
the probabilistic schema mapping technique, e.g., [6]).

5. SCHEMA CLUSTERING
Given a set of schemas S = {S1, S2, . . . , S|S|} as input, our

target is to output a set of clusters C = {C1, C2, . . . , C|C|},
where Cr ⊆ S, for all Cr ∈ C. Optimally, for all i, j =
1, 2, . . . , |S|, and for all r = 1, 2, . . . , |C|, the two schemas
Si and Sj should belong to Cr if and only if Si and Sj

represent the same real-world domain. However, we have no
means by which we can determine automatically and with
absolute certainty whether any two given schemas represent
the same domain or not. We have to rely on approximate
methods and accept best-effort results, which is an essential
aspect of the pay-as-you-go approach. We assume that the
probability that two schemas belong to the same domain can
be determined based on the textual similarity between the
attribute names of the two schemas.

5.1 Creating Feature Vectors
Before proceeding with clustering, we need to character-

ize each schema with a feature vector. Feature vectors are
needed both during the clustering process and during query
classification. We use a vector space model similar to that
used in document clustering [2]; that is, if there are d dis-
tinct terms in all given schemas, we characterize each schema
with a vector comprised of d binary features, one feature for
each distinct term to indicate whether this term exists in the
schema or not. We use binary features instead of, for exam-
ple, counting the frequency of terms in schemas, because
schema attributes usually contain a few terms, so binary
features are sufficient.

Algorithm 1 describes how feature vectors are created.
First, for each schema Si ∈ S, we extract all the terms from
Si by splitting its attribute names over a set of pre-defined
delimiters, like white spaces, slashes and underscores. For
example, given the following schema {Class ID,Day/Time,
Professor Name, Subject}, the set of extracted terms will
be {Class, ID, Day, Time, Professor, Name, Subject}. We
also split attribute names that consist of several capital-
started terms concatenated to each others (e.g. ‘MaxNum-
berOfStudents’ is split into ‘Max’, ‘Number’, ‘Of’ and ‘Stu-
dents’). Splitting attribute names is motivated by the ob-

Algorithm 1 Create Feature Vectors

1: procedure CreateFeatureVectors
2: input: Set of schemas S = {S1, S2, . . . , S|S|}

3: for all Si ∈ S do
4: Define the set of terms Ti

5: Extract all terms from Si’s attribute names to Ti

6: Convert all terms in Ti into a canonical form
7: Remove very small terms and stop words from Ti

8: end for
9: Sort all terms in ∪|S|

i=1Ti into a vector L
10: for all Si ∈ S do
11: Define a binary vector F i, where dim F i = dim L
12: for all terms Lj in L do
13: if max

t∈Ti

t sim(Lj , t) ≥ τt sim then

14: F i
j ← 1

15: else
16: F i

j ← 0
17: end if
18: end for
19: end for
20: return F = {F 1, F 2, . . . , F |S|}
21: end procedure

servation that individual terms within the attributes names
of schemas in a single domain can cluster together better
than the whole attribute names; since they tend to be less
sensitive to rephrasing (e.g., ‘Professor Name’ versus ‘Name
of the Professor’). We convert all terms to a canonical form
for better comparisons (e.g. all characters to lower case),
then we remove stop words and extremely short terms (e.g.
terms with less than three letters). The result is the set
T = {T1, T2, . . . , T|T |}, where Ti is the set of terms extracted
from the schema Si.

Next, all terms in ∪|T |
i=1Ti are sorted into a vector of terms

L =< L1, L2, . . . , Ldim L >, where dim L = | ∪|T |
i=1 Ti|. We

then create, for each Si ∈ S, a binary feature vector F i,
such that dim F i = dim L. Let F i

j denote the jth feature in

F i. The vector F i characterizes Si by indicating, for each
term Lj in L whether Si contains a term that is sufficiently
similar to Lj or not; if yes then F i

j = 1, otherwise F i
j = 0.

For each Si ∈ S, F i is computed as follows. Let t sim
be a function that takes two terms t and t′ as input and
returns a real value in the range [0, 1] that indicates how
similar the two terms are. For each term Lj in L, we com-
pute max

t∈Ti

t sim(Lj , t); that is, the maximum among all the

similarities between Lj and each of the terms in Si. We
then compare that maximum to a threshold τt sim that we
set based on our knowledge of the similarity function t sim.
If max

t∈Ti

t sim(Lj , t) ≥ τt sim then F i
j = 1, otherwise F i

j = 0.

There are already several well-studied functions for mea-
suring term similarity [5]. In our work, we use a function
that is based on the longest common substring. Let the
function LCS(ti, tj) denote the longest common substring
between the two terms ti and tj , and the function len(t)
denote the number of characters in the term t; then

t sim(ti, tj) =
2.len(LCS(ti, tj))

len(ti) + len(tj)

That is, the length of the longest common substring divided



by the average of the lengths of the two terms. We pick a
high value for τt sim, for example 0.8, to ensure sufficient
similarity. The longest common substring can be computed
efficiently in linear time using suffix trees [10]. Another pos-
sible alternative for the term similarity function t sim is to
use a function that recognizes two terms to be similar if and
only if they have the same stem.

5.2 Clustering Algorithm
We use hierarchical agglomerative clustering as described

in Algorithm 2. We choose hierarchical clustering because
we do not know the appropriate number of clusters in ad-
vance, and hierarchical clustering does not require prior
knowledge of this number.

