
Choosing A Cloud DBMS: Architectures and Tradeoffs

Junjay Tan1, Thanaa Ghanem2,∗ , Matthew Perron3, Xiangyao Yu3, Michael
Stonebraker3,6, David DeWitt3, Marco Serafini4, Ashraf Aboulnaga5, Tim Kraska3

1Brown University; 2Metropolitan State University (Minnesota), CSC; 3MIT CSAIL; 4University of Massachusetts Amherst,
CICS; 5Qatar Computing Research Institute, HBKU; 6Tamr, Inc.

junjay@brown.edu, thanaa.ghanem@metrostate.edu, {mperron,yxy,stonebraker}@csail.mit.edu,
david.dewitt@outlook.com, marco@cs.umass.edu, aaboulnaga@hbku.edu.qa, kraska@mit.edu

ABSTRACT
As analytic (OLAP) applications move to the cloud, DBMSs
have shifted from employing a pure shared-nothing design
with locally attached storage to a hybrid design that com-
bines the use of shared-storage (e.g., AWS S3) with the use
of shared-nothing query execution mechanisms. This paper
sheds light on the resulting tradeoffs, which have not been
properly identified in previous work. To this end, it evaluates
the TPC-H benchmark across a variety of DBMS offerings
running in a cloud environment (AWS) on fast 10Gb+ net-
works, specifically database-as-a-service offerings (Redshift,
Athena), query engines (Presto, Hive), and a traditional
cloud agnostic OLAP database (Vertica). While these com-
parisons cannot be apples-to-apples in all cases due to cloud
configuration restrictions, we nonetheless identify patterns
and design choices that are advantageous. These include
prioritizing low-cost object stores like S3 for data storage,
using system agnostic yet still performant columnar formats
like ORC that allow easy switching to other systems for
different workloads, and making features that benefit sub-
sequent runs like query precompilation and caching remote
data to faster storage optional rather than required because
they disadvantage ad hoc queries.

PVLDB Reference Format:
Junjay Tan, Thanaa Ghanem, Matthew Perron, Xiangyao Yu,
Michael Stonebraker, David DeWitt, Marco Serafini, Ashraf Aboul-
naga, Tim Kraska. Choosing A Cloud DBMS: Architectures and
Tradeoffs. PVLDB, 12(12): 2170-2182, 2019.
DOI: https://doi.org/10.14778/3352063.3352133

1. INTRODUCTION
Organizations are moving their applications to the cloud.

Despite objections to such a move (security, data location
constraints, etc.), sooner or later cost and flexibility consid-
erations will prevail, as evidenced by even national security
agencies committing to vendor hosted cloud deployments
[17]. The reasons deal with economies of scale (cloud vendors

∗Work done while at the Qatar Computing Research Institute

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3352063.3352133

Remote object / block store

Query Executor Nodes

Local instance
storage

Database

Local instance
storage

Local instance
storage

Local instance
storage

Figure 1: Shared Disk Architecture

are deploying servers by the millions; not by the thousands)
and specialization (cloud vendors’ business priority is infras-
tructure management, whereas other organizations perform
this to support main lines of business).

For analytic applications running on the cloud, data re-
sides on external shared storage systems such as S3 or EBS
offerings on Amazon Web Services (AWS). Query executors
are spun on-demand in compute nodes such as EC2 nodes
in AWS. Compute nodes should be kept running only when
strictly necessary because the running cost of moderately
sized instances is orders of magnitude greater than the cost of
storage services. This has resulted in a fundamental architec-
tural shift for database management systems (DBMSs). In
traditional DBMSs, queries are executed in the same nodes
that store the database. If the DBMS is distributed, the dom-
inating paradigm has been the shared-nothing architecture,
whereby the database is partitioned among query execution
servers. Cloud architectures fit more naturally in the al-
ternative “shared-disk” architecture, where the database is
stored by separate storage servers that are distinct from
query execution servers (see Figure 1).

For the cloud provider selling a DBMS-as-a-service, an
architecture that “decouple[s] the storage tier from the com-
pute tier” provides many advantages, including simplifying
node failure tolerance, hot disk management, and software
upgrades. Additionally, it allows the reduction of network
traffic by moving certain DBMS functions like the log appli-
cator to the storage tier, as in the case of Aurora [27].

Shared-disk DBMSs for cloud analytics face non-obvious
design choices relevant to users. This paper sheds light on
resulting tradeoffs that have not been clearly identified in
previous work. To this end, we evaluate six popular produc-
tion OLAP DBMSs (Athena, Hive [23], Presto, Redshift [10],
Redshift Spectrum, and Vertica [14]) with different AWS
resource and storage configurations using the TPC-H bench-

mark. Despite being limited to these specific DBMSs and a
single cloud provider, our work highlights general tradeoffs
that arise in other settings. This study aims to provide users
insights into how different DBMSs and cloud configurations
perform for a business analytics workload, which can help
them choose the right configurations. It also provides devel-
opers an overview of the design space for future cloud DBMS
implementations.

We group the DBMS design choices and tradeoffs into
three broad categories, which result from the need for deal-
ing with (A) external storage; (B) query executors that are
spun on demand; and (C) DBMS-as-a-service offerings.

Dealing with external storage: Cloud providers offer
multiple storage services with different semantics, perfor-
mance, and cost. The first DBMS design choice involves
selecting one of these services. Object stores, like AWS S3,
allow storing arbitrary binary blobs that can be associated
with application-specific metadata and are assigned unique
global identifiers. These data are accessible via a web-based
REST API. Alternatively, one can use remote block-level
storage services like AWS EBS, which can be attached to
compute nodes and accessed by their local file system. Google
Cloud Platform (GCP) and Microsoft Azure offer similar
storage choices. Which abstraction performs best and is
most cost effective?

Compute node instances (EC2) are increasingly being
offered with larger local instance storage volumes. These
nodes have faster I/O than those with EBS storage and may
be cheaper per unit storage but are ephemeral, limited to
certain instance types and sizes, and do not persist data
after system restarts. How to use them in the DBMS design?
By initially pre-loading the database onto local instance
storage, a DBMS can keep the traditional shared-nothing
model. Alternatively, the local storage can be used as a
cache to avoid accessing remote storage. Is local caching
advantageous in a time of ever-increasing network speeds?

The DBMS design also has to deal with different data for-
mats. Keeping data on external shared storage means that
data can be shared across multiple applications. In fact, many
DBMSs are able to access data stored in DBMS-agnostic
formats, such as Parquet or ORC. Which compatibility issues
arise in this context?

Dealing with on-demand query executors: Query ex-
ecutors should be kept running as little as possible to min-
imize costs, so they may be often started and stopped. A
consequence is that query executors have different startup
times and often run queries with a cold cache. Which DBMSs
start quickly? Which DBMSs are designed for optimal per-
formance with a cold vs warm cache? This relates to how
well systems deal with one-off, ad-hoc analytical queries. It
is reasonable to expect systems to perform better with a
warm cache, but how large is the difference?