Algorithm 2 Cluster Schema

1: procedure ClusterSchema
2: input: Set of schemas S = {S1, S2, . . . , S|S|}

3: k← 1
4: U (k) ← {{S1}, {S2}, . . . , {S|S|}}
5: Let (U

(k)
a , U

(k)
b ) be:

6: arg max
(U

(k)
i ,U

(k)
j )∈U(k)×U(k) ; i�=j

c sim(U
(k)
i , U

(k)
j )

7: while c sim(U
(k)
a , U

(k)
b ) ≥ τc sim do

8: U
(k+1)
ab ← U

(k)
a ∪ U

(k)
b

9: U (k+1) ← (U (k) \ {U (k)
a , U

(k)
b }) ∪ {U (k+1)

ab }
10: k← k + 1
11: U (k) ← {{S1}, {S2}, . . . , {S|S|}}
12: Let (U

(k)
a , U

(k)
b ) be:

13: arg max
(U

(k)
i ,U

(k)
j )∈U(k)×U(k) ; i�=j

c sim(U
(k)
i , U

(k)
j )

14: end while
15: return C = U (k)

16: end procedure

First, we measure the similarity between every two
schemas by measuring the similarity between their feature
vectors. Let the function s sim(Si, Sj) be the similar-
ity measure between the two schemas Si and Sj , where
1 ≤ i, j ≤ |S|. We use the Jaccard coefficient as a similarity
measure since it is known to be suitable for high dimensional
binary feature vectors [17]. Thus,

s sim(Si, Sj) = Jaccard(F i, F j) =
|{r : F i

r = 1 and F j
r = 1}|

|{r : F i
r = 1 or F j

r = 1}|
All schema-to-schema similarities should be computed and
memoized (i.e., cached) in advance so as to avoid recomput-
ing them multiple times during clustering.

Next, we proceed to clustering. Initially, every schema is
considered a singleton cluster in its own right. Then ag-
glomerative hierarchical clustering operates iteratively by
merging the most similar pair of clusters among the set
of available clusters into one new cluster, based on some
measure of cluster similarity. At the beginning of each iter-
ation k, we denote the set of clusters that we have as U (k).
Since we start by placing every schema in a singleton clus-
ter, U (1) = {{S1}, {S2}, . . . , {S|S|}}. After each iteration
k, the number of clusters shrinks by one as we merge the
two closest (most similar) clusters into one new cluster, i.e.,

|U (k+1)| = |U (k)| − 1. We define the similarity between any

two clusters U
(k)
i and U

(k)
j as follows:

c sim(U
(k)
i , U

(k)
j ) =

1

|U (k)
i ||U (k)

j |
∑

Sa∈U
(k)
i

∑

Sb∈U
(k)
j

s sim(Sa, Sb)

That is, the average of the similarities between every schema

in U
(k)
i and every schema in U

(k)
j . We show in all our exper-

iments (Section 7.2) that other cluster similarity measures
can be also used and give similar results.

For each iteration k, let the closest pair of clusters be U
(k)
a

and U
(k)
b , then the new (merged) cluster will be the union

of U
(k)
a and U

(k)
b ; that is, U

(k+1)
ab = U

(k)
a ∪ U

(k)
b . For every

other cluster U
(k)
c ∈ U (k) \ {U (k)

a , U
(k)
b }, U

(k)
c remains the

same in U (k+1); that is, U
(k+1)
c = U

(k)
c . Thus we have

U (k+1) = (U (k) \ {U (k)
a , U

(k)
b }) ∪ {U (k+1)

ab }
For every pair of clusters in U (k+1) not including U

(k+1)
ab ,

inter-cluster similarities remain the same as they were in
the previous iteration, so there is no need to recompute

them. For U
(k+1)
ab , we can compute its similarity to every

other cluster U
(k+1)
c ∈ U (k+1) \ {U (k+1)

ab } in a constant
amount of time by utilizing the memoized values from the
previous iteration as follows:

c sim(U
(k+1)
c , U

(k+1)
ab ) =

|U (k)
a |.c sim(U

(k)
c , U

(k)
a ) + |U (k)

b |.c sim(U
(k)
c , U

(k)
b )

|U (k)
a |+ |U (k)

b |
Thus, our memoization can be updated in O(|U (k+1)|) run-
ning time.

Clustering stops when the most similar pair of

clusters (U
(k)
a , U

(k)
b ) is not similar enough; that is,

c sim(U
(k)
a , U

(k)
b ) < τc sim, where τc sim is a pre-defined

threshold. Our experiments in Section 7.2 elaborate on the
choice of τc sim. Let the last set of clusters produced before
the algorithm stops be C = {C1, C2, . . . , C|C|}. The set C
is the output of our clustering algorithm.

5.3 Assigning Probabilities
The main source of uncertainty in schema clustering is

the schemas that lie on the boundaries between clusters.
Actually, in some cases, assigning these boundary schemas
to clusters is arbitrary. For example, consider the case
when agglomerative clustering is running and there exist

three clusters U
(k)
1 , U

(k)
2 and U

(k)
3 . It is possible to have

c sim(U
(k)
1 , U

(k)
2 ) = c sim(U

(k)
1 , U

(k)
3 ) ≥ τc sim. If no other

pair of clusters is as similar as (U
(k)
1 , U

(k)
2 ) and (U

(k)
1 , U

(k)
3 ),

then either U
(k)
2 or U

(k)
3 will be merged with U

(k)
1 . The

choice will typically be arbitrary. Other possible sources of
uncertainty include cases of very small differences between

c sim(U
(k)
1 , U

(k)
2 ) and c sim(U

(k)
1 , U

(k)
3 ). Thus, we consider

assigning a single schema to multiple domains with differ-
ent probabilities if it has sufficient similarity to all of them.
Algorithm 3 explains how these probabilities are assigned.

Since we are going to assign some schemas to multiple
domains, while each schema in S belongs to one and only
one cluster in C, we need to separate the concept of domains
from the concept of clusters. We use the notion of clusters to



Algorithm 3 Assign Probabilities

1: procedure AssignProbabilities
2: input: Set of schemas S = {S1, S2, . . . , S|S|}
3: input: Set of clusters C = {C1, C2, . . . , C|C|}

4: for all Cr ∈ C do
5: Define a domain Dr

6: end for
7: for all Si ∈ S do
8: for all Cr ∈ C do
9: if s c sim(Si, Cr) ≥ τc sim and

10:
s c sim(Si, Cr)

max
Cj∈C

s c sim(Si, Cj)
≥ 1− θ then

11: Pr(Si ∈ Dr)← s c sim(Si, Cr)∑
Dj∈D(Si)

s c sim(Si, Cj)

12: else
13: Pr(Si ∈ Dr)← 0
14: end if
15: end for
16: end for
17: return {(Si, Dr, P r(Si ∈ Dr)) : for all Si and Dr}
18: end procedure

refer to sets of schemas that partition S, like those returned
by Algorithm 2. We use the notion of domains to refer to
sets of schemas too; however, every schema in S may belong
to multiple domains with different probabilities.