Since query executors are paid per use, scalability becomes
an even more critical feature of a DBMS than usual. Con-
sider an ideal scale-out DBMS that can execute a workload
in time T using N instances or in time T/2 using 2N in-
stances. Assume that the startup and shutdown times are
negligible compared to T. Since the pricing is per-instance
per-time, the cost of executing the workload with N or 2N
instances is the same, so we can complete the task much
faster at no additional cost. A similar argument can be made

for a scale-up DBMS running on instances that are twice
as powerful. How do existing DBMSs scale vertically and
horizontally in cloud settings?

Dealing with DBMS-as-a-service offerings: Many clo-
ud providers have DBMS-as-a-service offerings, such as Athe-
na or Redshift on AWS. These come with different pricing
structures compared to other services such as EC2 or S3. For
example, Athena bills queries based only on the amount of
data scanned. These services also offer less flexibility to users
in terms of the resources they use and hide key low-level
details entirely. How do these different classes of systems
compare?

Summary of findings: This paper provides a detailed
account of these tradeoffs and sheds light into these questions.
The main findings include the following:

• Cheap remote shared object storage like S3 provides or-
der of magnitude cost savings over remote block stores
like EBS that are commonly used for DBMS storage in
shared-nothing-architectures, without significant per-
formance disadvantages in mixed workloads. (Shared
nothing architectures adapted for the cloud often do
not use true local storage because local data is not
persisted upon node shutdown.)

• Physically attached local instance storage provides
faster performance than EBS. Additionally, its cost
is coupled into compute costs and this provides slight
cost advantages over EBS due to AWS’s contractual
compute resource pricing schemes.

• Caching from cheap remote object storage like S3 to
node block storage is disadvantageous in cold start
cases and should not always be done by default.

• A carefully chosen general use columnar format like
ORC provides flexibility for future system optimiza-
tion over proprietary storage formats used by shared-
nothing DBMSs and appears performant on TPC-H
even without optimized partitioning. Shared-nothing
systems try to bridge the gap with hybrid features
(Vertica Eon and Redshift Spectrum), but their cost-
performance characteristics are very different than sys-
tems focused on utilizing these general data formats
like Presto.

• Redshift is unique among the systems tested in that it
compiles queries to machine code. Because it is very
efficient in the single-user use case on warm and cold
cache, query compilation time is not disadvantageous on
TPC-H. However, compilation can be disadvantageous
on short-running queries or if workloads are changing,
making it impossible to leverage previously compiled
queries.

• Most systems gain from cluster horizontal scaling, but
our limited data suggests that vertical scaling is less
beneficial.

The rest of this paper is structured as follows. Section 2
highlights related work, while Section 3 explains the experi-
mental setup. Section 4 discusses results and key findings.
Finally, Section 5 provides conclusions and opportunities for
future work.

2. RELATED WORK
Previous benchmarking studies have evaluated several

types of systems but largely ignored OLAP DBMSs. Unlike
our study, these benchmarking studies only compare against
self-provisioned systems, either in an on-premise cluster or on
cloud nodes. Our study encompasses a broader selection of
cloud offerings and incorporates DBMS-as-a-service offerings.

[13] and [6] benchmarked OLTP systems in the cloud but
did not consider recent services such as Amazon Redshift
and are almost a decade old. In contrast, [4] only focused on
cloud storage systems, [9] and [11] evaluated graph database
systems, and [5] described cloud benchmark design goals.
There have also been many studies on cloud compute servers
(i.e., VMs) [26, 25, 15, 18] and comparisons of reserve vs spot
instances [1]. However, these benchmarking efforts were at
a much lower level and do not address simple architectural
questions relevant to a cloud data warehouse user.

Outside the academic literature, vendors have presented
bake-offs between different systems, but these are narrowly
targeted at showing that system X is better than Y, often
in vendor-proprietary setups or for specific data formats
(e.g., [8, 22]). Similarly, companies using various systems
have published performance results showing why they chose
system X for their needs, but these are typically based on a
few in-house workloads with little supporting detail, such as
[20].

3. EXPERIMENTAL SETUP
This section describes the systems, configurations, assump-

tions, and limitations in our testing. We also describe system-
specific tuning and cost calculations. Additional details can
be found at https://github.com/junjaytan/choosing-a-

cloud-dbms-vldb2019. Some high-level points are listed
below:

• We focused on single-user workloads to reproduce the
common use case of ad-hoc cloud analytics.

• Queries were initiated by a separate client node. This
was done to allow parity with Redshift and Athena,
which do not allow client code to run on the DB nodes.

• Result sets were sent to the client node from the DBMS
and then to /dev/null on the client. We verified that
results matched TPC-H specifications. The largest
result set for any query was approximately 25MB.

• Elapsed time was measured via the Unix time utility.

3.1 Storage
On AWS, the main file systems are two block store options–

Elastic Block Store (EBS) and Instance Store (InS)–and the
Simple Storage Service (S3) object store. Block stores use a
standard file system API and are offered as Solid State Disk
(SSD) or Hard Disk Drive (HDD). EBS is remote network
storage that is co-located in specified regions, while InS is
physically attached to the compute node. In contrast to EBS,
InS is not persistent and disappears once the compute node
is shut down, with a fresh volume provided on node restart.
For this reason, EBS is traditionally the more suitable option
for DBMSs and is the option we use in this paper. As cloud
trends are already heavily skewed towards SSD over HDD,
we test only on SSD. Additionally, InS is now offered in
Non-Volatile Memory Express (NVMe) variants, which are

much faster than general purpose SSDs (listed at 1.9GB/s
vs 250 MB/s per volume). We performed limited testing on
NVMe for comparison.

In contrast to block stores, S3 is an object store that
runs on dedicated S3 nodes, and storage is accessed using
a web-based REST API. S3 is designed for scalable, high
concurrency workloads but has higher latency and more
throughput variability than block stores. Hence, block stores
are traditionally preferred for performance reasons. It is
feasible to partition S3 data onto multiple storage volumes,
using naming of storage locations (object key prefixes) to
support parallelism.

Most DBMSs can read data from multiple storage sys-
tems. Presto and Hive use the Hive connector to read data
from S3 or HDFS, and Vertica can read data from S3 or
EBS. However, AWS-proprietary systems tend to be more
restricted. For systems that support multiple storage back-
ends, we generally tested multiple storage types for the base
4-node r4.8xlarge cluster configuration but chose only one
storage type for scalability tests due to cost.

In systems that used EBS to store workload data (Vertica
and Hive on HDFS), we configured 8x200GB EBS general
purpose SSD volumes per node in RAID 0. This configuration
was selected for Vertica based on the user guide, and we used
the same setup on Hive HDFS for parity. Additionally, we
used a 512GB EBS volume per node as scratch disk on all
systems. Since EBS is charged by amount of data stored
(with additional costs if a user desires guaranteed higher
IO rates), it is advantageous to split the total volume size
into multiple smaller volumes that can be read in parallel.
However, there is a lower bound on volume sizes because
AWS scales volume IO throughput down by size. We varied
volume sizes and did not find that TPC-H performance
benefited from larger volumes.

3.2 Systems Tested
We focused on OLAP-oriented parallel data warehouse

products available for AWS and restricted our attention to
commercially available systems. As it is infeasible to test
every OLAP system runnable on AWS, we chose widely-used
systems that represented a variety of architectures and cost
models.

The systems evaluated can be categorized as AWS propri-
etary database-as-a-service offerings, query engines (server-
less services and self-provisioned clusters), and a cloud agnos-
tic OLAP database. Table 1 summarizes the storage systems
available by each system for the database and for temporary
data artifacts. The database storage system refers to where
the DBMS persists and reads core data from during a query
(note that this storage volume may disappear after system
shutdown as in the case of local instance storage), whereas
the temporary storage system is used by the DBMS to hold
artifacts not held in memory, such as spill-to-disk joins and
in some cases data from another remote store.

Redshift is AWS’s parallel processing OLAP database
service that employs a traditional shared-nothing architec-
ture. It is offered in instance sizes that are named differently
than the compute types offered on EC2, so there may be
other hardware associated with it that are not available to
general users. Additionally, Redshift’s pricing model is dif-
ferent from that available to both end users and companies
selling database products running on AWS. For example,
Redshift node snapshots are free, but EC2 snapshots are not.

Table 1: Tested Systems and Supported Storage Architec-
tures

Category DBMS
Database Stor-
age System

Temp Node
Storage System
and Usage

Proprietary
database-
as-a-
service
offerings

Redshift
Local storage
(snapshotted to
S3)

Local storage for
spill- to- disk

Spectrum
(Redshift
feature)

Remote object
store (S3)

Local storage for
spill to disk and
possibly remote
data

Athena
Remote object
store (S3)

Unknown, but
no cache effects
observed

Query
engines

Presto
Remote object
store (S3 or
HDFS)

Node mounted
storage volumes
(EBS or local)
for spill-to-disk

Hive
Remote object
store (S3 or
HDFS)

Node mounted
storage volumes
(EBS or local)
for spill-to-disk

Cloud
provider
agnostic
OLAP
DBMS

Vertica

Node mounted
storage vol-
umes (EBS or
local)

Node mounted
storage volumes
(EBS or local)
for spill-to-disk

Eon (Ver-
tica mode)

Remote object
store (S3 or
HDFS)

Node mounted
storage volumes
(EBS or local)
for spill-to-disk
and caching S3
data

Spectrum is a recent feature added to Redshift that allows
querying S3-resident data in various formats. Spectrum in-
curs additional costs per data scanned from S3 in addition
to standard Redshift compute node costs.

Vertica is a shared nothing, multi-node parallel column
store DBMS. As of Vertica 9, it can use EBS, instance
store, or S3 for storage. In block store configurations (i.e.,
EBS or InS) Vertica runs normally with partitioned data
in a shared nothing configuration. With S3, known as Eon
Mode, all data is stored as S3 objects and each processing
node accesses a partition of the data [24]. Note that on
AWS, Vertica recommends running on EBS storage, even
though EBS is technically remote storage that appears as
individual file volumes [28]. Therefore, it does not truly run
as a traditional shared-nothing DBMS on AWS unless one
uses InS, which is traditionally uncommon because Vertica
assumes storage persistence.

Presto is a distributed query engine originally developed
by Facebook and now open-sourced [19]. It is a multi-node
parallel SQL engine with a variety of built-in and third-party
connectors including ones for HDFS and S3. We enabled
spilling intermediate tables to disk when main memory is
exhausted. Without spill-to-disk, Presto could not success-
fully run all the TPC-H queries. Additionally, we used the
Starburst Data fork of Presto (release 0.195) which includes
a query optimizer, since Presto is sensitive to join orders
otherwise.

Athena is an Amazon product derived from Presto and
optimized for AWS and S3 with a unique cost model: it
automatically adjusts query parallelism on undisclosed nodes
and charges only by amount of S3 data scanned.

Apache Hive is a data warehouse system that was built
originally on Hadoop but has been retargeted to run directly
on top of HDFS via Tez and YARN [12]. Experiments were
run on Hive 1.2.1000, which was the version included in
Hortonworks Data Platform 2.6.

We considered Apache Drill and Apache Spark SQL, but
early testing determined that their performance was strongly
dominated by other similar systems so we did not perform
further experiments. We wanted to test Snowflake [7] but
the vendor was unwilling to provide us permission to publish
the results.

3.3 System Settings
We assume a “cold start” configuration unless stated oth-

erwise. In this case, we are not measuring the quality of
the DBMS caching policy and also allow comparison to on-
demand query services. To remove cache effects, we followed
all vendor instructions for clearing the DBMS and OS caches
after each run. Where this was insufficient, as in the case of
Hive and Redshift, we also restarted the system or recreated
the cluster, respectively, after each query execution. Athena
has no notion of caching. In the warm cache case, we first
ran the entire query suite after a cold start before taking
measurements on subsequent runs of the same query suite.

To ensure that a similar amount of buffer memory was
available for use by each system, we configured Vertica’s
memory resource pool, Hive’s memory per the Live Long
and Process (LLAP) daemon, and the JVM used by Presto
to 70% of total system memory. It is not possible to control
the amount of buffer memory with Athena, Redshift, or
Spectrum. Although we present results for 70% memory, we
did not observe any noticeable difference on Vertica with the
memory resource pool left at the default.

Vertica was installed via the vendor-provided AWS image
running on CentOS 7, while manual installation of Vertica
on i3 instances used RHEL 7. Presto Starburst fork was
installed on AWS EMR clusters, while Hive was installed
via the Hortonworks Data Platform (2.6.4.0). AWS Elastic
Network Adapter (ENA) was enabled on all configurations.

3.4 Data Formats and Partitioning
We used 1000 scale factor TPC-H data (1TB uncom-

pressed). This was large enough to be I/O constrained yet
queries could complete in seconds to minutes. The longest
query on the base 4 node 8xlarge configuration, described in
the next section, took 10 minutes to run, with the average
query runtime being about 2 minutes. As such, we are not
testing extremely long OLAP workloads that take hours to
complete. On block storage systems for shared-nothing style
DBMSs (Vertica EBS and Redshift), we configured similar
data partitioning schemes, where data was distributed mainly
on the table primary keys and/or join keys.

On S3, data can be partitioned by hashing object key
names rather than using sequential key prefixes. For systems
that used ORC data on S3, we attempted to similarly par-
tition data across all systems but found that this required
system-specific configurations. Specifically, Hive and Presto
can automatically partition the data via a partition command
in the create table syntax, which rearranges the data into
additional S3 subdirectories; however, Spectrum requires
a different subdirectory structure and explicit commands
to add each individual partition, such as one for region A,
one of region B, etc. We therefore used the same unparti-

tioned ORC data on S3 for Presto, Hive, and Spectrum with
the acknowledgement that partitioning has the potential to
improve performance.

On Vertica S3 (Eon Mode), we loaded data to S3 from
the raw data files with the same schema definition used
for Vertica EBS. This means data was stored on S3 in Ver-
tica’s compression format rather than ORC, since the Vertica
version used was unable to directly read the ORC tables.