We construct domains from the clusters returned by Al-
gorithm 2 as follows. First, we consider the existence of a
cluster as an indicator of the existence of a domain, so the
number of domains equals the number of clusters. Let the
set of domains be D = {D1, D2, . . . , D|D|}, where |D| = |C|,
and each domain Dr ∈ D corresponds to a cluster Cr ∈ C,
for all r. We then examine every schema Si ∈ S; if Si is
sufficiently similar to multiple clusters then we assign Si to
the domains corresponding to these clusters with different
probabilities based on the similarities between Si and each
of these clusters.

The similarity between a schema Si ∈ S and a cluster
Cr ∈ C is measured as follows:

s c sim(Si, Cr) =
1

|Cr|
∑

Sj∈Cr

s sim(Si, Sj)

That is, the average of the schema similarities between Si

and all the schemas in Cr. For any schema Si to be assigned
to any domain Dr, two conditions must be satisfied. First,
the value of s c sim(Si, Cr) must be at least τc sim. Second,
we require that the ratio between s c sim(Si, Cr) and the
maximum similarity between Si and any other cluster be

sufficiently large; that is,
s c sim(Si, Cr)

max
Cj∈C

s c sim(Si, Cj)
≥ 1 − θ, for

some θ ∈ [0, 1]. The threshold θ quantifies the degree of
uncertainty allowed when assigning schemas to domains; a
higher θ means higher uncertainty. In our experiments, we
set θ = 0.02.

For each schema Si ∈ S, let D(Si) = {Dr :

s c sim(Si, Cr) ≥ τc sim and
s c sim(Si, Cr)

max
Cj∈C

s c sim(Si, Cj)
≥ 1−θ}.

Also, for each domain Dr ∈ D, let S(Dr) = {Si : Dr ∈
D(Si)}. For all Si �∈ S(Dr), Pr(Si ∈ Dr) = 0. Otherwise,
for all Si ∈ S(Dr), the probability that Si belongs to Dr

is estimated as the schema-to-cluster similarity between Si

and the Cr, normalized so that all the probabilities assigned
to Si sum up to 1. That is,

Pr(Si ∈ Dr) =

⎧⎪⎪⎨
⎪⎪⎩

s c sim(Si, Cr)∑
Dj∈D(Si)

s c sim(Si, Cj)
; if Si ∈ S(Dr)

0 ; otherwise

The output of this phase is the set of triples
{(Si, Dr, P r(Si ∈ Dr)) : for all Si ∈ S and Dr ∈ D}.
Triples with Pr(Si ∈ Dr) = 0 do not need to be represented
explicitly.

After schema clustering, a fully automatic schema me-
diation and mapping technique (e.g., [6]) can be run to
generate a probabilistic mediated schema for each domain
Dr, and generate probabilistic mappings from each schema
Si ∈ S(Dr) to the mediated schema of Dr.

6. QUERY CLASSIFICATION
In this section we investigate the issue of answering key-

word queries posed over our multi-domain data integration
system by retrieving and ranking relevant domains. We use
a naive Bayes classifier to determine the probability that a
keyword query belongs to any of the domains that are con-
structed during the clustering phase. For the classifier to do
that, some of the keywords in the query need to be similar
to some attribute names in the relevant domains. The de-
sign of our classifier ensures that expensive operations are
performed at system setup time rather than query time.

At query time, we create a feature vector to characterize
the keyword query in the same manner as we did for every
schema in S in Section 5.1. Let Q denote the set of keywords
in the keyword query entered by the user. We convert all
keywords into our canonical form, and remove stop words
and extremely small keywords. The result is the set of terms
TQ. We then construct the binary feature vector F Q. Let

F Q
j be the jth feature in F Q, and Lj be the jth term in the

vector L that contains all terms in all schemas. We set the
value of the feature F Q

j to 1 if there exists a term in TQ that
is sufficiently similar to Lj ; that is, if max

t∈TQ

t sim(Lj , t) ≥
τt sim. Otherwise, F Q

j = 0.
Our target is to determine the posterior probability for

each domain Dr; that is, given F Q, the probability that
Q belongs to Dr. Let us denote that probability as
Pr(Dr|F Q). According to Bayes’ rule:

Pr(Dr|F Q) =
Pr(F Q|Dr)Pr(Dr)

Pr(F Q)
(1)

Pr(F Q|Dr) is the probability that an arbitrary schema
Srand, randomly chosen from the domain Dr, has a fea-
ture vector equal to F Q. Pr(Dr) is the probability that an
arbitrary schema Srand, randomly chosen from S, belongs
to Dr. Pr(F Q) is the probability that an arbitrary schema
Srand, randomly chosen from S, has a feature vector equal
to F Q.

Based on application context, we may assign Q to the
domain that has the maximum posterior probability (i.e.,

arg max
Dr

Pr(Dr|F Q)), or we may return a list of relevant



domains ranked by posterior probabilities. Note that, in
Equation 1, we do not need to compute Pr(F Q) since it is
constant for all Dr ∈ D and thus it does not affect the rela-
tive order of posterior probabilities. Consequently, for each
domain Dr, we only need to compute Pr(F Q|Dr)Pr(Dr).

We make the fundamental assumption of the naive Bayes
classifier, which is the assumption that all features are con-
ditionally independent given the domain. Consequently,

Pr(F Q|Dr)Pr(Dr) = Pr(Dr)
dim L∏

j=1

Pr(F Q
j |Dr) (2)

where Pr(F Q
j |Dr) is the probability that an arbitrary

schema Srand, randomly chosen from the domain Dr, has
its jth feature F rand

j equal to F Q
j .