For Spectrum, all data was stored on S3, although the
vendor suggested that hybrid configurations are common
and could be tested instead. However, we believe that test-
ing Spectrum entirely on S3 data is representative of S3’s
common use case for storing large datasets, and hybrid per-
formance can be inferred to be somewhere between that of
Redshift and Spectrum on S3. Future work could explore
hybrid setups in more detail.

3.5 Node Types and Cluster Sizes
AWS offers dozens of Elastic Compute Cloud (EC2) in-

stance variants, so it is infeasible to test them all. AWS
currently classifies compute nodes into five families. Each
family denotes a general category of systems: general pur-
pose, compute optimized, memory optimized, accelerated
computing (for GPU applications), and storage optimized.
Within each family are multiple node types, which equate to
how much CPU, memory, and network speed are provided.

A performance bottleneck for databases in the cloud, and
in particular shared disk architectures, is network speed.
We want to understand how performance across systems
compares when using fast modern network speeds. Past
work found that network speeds of 1Gb make shared storage
uncompetitive with shared-nothing architectures [21]. How-
ever, 10Gb+ speeds are now widely available and industry
trends point towards ever faster speeds. Therefore, we limit
our work to instances with 10Gb+ network speeds, which
restricts the EC2 families and instance sizes that could be
used.

We focused our evaluations on the memory optimized
r4 and storage optimized i3 instance types. AWS markets
r4 as good for high performance databases and analytics,
whereas i3 is marketed as being good for high transaction,
low latency workloads and data warehousing. We used the
4xlarge through 16xlarge sizes, ranging from 16 to 64 vCPUs.
Basic performance and cost characteristics of these EC2
instance types are listed in Table 2.

Table 2: Tested Compute Instance Types

Type vCPUs
Mem
(GB)

Storage
Network
(Gb/s)

Hourly
Cost (on
demand)

r4.16xlarge 64 488 EBS 25 $4.256
r4.8xlarge 32 244 EBS 10 $2.128
r4.4xlarge 16 122 EBS 10 $1.064

i3.8xlarge 32 244
NVMe
SSD

10 $2.496

Redshift
dc2.8xlarge

32 244
NVMe
SSD

- $4.80

The default configuration used for comparing all systems
was a 4 node, r4 8xlarge cluster (using the similar, but
not identical, dc2 instance type on Redshift). We did not use
other 8xlarge types like C4 (the “compute optimized” family)
since the vCPUs and RAM are not equivalent to Redshift’s.
We also could not perform a full evaluation of Redshift’s

smaller node size since there was insufficient storage. We
performed horizontal and vertical scaling experiments on a
subset of systems, as explained next.

Redshift, Redshift Spectrum, and Athena cannot be com-
pared directly with the r4 configurations because they execute
on proprietary hardware configurations that are not clearly
equivalent to those available for general usage. Redshift only
offers two node families, each with only two sizes, the 8xlarge
and a much smaller size. We used the closest Redshift anal-
ogous node family type that offers SSD storage, called dc2.
Athena does not provide any node options and handles this
behind the scenes for the user. Hence, any performance and
cost comparisons for these systems will not be apples-to-
apples with the previously listed configurations. However,
these are the conditions by which a cloud DBMS user would
need to work within, so we believe it is a reasonable and
instructive–if not entirely equivalent–comparison to do in
the cloud.

To gain further insight into Redshift performance, we also
ran limited experiments of Vertica on the i3.8xlarge EC2
instance type, which has the same RAM, vCPU, and network
characteristics as the r4.8xlarge but contains 4 NVMe SSD
storage volumes and costs more. The NVMe drives were
configured in RAID 0 in an attempt to achieve similar disk
throughput as Redshift. We mention findings in the results
section but did not do extensive experiments because we
noticed insignificant differences from the performance of
EBS Vertica on r4, which is the traditionally recommended
configuration.

Table 3: Tested Cluster Configurations (Non-AWS Systems)

EC2 Type 4 node 8 node 16 node

r4.16xlarge
Vertica(EBS) Not tested Not tested
Presto(S3)
Hive(S3)

r4.8xlarge
Vertica(EBS) Vertica(EBS) Vertica(EBS)
Presto(S3) Presto(S3) Presto(S3)
Hive(S3,HDFS) Hive(S3) Hive(S3)

r4.4xlarge
Vertica(EBS) Vertica(EBS) Vertica(EBS)
Presto(S3) Presto(S3) Presto(S3)
Hive(S3) Hive(S3) Hive(S3)

The matrix of tested configurations for non-proprietary
AWS systems is listed in Table 3, with configurations along
the diagonal being equivalent in compute cost if run for the
same amount of time. For example, a r4.4xlarge node costs
half that of a r4.8xlarge node, so running four r4.8xlarge
nodes over 1 hour would cost the same as eight r4.4xlarge
nodes in an hour.

3.6 Cost Calculations
Broadly, total system costs are comprised of node compute

costs, storage costs, and data scan costs.

3.6.1 Compute Costs
Node compute costs are calculated using on-demand prices

for the US-East-1 region as of January 2019. Compute costs
are not provided by AWS at the granularity of individual
queries, so we calculated costs from the query runtimes
and other associated node runtime processes (data snapshot
load for Redshift, etc.). Presto and Hive require a master
coordinator node, but we ignored this in our calculations
since it is very small compared to the worker node costs. For
example, AWS recommends using a single m4.large node for

a 50 node cluster, which is less than 10% the cost of one
r4.4xlarge node [3].

3.6.2 Storage Costs
S3 and EBS storage costs used the currently listed AWS

costs: $0.023 per GB for S3, and $0.10 per GB for general
purpose (gp2) EBS. Presto, Vertica, and Hive on S3 utilize
a scratch EBS disk (512 GB per node) to support spill-to-
disk. We assume that users destroy this volume when not in
use and reinitialize it upon system restart to save on costs.
Scratch disk initialization time took less than 30 seconds.

3.6.3 Data Scan Costs
Data scan costs can be classified into two categories and

pertain only to S3 storage. The first category consists of
explicit data scan costs for Spectrum and Athena due to
these systems’ unique pricing models. For these systems,
AWS charges $5 per TB scanned, and we measured the data
scanned values using AWS monitoring tools. The second
category applies to all other systems that retrieve data from
S3, for which AWS charges an amount (currently $0.0004 per
1,000 GET requests). AWS does not provide a second-by-
second measurement of GET requests that could be linked
to specific queries, so for this cost we used the average object
size in the relevant S3 dataset as the average GET request
size to estimate the costs.

3.6.4 Software License Costs
Besides infrastructure costs, Vertica requires a license if

users wish to run on more nodes than the community edition
allows (currently 3 nodes). They also recently began offering
a “pay as you go” pricing model that bundles licensing
into node prices. We present Vertica costs as two extremes:
without a license and as pay as you go, with the realization
that most customers would own a license and pay an amount
somewhere in between. Other systems do not have separate
license costs.

4. EXPERIMENTAL RESULTS
This section presents results focused on the following com-

parison metrics of interest to a DBMS user: query restric-
tions; system initialization time; query performance; cost;
data compatibility with other systems; and scalability.