The values of Pr(Dr) and Pr(F Q
j |Dr), for all j, depend

on which schemas are assigned to which domains. This as-
signment is determined based on another probability distri-
bution as described in Section 5.3. Therefore, Pr(Dr) can
be expressed in terms of the following summation over all
subsets of S(Dr):

Pr(Dr) =
∑

S′⊆S(Dr)

Pr(Dr|Dr = S′)Pr(Dr = S′) (3)

Similarly, for all j,

Pr(F Q
j |Dr) =

∑
S′⊆S(Dr)

Pr(F Q
j |Dr = S′, Dr) Pr(Dr = S′|Dr)

(4)
We analyze the probabilities on the right-hand sides

of Equations 3 and 4 as follows. First, the probability
Pr(Dr|Dr = S′) is estimated as:

Pr(Dr|Dr = S′) =
|S′|
|S| (5)

Second, Pr(Dr = S′) can be expressed as the probability of
the following conjunction:

Pr(Dr = S′) = Pr

⎛
⎝ ∧

Si∈S′
Si ∈ Dr

∧
Si �∈S′

Si �∈ Dr

⎞
⎠

We make a second simplifying assumption by assuming that
the assignments of schemas to domains are statistically in-
dependent. Consequently,

Pr(Dr = S′) =
∏

Si∈S′
Pr(Si ∈ Dr)

∏
Si �∈S′

Pr(Si �∈ Dr) (6)

Third, Pr(F Q
j |Dr = S′, Dr) is the probability that the jth

feature of an arbitrary schema Srand, randomly chosen from
S′, equals F Q

j . This probability is estimated as follows:

Pr(F Q
j |Dr = S′, Dr) =

|{Si : Si ∈ S′ and F i
j = F Q

j }|
|S′|

Since all features are binary, the last equation can be rewrit-
ten as follows:

Pr(F Q
j |Dr = S′, Dr) =

⎧⎪⎪⎨
⎪⎪⎩

∑
Si∈S′ F i

j

|S′| if F Q
j = 1

1−
∑

Si∈S′ F i
j

|S′| if F Q
j = 0

(7)

However, there are two problems with Equation 7. The first
problem is that |S′| can be zero; if, for all Si ∈ S(Dr),
Pr(Si ∈ Dr) �= 1, then there is a non-zero probability that
Dr is empty, so |S′| may be zero. The second problem is
related to robustness. If a query has an extra term (i.e., a
term that does not exist in any of the schemas in S(Dr)),
then no matter how many other terms are common between
the query and the schemas in S(Dr), the probability that
the query belongs to Dr will be zero. To see that, assume
that F i

j = 0 for all Si ∈ S(Dr). Then, according to Equa-

tion 7 the probability Pr(F Q
j |Dr = S′, Dr) will be zero,

for all S′ ⊆ S(Dr). Substituting Pr(F Q
j |Dr = S′, Dr) in

Equation 4, the probability Pr(F Q
j |Dr) will also be zero.

Eventually, by substituting Pr(F Q
j |Dr) in Equation 2, the

posterior probability will be zero. Similarly, it is easy to see
that, if a query has a missing term (i.e., a term that exists in
all the schemas in S(Dr) but not in the query), then no mat-
ter how many other terms are common between the query
and the schemas in S(Dr), the probability that the query
belongs to Dr will be zero. To solve these two problems we
use the m-estimate of probabilities [3]. Basically, for each
domain Dr, and for each subset S′ ⊆ S(Dr), we act as if
S′ has m additional schemas, some of them have all their
features set to 1, while the others have all their features set
to 0. Consequently, Equation 7 can be rewritten as follows:

Pr(F Q
j |Dr = S′, Dr) =

⎧⎪⎪⎨
⎪⎪⎩

∑
Si∈S′ F i

j + p.m

|S′|+ m
if F Q

j = 1

1−
∑

Si∈S′ F i
j + p.m

|S′|+ m
if F Q

j = 0

(8)
where p ∈ (0, 1) is the fraction of additional schemas that
have all their features set to 1. A typical choice would be to
set p = 0.5 so as to give the classifier no bias towards either
extra terms or missing terms. However, we need to consider
the fact that keyword queries are usually short. A typical
keyword query will contain a small subset of the terms in
the schemas of S(Dr), plus a small number of extra terms,
so it is much more likely to have missing terms than extra
terms. We set m = 1 + |S′| and p = 1/dim L, which gives
stronger bias towards missing terms.

Finally, the probability Pr(Dr = S′|Dr) can be computed
using Bayes’ rule as follows:

Pr(Dr = S′|Dr) =
Pr(Dr|Dr = S′)Pr(Dr = S′)

Pr(Dr)
(9)

Note that the probabilities on the right-hand side of Equa-
tion 9 are already computed as part of Equation 3. By
substituting Equations 5, 6, 8 and 9 into Equations 3 and 4,
and then substituting Equations 3 and 4 into Equation 2, we
obtain the posterior probabilities required to rank domains.

Bayesian classification is expensive, but all of the expen-
sive operations in our case can be done at setup time rather
than query time. Equations 5, 6 and 9 are all independent
of the user’s query. Equation 8 depends on the value of
the query feature F Q

j , but since F Q
j may assume one of only

two values (either 0 or 1) we can still compute Equation 8 at

setup time for both F Q
j = 0 and F Q

j = 1. Therefore, all the
probabilities used on the right-hand side of Equation 2 can
be pre-computed and stored at setup time. At query time,
calculating Equation 2 for all domains takes O(|D| dim L)
running time per query.