4.1 Query Restrictions
For each query measurement, we performed three runs to

ensure consistency, in many cases on different days. One
complication was that neither Spectrum nor Athena could
run the full TPC-H query suite. Hence, in plots where we
compare all systems, we include only the 16 TPC-H queries
that all systems could successfully execute. In other plots,
we compare only systems that could run all queries. We note
the number of queries in each figure’s caption.

The 6 queries excluded when plotting all systems together
were Q2, Q8, Q9, and Q21, which could not be run by Athena,
and Q15 and Q22, which could not be run by Spectrum. On
Athena, Q2 timed out after an hour, and Q8, Q9, and Q21
failed after exhausting resources. On Spectrum, Q15 failed
because views are not supported while Q22 failed because
complex subqueries are not supported.

4.2 Initialization Time
Initialization time measures how easy it is to launch and

use a particular DBMS system. It can also be considered the
“time to first insight.” This is relevant to consider when a
cloud DBMS user switches systems or shuts down a system
to save on compute costs and then restarts it at a later
time. It is also important for cluster scaling, which requires
reconfiguring or launching additional instances. Figure 2
shows the initialization times by system in seconds.

V
er

ti
ca

(E
B

S
)

V
er

ti
ca

(S
3
)

P
re

st
o

H
iv

e(
S
3
)

H
iv

e(
E

B
S
)

R
ed

sh
if

t

S
p

ec
tr

u
m

A
th

en
a

0

250

500

750

1000

T
im

e
(s

)

Figure 2: System Initialization Times

Athena, being an always-on service, does not require ini-
tialization before running a query. This is a key advantage
of any serverless cloud service offering.

On the other extreme, Redshift takes longest to initialize
because it must start the nodes and then load data from
an S3 snapshot to the local NVMe drives. This latency
cost is required for any system that employs ephemeral local
storage, since cloud providers achieve efficiencies by retaining
flexibility over how to place storage and compute units across
their datacenters. For our 1 TB (uncompressed) dataset,
this process takes approximately 12 minutes; larger datasets
would take longer.

Other systems have initialization times in the range of 5-7
minutes. The vast majority of this time is that required for an
EC2 instance to initialize and pass all system status checks,
rather than the time required to initialize the DBMS. Vertica
and Hive on EBS are the next fastest after Athena because
their initialization time comprises only the time it takes to
launch the EC2 nodes and start the systems. Vertica, Presto,
and Hive on S3 are slightly slower to initialize because we
must reinitialize the scratch disk instance. Alternatively, we
could avoid this latency but pay the cost of keeping the EBS
volume constantly attached. As we discuss in the storage
costs section, this is significant and generally not worthwhile.

Summary. It is advantageous in the cloud to shut down
compute resources when they are not being used, but there
is then a query latency cost. All cloud nodes require time
to initialize and pass system checks before a DBMS can be
started, with systems using local storage like Redshift taking
longest to initialize. Serverless offerings like Athena provide
an alternative “instant on” query service.

4.3 Query Performance
This section presents query performance (runtime) using

both a cold cache and a warm cache. Note that Redshift by
default caches results so repeated runs of the identical query
when data is unchanged take zero time; we turn this feature

V
er

ti
ca

(E
B

S
)

V
er

ti
ca

(S
3
)

P
re

st
o
(S

3
)

H
iv

e(
S

3
)

H
iv

e(
E

B
S

)

R
ed

sh
if

t

S
p

ec
tr

u
m

A
th

en
a

0

1000

2000

3000

T
o
ta

l
Q

u
er

y
S

u
it

e
R

u
n
ti

m
e

(s
)

Warm Cache

Cold Cache

(a) 16 queries runnable on all systems

V
er

ti
ca

(E
B

S
)

V
er

ti
ca

(S
3
)

P
re

st
o
(S

3
)

H
iv

e(
S

3
)

H
iv

e(
E

B
S

)

R
ed

sh
if

t

0

2000

4000

T
o
ta

l
Q

u
er

y
S

u
it

e
R

u
n
ti

m
e

(s
)

(b) All queries runnable on subset of systems

Figure 3: Warm and Cold Cache Runtimes

off to get a representative warm cache runtime. However,
workloads that have many repeat queries will benefit greatly
from this feature.

4.3.1 System Comparisons
Figure 3 shows cold and warm cache query suite runtimes.

For brevity we omit showing geometric means, which have
similar distributions.

Redshift and Vertica Eon represent two performance ex-
tremes on the suite. With both a cold and a warm cache,
Redshift is magnitudes faster than other systems, despite
spending time precompiling each query to machine code be-
fore execution. (Compilation typically takes around 3-15
seconds per query.) This is partly a consequence of using
local storage, which is fastest but requires a longer initial-
ization time. All other systems have similar performance
with the exception of Vertica Eon (S3). These performance
characteristics are due to different DBMS design tradeoffs.

Both Vertica EBS and Redshift are shared nothing parallel
column-store databases, which implies that they should have
similar performance, yet they perform very differently. Three
possible reasons for Redshift’s performance advantage in our
tests are its use of faster NVMe SSD storage, intraquery
parallelism, and query compilation to machine code.

Regarding faster storage, Redshift’s dc2.8xlarge nodes use
NVMe SSD drives marketed to have an aggregate I/O band-
width of 7.5 GB/sec per node. Based on performance results
we received from Snowflake and our own table scan measure-
ments, this advantages it over other systems like Vertica on
I/O-intensive workloads. However, it is unlikely to be the
main reason on TPC-H, which is rarely I/O constrained. For

example, on Vertica EBS, we found that disk read activity
was >80% of max throughput only 1% of the entire query
suite runtime. Other systems exhibited similar patterns. (We
discuss in more detail the effects of faster storage in Section
4.3.3.)

To evaluate the effect of Redshift’s intraquery parallelism
and query compilation, we ran tests using two randomized,
500GB (uncompressed) source data tables of 10 CHAR(16)
columns each, with primary keys on column 1 and parti-
tioned across nodes on column 2 running in a 4-node 8xlarge
cluster. A cold start aggregate sum table scan query showed
a 3x runtime advantage for Redshift over Vertica EBS, which
aligns with NVMe’s faster throughput over the EBS 8-volume
RAID 0 setup. However, a single user CPU-intensive hash
join over two randomized tables with zero resulting tuples
showed a 10x performance advantage for Redshift, while the
same query with 3 concurrent users ran only 20% slower for
Vertica but 300% slower for Redshift. This suggests that Red-
shift schedules cores in a multicore environment differently
that other systems and improves single user performance at
the expense of multi-user environments. Additionally, [16]
showed that query compilation can provide significant per-
formance benefits for CPU bound queries, so we believe this
also advantages Redshift in many TPC-H queries. How much
of the performance gains are due to intraquery parallelism
vs query compilation cannot be determined with certainty
since the system runs as a black box.

While query compilation comes with overhead, an interest-
ing finding was that because Redshift is so much faster than
other systems on TPC-H, this overhead never disadvantaged
it. On only one query (Q2) was Redshift performance on
par with those of other systems. This was a short query
consisting of a nested subquery that all systems finished in
20 seconds or less.

At the other performance extreme, Vertica Eon (S3) per-
forms slowest on cold cache. This is because it caches data
to local storage aggressively: even a simple table scan sum-
mation query caused significant disk writes.

4.3.2 Warm Cache Advantages
One would expect most systems to benefit from a warm

cache, but Figure 3 shows that subsequent runs provided
little or no performance advantage on the query suite, with
the exception of Redshift and Vertica Eon. This section
discusses reasons why, along with how generalizable these
findings are to other workloads.

A major reason why caching data in memory does not
noticeably reduce total suite runtime is because most TPC-
H queries are not significantly I/O bound, and those that are
consist of shorter queries. However, a workload such as TCP-
DS with greater I/O load would see greater benefits from a
warm cache. The follow up question then becomes: what is
the expected benefit of data caching in an I/O constrained
workload? Analyzing only the I/O bound queries shows
that caching EBS data into memory provided less than a 2x
speedup, and caching S3 data into memory provided up to a
4x speedup, but typically much less. For example, Vertica
EBS caches the entire dataset in memory after the first cold
run, and no disk reads are observed on subsequent runs, but
even on queries that are I/O bound for more than a third
of the query runtime there is only a 1.2x to 1.6x speedup.
We see a larger improvement for Hive S3, where S3 data is
cached. These include speedups of 4x in Q6 (a very short

query that takes 1s on most systems), 2.2x in Q20, 1.6x in
Q1, and 1.7x in Q3.

Table 4: Warm Cache Performance Advantages on TPC-H
(16 queries)

System
Suite
Runtime
Speedup

Reasons for
Warm Cache
Speedup

Number of
Queries with
Warm Cache
Speedup

Vertica
(EBS)

1.03x
Data cached into
memory

3 queries, ranging
from 1.2x to 1.6x
speedup

Vertica
(S3)

1.70x

S3 data cached
into node EBS
storage and mem-
ory

All

Presto
(S3)

1.0x No advantage -

Hive (S3) 1.27x
Some S3 data
cached in mem-
ory

8 queries, ranging
from 1.4x to 4x
speedup

Hive
(EBS)

1.07x
Some data
cached in mem-
ory

5 queries, ranging
from 1.4x to 2.4x
speedup

Redshift 1.07x

Avoid query
compilation time,
some data loaded
into memory

14 queries, rang-
ing from 1.5x to
over 5x speedup

Spectrum 1.0x No advantage -

In a non-I/O constrained suite like TPC-H, the major
contributors to warm cache speedups are system designs that
benefit subsequent runs at the cost of penalizing initial runs.
Redshift’s main performance gain on subsequent runs comes
from avoiding query compilation time, which is significant
relative to its fast TPC-H query runtimes. This relative
overhead would be smaller for longer queries. Workloads
with identical queries that leverage Redshift’s result cache
would experience even greater performance improvements.
Similarly, Vertica Eon takes a performance hit on cold start
because it incurs data writes to node attached storage even
if all data could have been cached in memory. In contrast,
Presto and Spectrum do not appear to cache data.

4.3.3 Effects of Faster Storage
Since TPC-H is not significantly I/O bound, this section

analyzes specific I/O bound queries within the suite to better
understand the effects of faster storage. Specifically, how
much faster is InS over EBS over S3? An interesting thing to
note is that a system may have an efficient implementation for
one storage type but not for another, so we draw conclusions
using within- and cross- system comparisons.

In general, InS performance is faster than EBS, and EBS
is faster than S3 on the same system, as expected. However,
the magnitude of difference may be exaggerated depending
on how well that system utilizes a specific storage type. We
dive deeper into three queries: Q1 is an I/O bound query
that runs a filtered scan of the lineitem table, which is the
largest data table; Q3 joins lineitem to two other smaller
tables; and Q5 joins 6 tables including lineitem. Q1 saturates
storage I/O throughout, Q3 saturates I/O during the second
half of the query, and Q5 saturates I/O during the last third
of the query.

We ran limited experiments on the i3 instance family that
utilizes physically attached InS (just Vertica), so our results
are less conclusive for InS. Instance store performance was

similar to the EBS warm cache case where no disk reads are
performed, providing only 1.2x speedup on Q1, 1.4x speedup
on Q3, and no speedup on Q5 over EBS. This is surprising
because an individual NVMe SSD has greater bandwidth
(1.9GB/s) than 8 gp2 EBS volumes in RAID 0 (160MB/s
per volume), and the i3 system had 4 NVMe SSDS in RAID
0. We further confirmed the AWS listed sequential NVMe
read bandwidth by reading a system file sequentially and
measured a sequential read bandwidth of 3.5GB/s on the
NVMe RAID 0 setup. Therefore, Vertica, at least, seems
unable to take full advantage of very fast instance storage.

Comparing Vertica, Hive, and Presto provides insight into
EBS performance advantages over S3. Table 5 shows that
on Q1, Vertica EBS is 10x faster than Vertica S3, while
Hive EBS is only 1.4x faster than Hive S3 and Presto S3.
Vertica S3 incurs a performance penalty on cold start by
performing writes to node-attached volumes, so the speedup
from Vertica S3 to EBS is not representative of faster stor-
age. Additionally, Vertica EBS is 4x faster than Hive EBS,
so Vertica EBS’s performance advantage over Hive S3 and
Presto S3 seems due to other factors like query optimization
and partitioning. Analyzing storage I/O for Q1, we see that
Vertica EBS disk reads per node are in the 900-1100 MB/s
range, whereas Presto S3 reads are in the 400-600 MB/s
range, showing Vertica EBS has a 2x storage throughput
advantage. Therefore, we conclude that Q1 shows a 2x or less
advantage from using EBS over S3. On Q3, we similarly see
that Vertica EBS is 3x faster than Hive EBS, suggesting some
non-storage factor is responsible for its advantage. However,
Hive S3 is very inefficient on this query and performs even
slower than Vertica S3. Presto S3 performs quite well and
only 2x slower than Vertica EBS. Thus, if we compare Presto
S3 vs Vertica EBS on Q3, there is again a 2x advantage of
EBS. A similar comparison in Q5 shows that the fastest EBS
system, Vertica, has about a 1.4x speedup compared to the
fastest S3 system, Presto.

Table 5: Storage I/O bound Query Runtimes (secs) on
Fastest to Slowest Storage

Query
Vertica
(IS)

Vertica
(EBS)

Hive
(EBS)

Vertica
(S3)

Hive
(S3)

Presto
(S3)

Q1 12.8 13.5 54.0 130.6 76.2 78.6
Q3 27.8 37.8 106.7 197.4 240.5 83.6
Q5 58.6 60.9 91.3 243.2 179.0 89.3

From these results, a performance advantage from faster
storage exists but is often not as large as one would expect.
We show in the next section that EBS cost per volume alone
is >4x that of S3, with other practical considerations mak-
ing this difference much larger, so experiencing only a 2x
performance degradation is a worthwhile cost-performance
tradeoff in many cases.