To analyze the setup time needed for Equation 2 let us
first define the set of uncertain schemas for each domain Dr

as Ŝ(Dr) = {Si : Si ∈ S(Dr) and Pr(Si ∈ Dr) �= 1}. Ŝ(Dr)
is the set of all schemas that belong to Dr with probabili-
ties strictly smaller than 1 and strictly greater than 0. We
will also use the term certain schemas to refer to schemas
that belong to Dr with probability 1; that is, S(Dr)\Ŝ(Dr).
Any subset S′ ⊆ S(Dr) may include or exclude any uncer-
tain schemas and still maintain a non-zero probability; that
is, Pr(Dr = S′) �= 0. However, if any certain schema is
excluded from S′, then Pr(Dr = S′) will be zero according
to Equation 6, and consequently S′ will not contribute to
the summation in Equation 3. Additionally, by substituting
Pr(Dr = S′) into Equation 9, Pr(Dr = S′|Dr) will also
be zero, and again S′ will not contribute to the summation
in Equation 4. Therefore, when computing the summations
in Equations 9 and 4, we only need to consider the sub-
sets that contain all the certain schemas in S(Dr). This

prunes the number of subsets to be considered from 2|S(Dr)|

to 2|Ŝ(Dr)|. By memoizing intermediate values, we can calcu-
late the probabilities in Equation 2 for all domains at setup

time in O( max
Dr∈D

{|Ŝ(Dr)| 2|Ŝ(Dr)|} |D| dim L + |S| dim L)

running time. The growth rate of setup time is dominated by
the need to enumerate all possible combinations of uncertain
schemas for each domain. Thus, the time to construct the
classifier depends on the number of uncertain schemas much
more strongly than the total number of schemas. Uncertain
schemas are schemas that lie on the boundaries between do-
mains; that is, schemas with close similarities to multiple
domains. Typically, they should not constitute significant
portions of their domains. Whenever necessary, the number
of uncertain schemas can be decreased by decreasing the
parameter θ (Section 5.3).

7. EXPERIMENTS

7.1 Experimental Setup
We implement our algorithms in C++ and use this pro-

totype to evaluate the effectiveness of our schema cluster-
ing and query classification techniques. We run our exper-
iments on a Windows Vista machine, with Intel Centrino
Duo 2GHz processor and 3GB RAM. The goal of our exper-
iments is to demonstrate that our techniques can correctly
cluster schemas of data sources available on the web into
domains, and can classify keyword queries into appropriate
domains. For these experiments we need schemas of web
data sources labeled with their correct domains, and we need
queries that are also labeled with domains. Generating and
labeling schemas and queries in a meaningful way in itself
poses some interesting challenges, which we describe next.

7.1.1 Schemas Used
We use the schema set used in [6], which we obtained

from the authors of that paper. That schema set consists of
2323 schemas from 5 different domains that were extracted
from Google’s web index, and we refer to it as the DDH
set after the initials of the authors of [6]. The domains in
DDH are few and sharply separated, and thus are expected
to lend themselves perfectly to clustering. Data sources on
the web are not restricted to a small number of well-defined
domains, but rather come from extremely diverse and over-
lapping domains. To test our schema clustering and query

classification methods on such diverse and overlapping do-
mains, we collect our own schema sets manually through web
search and through lists of hidden web data sources that are
available on-line (e.g., in Wikipedia). We extracted two sets
of schemas from two types of data sources. The first schema
set, which we refer to as DW, is extracted from deep web
data sources. For that schema set, we find the web form
interfaces to deep web data sources, and manually extract
the attribute names in each form. These attribute names
form the schema of the data source. The second schema
set, which we refer to as SS, is extracted from download-
able spreadsheets that we obtained using Google’s “search
by file type” option. The schema of a spreadsheet consists
of the manually extracted headers of the columns in the
spreadsheet. The attribute names in DW schemas tend to
be phrased in a better way and are more accurately indica-
tive of the domain than the ones in SS schemas. In both
schema sets, around 25% of the schemas are unique in the
sense that a human would not cluster any of them with any
other schemas in their sets. These unique schemas are ex-
pected to remain unclustered after the clustering algorithm
terminates.

7.1.2 Evaluating Schema Clustering
To evaluate the effectiveness of schema clustering, a typ-

ical approach would be to manually assign a label to each
schema indicating its domain, and then to measure the ef-
fectiveness of the clustering algorithm at grouping schemas
with the same domain label. This approach works well for
the DDH schema set since the domains are sharply sepa-
rated, but it does not work well for DW and SS. For DW
and SS, the boundaries between different domains are not
always obvious, and a single schema may be correctly classi-
fied into several domains. The following example illustrates
this problem.

Example 7.1. Consider the following two schemas, ex-
tracted from two different data sources, both providing in-
formation about faculty members:
S1:(faculty member, office phone, email, fax)
S2:(name, position, affiliation, research interests)
Although both schemas are concerned with faculty members,
they provide different types of information. In principle, S1

and S2 should be clustered together since a user looking for
information about faculty members may find both of them
useful. However, considering the fact that the objective of
clustering in our case is to serve as a preliminary step be-
fore schema mediation and mapping, clustering S1 and S2

together may not be so useful since the two schemas together
do not provide a good input for schema mediation and map-
ping algorithms. The question is: If the clustering algorithm
clusters S1 and S2 together, is that a false positive? If it does
not cluster them together, is that a false negative?

In order to deal with this problem, we perform our ex-
periments as follows. For the two schema sets DW and SS,
we manually associate each schema Si with a set of labels
B(Si) according to what we perceive as potential domains
for Si. Example domain labels that we use include ‘movies’,
‘bibliography’, and ‘people’. Each schema is labeled with
at least one label. Table 1 provides detailed statistics about
the labels used for DW, SS, and their union. These numbers
indicate that a few labels have the majority of schemas as-



DW SS Both
Number of Schemas 63 252 315
Max. terms per schema 72 119 119
Avg. terms per schema 14 12.4 12.8
Number of labels used 24 85 98
Max. labels per schema 2 4 4
Avg. labels per schema 1 1.5 1.4
Max. schemas per label 13 67 67
Avg. schemas per label 2.8 4.4 4.5

Table 1: Statistics about schema sets.

sociated with them, while the majority of labels have a few
schemas.

Let the set of all labels used be B = ∪|S|
i=1B(Si) =

{B1, B2, . . . , B|B|}. Also, let S(Bj) denote the set of all
schemas labeled with Bj . We run the clustering algorithm
on our schema sets and examine the set of domains D that
is produced by the clustering algorithm, and we label each
domain Dr ∈ D with the set of dominant labels within that
domain. Usually there is only one dominant label but some-
times there are several labels that equally dominate the do-
main. Let B(Dr) denote the set of dominant labels in the
domain Dr. Also, let D(Bj) denote the set of domains dom-
inated by Bj . We determine dominant labels as follows:

B(Dr) = arg max
Bj∈B

∑
Si∈S(Bj)

Pr(Si ∈ Dr)

Summing the probabilities should be interpreted as a
weighted counting of the schemas in Dr and is not intended
to have a probabilistic meaning. We also sum probabilities
as a weighted counting of schemas when estimating preci-
sion and recall. If more than one label equally dominate the
domain, we include them all in B(Dr).

A special case is when the dominant label of Dr does not
have an absolute majority; that is,

max
Bj∈B

∑
Si∈S(Bj)

Pr(Si ∈ Dr) <
1

2

∑
Si∈S

Pr(Si ∈ Dr)

We then call Dr a non-homogeneous domain. A non-
homogeneous domain is treated as if it has no dominant
label; i.e. B(Dr) = φ. When computing precision and re-
call, schemas assigned to non-homogeneous domains are all
counted as false negatives. We also compute the fraction
of schemas assigned to non-homogeneous domains as one of
our performance measures. Another special case is a do-
main with only one schema. That happens when a schema
is not sufficiently similar to any other schemas in S, given
the value used for the threshold τc sim. We measure the frac-
tion of unclustered schemas, and exclude them from other
performance measurements like precision and recall. One
last case to be considered is when two different domains are
dominated by the same label; i.e. B(Da)∩B(Db) �= φ where
a �= b. We use the term fragmentation to refer to that case
and we measure the degree of fragmentation in our experi-
ments by computing the average number of domains domi-

nated by each label; that is,
1

|B|
∑

Bj∈B

|D(Bj)|. Finally, we

measure precision and recall as follows.

Precision: For each schema Si ∈ S(Dr), if B(Si)∩B(Dr) �=
φ then Si contributes to the true positives of Dr, denoted

as TPDr , by the probability of membership of Si in Dr.

TPDr =
∑

Si:B(Si)∩B(Dr) �=φ

Pr(Si ∈ Dr)

Similarly, the false positives of Dr, denoted as FPDr , are
estimated as

FPDr =
∑

Si:B(Si)∩B(Dr)=φ

Pr(Si ∈ Dr)

We therefore estimate the average precision as

1

|D|
∑

Dr∈D

TPDr

TPDr + FPDr

Recall: For each domain Dr, if Bj ∈ B(Dr) and there exists
Si ∈ S(Dr) such that Bj ∈ B(Si), then Si contributes to the
true positives of Bj , denoted as TPBj , by the probability of
membership of Si in Dr; that is,

TPBj =
∑

Dr∈D(Bj)

∑
Si∈S(Bj)

Pr(Si ∈ Dr)

Similarly, the false negatives of Bj , denoted as FNBj , are
estimated as

FNBj =
∑

Dr �∈D(Bj)

∑
Si∈S(Bj)

Pr(Si ∈ Dr)

We therefore estimate the average recall as

1

|B|
∑

Bj∈B

TPBj

TPBj + FNBj

To evaluate our clustering approach, we measure the ef-
fect of changing tc sim on the performance measures like pre-
cision, recall, fragmentation, unclustered schemas, and non-
homogeneous domains. We also compare the performance of
our clustering algorithm when other cluster-to-cluster simi-
larity measures are used instead of the average Jaccard sim-
ilarity that is described in Section 5.2. The other alterna-
tives we consider for cluster-to-cluster similarity are Min.
Jaccard, Max. Jaccard, and Total Jaccard. These three

similarity measures can be defined as follows. Let U
(k)
i and

U
(k)
j be two clusters at a given iteration k.

Min. Jaccard: The minimum of the Jaccard similarities
between every schema in U

(k)
i and every schema in U

(k)
j .

c sim(U
(k)
i , U

(k)
j ) = min

Sa∈U
(k)
i ,Sb∈U

(k)
j

s sim(Sa, Sb)

Max. Jaccard: The maximum of the Jaccard similari-
ties between every schema in U

(k)
i and every schema in U

(k)
j .

c sim(U
(k)
i , U

(k)
j ) = max

Sa∈U
(k)
i ,Sb∈U

(k)
j

s sim(Sa, Sb)

Total Jaccard: The number of terms common between all
the schemas in U

(k)
i and U

(k)
j divided by the number of all

terms that exist in any of the schemas in U
(k)
i or U

(k)
j .

c sim(U
(k)
i , U

(k)
j ) =

|{l :
∧

Sa∈U
(k)
i

F a
l = 1

∧
Sb∈U

(k)
j

F b
l = 1}|

|{l :
∨

Sa∈U
(k)
i

F a
l = 1

∨
Sb∈U

(k)
j

F b
l = 1}|



1
0 9
1

2 25
2.5

0.4
0.5
0.6
0.7
0.8
0.9

ra
ge

Pr
ec
is
io
n

0.4
0.5
0.6
0.7
0.8
0.9

ve
ra
ge

Re
ca
ll

1
1.25
1.5

1.75
2

2.25

e
Fr
ag
m
en

ta
tio

n

0
0.1
0.2
0.3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Av
er

0
0.1
0.2
0.3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Av

0
0.25
0.5

0.75

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve
ra
ge

c_sim c_sim

0 6
0.7
0.8
0.9
1

cl
us
te
re
d

as Avg. Jaccard
0 6
0.7
0.8
0.9
1

ch
em

as
in

do
m
ai
ns

c_sim

0.1
0.2
0.3
0.4
0.5
0.6

Fr
ac
tio

n
of

U
n

Sc
he

m Total Jaccard

Min. Jaccard

Max. Jaccard

0.1
0.2
0.3
0.4
0.5
0.6

Fr
ac
tio

n
of

sc
no

n
ho

m
og
.