Summary. Most systems and configurations have compara-
ble performance on the query suite with the exceptions of
Redshift and Vertica Eon on cold cache, and Athena (which
is a black box and hard to conclude much about). Using
cheap remote object storage instead of more expensive EBS
block storage seems fine, and even on heavily I/O bound
workloads the cost advantage of S3 far exceeds its perfor-
mance disadvantage. Locally attached instance store on
Vertica did not provide significant performance advantage
over EBS. Cold and warm cache performance is similar for

most systems on the suite, with the exception of Redshift
due to its query compilation time and Vertica Eon due to its
aggressive caching of remote data to node storage. However,
highly I/O bound workloads may see a 2x or more speedup
from data caching. Query compilation in Redshift seems
beneficial and feasible for long running queries, and in con-
cert with intraquery parallelism gives it a large performance
advantage over other systems in the single-user case.

4.4 Cost
The dollar cost of running a query is another important

metric when using a DBMS system on a commercial cloud
offering. We consider query cost and storage cost separately,
as these are related but can be modified separately via con-
tractual pricing schemes.

For query cost, we report the cost of running the query
suite on both cold start as well as subsequent runs. Cold start
includes the cost of node initialization along with the cost of
running the query suite. Node initialization cost is important
to include because the user sometimes pays for time when a
system is not yet accessible. For example, Redshift charges
while data is being reinitialized from snapshots.

For each system, we report the cost in dollars to run the
query suite once for each system using the “on demand”
pricing model of AWS.

4.4.1 Query Cost
Figure 4 shows cold start and subsequent query suite run

costs. In general, query cost is directly correlated with query
performance and we see similar patterns as before except for
the AWS proprietary systems

Interestingly, Redshift is both the best and worst performer
on query cost. Standard shared-nothing Redshift, which
reads data from local node storage, is cheapest because
single user queries run extremely fast. However, Redshift
Spectrum is about 3x the cost of other options even though
its query performance is similar to other systems. This is
due to Spectrum’s pricing model, which combines both the
per hour node cost of Redshift (already the highest of all
evaluated systems) plus Spectrum-specific costs per amount
of S3 data scanned. Therefore, Redshift is not a cost-effective
system if one relies heavily on pulling data from S3.

Unlike other systems, Vertica has a license cost that varies
by customer. We therefore plot both the AWS infrastructure
costs without licensing as well as Vertica’s pay-as-you-go
cost, which is offered by the vendor as an additional per-
hour software fee over AWS infrastructure costs. The latter
represents an extreme high end; most customers likely would
own a license and have costs in between the two extremes.
Incorporating this cost, Vertica is the second most expensive
system behind Spectrum.

Cost is also the only way to have a useful metric by which
to compare Athena against other systems, since Athena’s
infrastructure is a black box making performance comparison
to other systems impossible. On cost per query suite, Athena
appears similar to other systems. Since Figure 3 shows that
Athena is twice as fast as other systems (excepting Redshift)
for the 16 query workload, cost/performance makes Athena
a good choice for supported workloads in addition to its
convenience as an “instant on” serverless system. Therefore,
a cloud DBMS user should consider Athena as an option for
select workloads and utilize storage that can be accessed by
serverless options. However, one caveat to emphasize is that

V
er

ti
ca

(E
B

S
)

V
er

ti
ca

(S
3
)

P
re

st
o

H
iv

e(
S
3
)

H
iv

e(
E

B
S
)

R
ed

sh
if

t

S
p

ec
tr

u
m

A
th

en
a

0

5

10

C
o
st

p
er

Q
u
er

y
S
u
it

e
R

u
n

($
)

Pay As You Go

Subsequent Run

Cold Start

(a) 16 queries runnable on all systems

V
er

ti
ca

(E
B

S
)

V
er

ti
ca

(S
3
)

P
re

st
o

H
iv

e(
S
3
)

H
iv

e(
E

B
S
)

R
ed

sh
if

t

0

5

10

15

20

C
o
st

p
er

Q
u
er

y
S
u
it

e
R

u
n

($
)

Pay As You Go

(b) All queries runnable on subset of systems

Figure 4: Cold Start and Subsequent Runtime Cost

AWS offers spot and reserve pricing schemes (for long-term
contracts) that can lower compute costs significantly. This
applies to node costs but not to Athena and Spectrum data
scan costs.

4.4.2 Storage Cost
Storage cost is less flexible than compute cost because

it does not allow recurring to contractual means for cost
reduction, such as reserve and spot pricing.

Figure 5 shows the cost of storing workload data over
a 24 hour period overlaid with the cold cache query suite
runtime. EBS is an order of magnitude more expensive than
S3 due to two characteristics. First, the cost of EBS storage
is about 5x the cost of S3 storage. Second, one must always
allocate more EBS storage than is needed for the actual
data. The reason for this is twofold: first, it’s impractical
to provision an EBS volume size that exactly matches the
workload data size (unlike S3); secondly, it is common to
provision additional storage in a small EBS volume since
AWS’s architecture scales up EBS input/output operations
per second (IOPs) performance linearly with volume size,
until volumes reach 1TB. Replicating data instead of using
RAID 0 as we did would increase EBS costs even further. In
contrast, S3 costs already include replication within a single
region.

Large ephemeral, physically-attached instance stores are
becoming widely available in more AWS compute node offer-
ings, making them suitable for use as primary data stores
and not just caches. From a performance standpoint, these
volumes are physically attached to nodes and hence faster.

V
er

ti
ca

(E
B

S
)

V
er

ti
ca

(S
3
)

P
re

st
o
(S

3
)

H
iv

e(
S
3
)

H
iv

e(
E

B
S
)

R
ed

sh
if

t

S
p

ec
tr

u
m

A
th

en
a

0

10

20
C

o
st

p
er

D
a
y

($
)

1000

2000

3000

T
o
ta

l
Q

u
er

y
S
u
it

e
R

u
n
ti

m
e

(s
)

Figure 5: Storage Cost per Day (bars) and Query Suite
Runtime (dots) over 16 queries

However, as noted in the previous section, we did not no-
tice a significant performance difference running the TPC-H
workload on Vertica, and less than a 2x advantage even on
I/O bound queries.

Nodes with instance storage also have a price advantage
compared to equivalent nodes that use EBS storage. Figure 6
shows the per hour cost of a r4.8xlarge node and an i3.8xlarge
node. From a hardware perspective (RAM, vCPU, network
speed), these nodes are equivalent except the i3 node has
4x1900GB volumes of attached InS. We assume the i3 node
requires an equivalent volume on S3 for data persistence,
while the r4 node using EBS does not. Despite the higher
per hour cost of the i3 node and its additional S3 storage
cost, it is still cheaper than using EBS.

i3.8xlarge r4.8xlarge
0

1

2

3

P
er

H
o
u
r

C
o
st

($
)

Per Hour Node Cost (on demand)

EBS storage cost

S3 cost

Figure 6: Per Hour Cost of Equivalent Nodes with Instance
Storage (i3) and EBS (r4)

Instance stores do come with several disadvantages. First,
a user has no control over how many volumes to attach to a
node; this setting is predetermined by AWS based on node
type. Therefore, node choices are more restricted. Second,
they are ephemeral, meaning a user must keep systems al-
ways on to not lose data and/or retain data on a secondary
storage source for persistence, usually S3. Accordingly, sys-
tem initialization time after restart is longer because data
must be reloaded. Therefore, EBS and S3 are the primary
viable persistent storage alternatives while instance store
typically serves as a temporary cache.