0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

c_sim

0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

c_sim

Figure 2: Schema clustering quality.

7.1.3 Generating Queries
To evaluate our query classification algorithm we need to

simulate a typical query formulation process in which the
user enters a query that includes some attribute names with
a particular domain in mind. This query formulation process
is a random process that we simulate as follows. We let the
number of keywords in each query range from 1 to 10, with
100 queries generated for each number in this range. We use
the same domain labeling terminology as in Section 7.1.2.
For each randomly generated query Qrand, we pick from B
a random label Brand for Qrand to target. The label Brand

is selected based on the following probability distribution:

Pr(Brand) =
|S(Brand)|∑|B|
j=1 |S(Bj)|

Therefore, a label associated with a larger number of
schemas will receive a larger number of queries, ensuring
a balanced distribution of queries. Having selected a la-
bel Brand, we start generating the keywords of the query.
For simplicity, we treat the multiple keywords in the same
query as a set of conditionally-independent and identically-
distributed random variables given Brand. Let Tall be the
set of all terms extracted from all schemas as explained in
Section 5.1; that is, Tall = ∪Si∈STi. We need to pick from
Tall some keywords that a user will typically associate with
Brand as characteristic keywords that distinguish it from
other labels. For each term tl ∈ Tall, let Freq(tl, Bj) indi-
cate the number of schemas in S(Bj) that contain the term
tl; that is, Freq(tl, Bj) = |{Si : Si ∈ S(Bj) and tl ∈ Ti}|.
When picking terms for Brand, we filter out the terms that
do not exist in a sufficiently large fraction of schemas in
S(Brand). The fraction that we use for DW and SS is 0.25,
while in the case DDH we use only 0.1 since the size of
S(Brand) in the case of DDH is counted in hundreds. After
filtering out infrequent terms, we need to estimate for each
of the remaining terms the probability that the term will be
used in a query that targets Brand. We use the following for-
mula to estimate the degree by which a term tl distinguishes

a label Bj from other labels:

λ(tl, Bj) =
Freq(tl, Bj)∑

ta∈Tall

Freq(ta, Bj)
/

1

|B|
∑

Bb∈B

Freq(tl, Bb)∑
ta∈Tall

Freq(ta, Bb)

That is, the ratio between the relative frequency of tl in Bj ,
and the average relative frequency of tl in all domain labels.
We normalize λ(tl, Bj) such that, given a label Bj , the sum-
mation of the normalized λ(tl, Bj), for all tl, equals 1. The
normalized value of λ(tl, Bj) is used as the probability of
picking the term tl given that the label Bj has already been
picked. Therefore,

Pr(trand|Brand) =
λ(trand, Brand)∑

ta∈Tall
λ(ta, Brand)

This way, we assign higher probabilities to the terms that ex-
ist in S(Brand) with higher ratios relative to their existence
in the schemas of other labels.

7.2 Schema Clustering Quality
We compare the effectiveness of our clustering algorithm

when using the four similarity measures: Min. Jaccard,
Max. Jaccard, Avg. Jaccard and Total Jaccard. We also
measure the effect of changing the value of τc sim on the
quality of clustering.

First we run our clustering algorithm on the DDH schema
set. The clustering algorithm works perfectly on DDH, giv-
ing precision and recall values above 0.99 for all τc sim ≥ 0.2
and for all similarity measures, except Max. Jaccard which
gives low recall for τc sim < 0.5. The perfect performance
of the clustering algorithm on DDH is expected since the
schemas in DDH belong to a few well-separated domains.

Next we run the clustering algorithm on the union of the
two schema sets DW and SS. Figure 2 shows the performance
of the clustering algorithm on the union of DW and SS, using
the four similarity measures, as τc sim varies from 0.1 to 0.9.
The figure shows that all the similarity measures perform
almost the same, except for Max. Jaccard which performs



τc sim = 0.2 τc sim = 0.3
DW SS Both DW SS Both

Precision 0.75 0.84 0.81 0.85 0.87 0.82
Recall 0.93 0.77 0.78 0.98 0.86 0.86
Unclustered 0.25 0.37 0.29 0.48 0.56 0.50
Non-homog. 0 0.11 0.13 0 0.03 0.04
Fragmentation 1 1.77 1.29 1.38 1.67 1.58

Table 2: Evaluation of schema clustering.

worse than the rest under some settings, and is therefore not
recommended. Total Jaccard, which is more expensive than
the rest, provides no substantial gains over Avg. Jaccard or
Min. Jaccard, so it too is not recommended. We recommend
either Avg. Jaccard or Min. Jaccard. We use Avg. Jaccard as
our default similarity measure as described in Section 5.2.
The figure also illustrates how τc sim affects the effective-
ness of clustering. As τc sim increases, precision and recall
increase, and the fraction of schemas in non-homogeneous
domains decreases, which are all desirable effects. However,
as τc sim increases, the number of unclustered schemas also
increases, which is undesirable. However, we should take
into account that 25% of the schemas are already unique
(as mentioned in Section 7.1.1) and should therefore re-
main unclustered. At the extreme value of τc sim = 0.9,
all schemas are unclustered. Therefore, we have a trade-off
between the number of unclustered schemas and the qual-
ity of clustering as measured through precision, recall and
the fraction of schemas in non-homogeneous domains. Frag-
mentation, which does not include unclustered schemas or
non-homogeneous domains, generally increases as the value
of τc sim increases from 0.1 to 0.5, since higher values of
τc sim prohibit similar clusters from getting merged before
the clustering algorithm terminates, and therefore they get
fragmented. Starting from around 0.5, as the value of τc sim

increases fragmentation decreases because τc sim is becom-
ing so high that it breaks many domains down into unclus-
tered schemas. As more domains get broken down into un-
clustered schemas (which are not counted as domains), the
number of domains significantly decreases. Therefore, there
is much less potential to have a label associated with multi-
ple domains. This set of experiments suggests setting τc sim

between 0.2 and 0.3. It also shows that clustering is robust
since it is not very sensitive to minor changes in τc sim.

Table 2 presents results from a set of experiments that
focuses on the performance of the clustering algorithm for
τc sim = 0.2 and 0.3. This set of experiments is performed on
each of the two sets of schemas DW and SS separately, and
on the union of DW and SS. As we saw previously, increas-
ing the value of τc sim from 0.2 to 0.3 increases precision
and recall, and decreases the fraction of schemas in non-
homogeneous domains, but it also increases the fraction of
unclustered schemas. The performance measures are gener-
ally better for DW than SS because SS is more noisy and less
rigidly structured than DW. The performance on the union
of DW and SS is between the performance on the individ-
ual sets, which is expected. The important observations are
that clustering quality is high, and varying τc sim does not
cause major variations in any of the clustering performance
measures. From these experiments, we see that the cluster-
ing algorithm produces high quality results for different data
sets, and can be effectively and robustly controlled using the
parameter τc sim.

7.3 Effect On Mediation And Mapping
Although it is possible in principle to perform schema me-

diation and mapping without prior clustering, our experi-
ments show that there are serious problems that arise when
doing that. In this section, we describe two problems that
we observed when doing schema mediation and mapping on
our schema sets without prior clustering. For the purpose of
our experiments, we use the probabilistic schema mediation
and mapping algorithms described in [6].

The first problem is related to the semantic coherence of
mediated attributes. It is common to encounter two at-
tributes from two different domains having exactly the same
name but with different meanings depending on the domain.
For example, in the DW schema set, the attribute ‘family
name’ is used in a schema from the ‘people’ domain to re-
fer to the last name of a person, and in a schema from the
‘biology’ domain to refer to the family of a living organism
(i.e., a taxonomic rank). When performing mediation and
mapping on DW without clustering the schemas first, these
two attributes are associated with each others in a single
mediated attribute. At runtime, when posing a query on
the mediated schema to retrieve values from the attribute
‘family name’, the result is an incoherent set of values ob-
tained from both data sources. This problem does not arise
when schemas are clustered before mediation.

The second problem is related to the size of the medi-
ated schema. One of the techniques used in schema medi-
ation to make it tractable is to use an attribute frequency
threshold to filter out attributes that appear in only a small
fraction of schemas (e.g., in [6] the threshold is 0.1). How-
ever, this threshold is problematic if no clustering is done
before mediation. In that case, the threshold will eliminate
most or all the attributes from the domains that have fewer
schemas than other domains, causing these small domains to
be under-represented or completely absent in the mediated
schema. For example, when performing schema mediation
on the DDH schema set with a threshold of 0.1 and with-
out clustering, the result is a mediated schema in which 2 of
the 5 domains of DDH are absent. Even after reducing the
threshold to 0.01, the smallest domain, namely ‘people’, is
still under-represented with only 4 attributes in the medi-
ated schema, not including the most relevant attributes like
‘phone’, ‘address’, and ‘email’. Picking a very small thresh-
old value will cause larger domains to be over-represented
by including a large number of infrequent and uninteresting
attributes in the mediated schema. Going to the extreme
of completely eliminating the threshold (i.e., using a thresh-
old of 0) results in a meaningless mediated schema that is
merely a union of all attributes from all schemas (12060 me-
diated attributes in the case of DDH). Besides being mean-
ingless, this huge number of mediated attributes significantly
increases the running time of schema mediation and map-
ping. The total running time for mediation and mapping in
this case is 5 hours, while in all our experiments, when doing
schema clustering, mediation, and mapping, using typical
parameters, the total end-to-end running time is always less
than 25 minutes. We conclude that schema clustering before
mediation and mapping improves quality and scalability.

7.4 Query Classification Quality
In this section, we present experiments to evaluate the ac-

curacy of our naive Bayes classifier. First, we run our clus-
tering algorithm to cluster schemas into domains. Next, we
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Figure 3: Query classification quality.

construct a naive Bayes classifier as described in Section 6
based on the domains that are generated from clustering.
We then use that classifier to classify queries that we gen-
erate randomly as described in Section 7.1.3. The classifier
returns a ranked list of domains, sorted descendingly accord-
ing to their relevance to the query. For each query size from 1
to 10 we compute the top-1 fraction, which is the fraction
of queries for which the top-ranked domain identified by the
classifier is labeled with the same label Brand as the query.
We also compute the top-3 fraction, which the fraction of
queries for which at least one of the top three domains is
labeled with the same label as the query. The top-3 fraction
is meaningful only for DW and SS since the number labels
is relatively large. For DDH, where the number of labels is
only 5, we only compute the top-1 fraction.

Our experiments on DDH give almost perfect results,
with the top-1 fraction being 1 for all query sizes, except
for single-keyword queries where the top-1 fraction drops
slightly to about 0.95. The classification results on the
union of DW and SS are shown in Figure 3. As the num-
ber of keywords per query increases, classification accuracy
increases until the top-1 fraction becomes almost 1. Our
results show that the classifier works well, even though the
keyword queries generated by our random query generator
sometimes include very non-indicative keywords due to the
random nature of the query generator. For small query sizes,
it is quite common to generate a query that is dominated
by non-indicative keywords. In addition to quality, we also
measure the running time needed to construct the naive
Bayes classifier. For the large schema set DDH, it takes
only about 5 minutes to construct the classifier, while for
the union of DW and SS it takes less than a minute.

8. CONCLUSION
The growing number of structured data sources on the web

has entailed growing interest in data integration for these
sources. Existing data integration techniques operate on
data sources that belong to a single domain. At web scale,
it is infeasible to cluster data sources into domains manually.
We deal with this problem and propose a schema clustering
approach that leverages techniques from document cluster-
ing. We use a probabilistic model to handle the uncertainty
in assigning schemas to domains, which fits with previous
work on data integration with uncertainty. We also propose
a technique based on naive Bayes classification that reasons
on top of our probabilistic model in order to assign keyword
queries posed by users to the most relevant domains.
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