Summary. Using a persistent remote block storage unit like
EBS is orders of magnitude more expensive than S3 without
a proportional performance increase. Our setup found a
50x storage cost increase for EBS while only providing a 2x
performance speedup on 8 RAID 0 volumes. Additionally,
pricing schemes for nodes with instance stores are slightly
advantageous over EBS. Therefore, cloud DBMS users should

avoid EBS and are better off using instance store and/or
S3. Local storage is offered on some node types, but its
ephemeral nature makes it challenging to rely on for true
shared-nothing configurations in the cloud, making its main
purpose local caching of remote data. Athena and Redshift
have unique cost models focused on data scan and node
uptime, respectively, that advantage them from a cost vs
performance standpoint. This is not surprising since they are
sold by the platform vendor. However, in a hybrid feature
like Spectrum these cost models apply simultaneously and
can make it more expensive relative to other systems.

4.5 Data Compatibility with Other Systems
Data compatibility with other systems means that data

used by one system can be accessed by another system.
Otherwise, there will be significant extract, transform, and
load (ETL) costs if one wants to switch to a different system
for targeted workloads. Because the cloud offers the ability
to easily launch new systems, being able to leverage different
systems for different workloads is advantageous. However,
ETL costs can make some system types infeasible to use
when workloads change, thereby limiting the cloud offerings
one can leverage.

Athena

Vertica Presto Hive Redshift

Eon
(S3) EBS S3 HDFS S3 HDFS Red. Spec.

Athena LT L L LT

Vertica

Eon
(S3) L L LT

EBS LT LT LT LT LT

Presto

S3 LT L LT

HDFS L L L LT L

Hive

S3 LT L LT

HDFS L L L LT L

Redshift

Redshift LT LT LT LT LT LT LT

Spectr. LT L L
Figure 7: Matrix of data compatible systems (L = load
required, T = transform required)

Figure 7 presents a matrix of data compatible systems,
meaning systems that can directly read data in the same
format and storage architecture used by another system.
Entries on the diagonal represent the same system and hence
should be ignored. An orange shaded cell with the letter L
means that data must be transferred to a different storage
system, but not transformed. In other words, there are one or
more compatible file formats that can be used. A red shaded
cell with the letters LT mean that data must be transferred
and also converted to a different format. A green cell means
that the systems can use compatible formats from the same
storage system, for example ORC or Parquet on S3.

Note that we consider some features of the same system as
separate systems, such as Vertica shared-nothing vs Vertica
Eon, and Redshift vs Spectrum, since these have different
cost-performance characteristics. For example, Redshift can
read data from all other systems with the proper storage and
data configurations (i.e., not HDFS) by using its Spectrum
feature, but a user must perform ETL to have Redshift-level
performance rather than Spectrum-level performance.

Systems that use general data formats like ORC on S3
and HDFS are most compatible with other systems. These
include Hive, Presto, and Vertica. AWS systems support data
on S3 but not on HDFS, limiting their compatibility if an
enterprise has much of its data on HDFS. These AWS systems
include Athena and Spectrum. The most performant systems
use proprietary storage formats that make them incompatible
with other systems but offer hybrid architectures to read
data on S3. Redshift has this limitation, and one could use
its Spectrum feature to read data from S3. Similarly, Vertica
offers Eon mode. But as previously shown, the S3 features
on these systems move them to a different performance-cost
curve.

One caveat about Vertica Eon is that while it can read
ORC and other system agnostic formats on S3, our experi-
ments indicated it performed best on its own format written
to S3, and this is what was benchmarked. Hence this setup
would incur data loading and transformation costs if a user
wants to use another system.

Summary. Choosing a widely compatible columnar data
format and storage architecture provides more options to op-
timize performance if workloads change by making it easy to
run different systems. AWS proprietary and shared-nothing
systems tend to be less data-compatible than others.

4.6 Scalability
We analyzed performance when scaling horizontally and

vertically. The systems tested were more limited for these
experiments because AWS proprietary systems had fewer
scalability options.

The main theme is that horizontal scaling is generally
advantageous, while vertical scaling is generally disadvan-
tageous. We did not perform scale up on AWS proprietary
systems due to node type limitations.

4.6.1 Horizontal Scaling
Many systems do not scale out linearly, meaning runtime

does not halve when using twice as many nodes. Presto
scales horizontally especially well, with better than linear
performance when using smaller nodes because more mem-
ory and CPU equals better performance. A shared-nothing
OLAP database like Vertica also scales horizontally well. In
contrast, a system that performs query compilation like Red-
shift exhibits poor performance when scaling horizontally
on dissimilar query workloads that require recompilation
because this overhead becomes significant relative to query
runtime.

Figures 8a and 8b plot query suite runtime and cost, re-
spectively, as we scale from 4 to 8 to 16 nodes with 4xl nodes.
In the ideal scaling case, every tick on the x-axis of Figure
8a should result in halving the runtime. These results omit
Redshift because it is not offered in this instance size (we
will present other Redshift scale out results shortly). Presto
comes closest to scaling linearly while Hive and Vertica are
less scalable. Athena is excluded because it provides no
control over resource allocation. In Figure 8b a system scales
linearly if its graph is a horizontal line.

The good scalability of Presto indicates that it parallelizes
effectively. Our evaluation suggests that the system is CPU-
bound, since few disk writes to node storage were observed
regardless of the configuration.

4
n

o
d

e

8
n

o
d

e

16
n

o
d

e

0

500

1000

1500

2000

2500

T
ot

al
Q

u
er

y
S

u
it

e
R

u
n
ti

m
e

(s
)

Presto(S3)

Hive(S3)

(a) 4xl Runtime (16 queries)

4
n

o
d

e

8
n

o
d

e

16
n

o
d

e

0

1

2

3

4

T
ot

al
Q

u
er

y
S

u
it

e
C

os
t

($
)

Presto(S3)

Hive(S3)

Vertica(EBS)

Presto(S3)

Hive(S3)

(b) 4xl Cost (16 queries)

4
n

o
d

e

8
n

o
d

e

16
n

o
d

e

0

500

1000

1500

T
ot

al
Q

u
er

y
S

u
it

e
R

u
n
ti

m
e

(s
)

Presto(S3)

Hive(S3)

Redshift

Spectrum

(c) 8xl Runtime (15 queries)

4
n

o
d

e

8
n

o
d

e

16
n

o
d

e

0

5

10

15

20

25

30

T
ot

al
Q

u
er

y
S

u
it

e
C

os
t

($
)

Hive(S3)

Spectrum
Vertica(EBS)

Presto(S3)

Hive(S3)

Redshift

Spectrum

(d) 8xl Cost (15 queries)

Figure 8: Horizontal Scaling, 4xl and 8xl instance size
clusters

A different story emerges when we run the same experi-
ments on nodes with double the CPU and RAM, specifically
the 8xl size. Figure 8c shows that both Hive and Vertica
scale linearly while Presto does not. Note in Figure 8d that
Vertica is a horizontal line while both Hive and Presto in-
crease somewhat. In both plots, we dropped Q17 from the
query suite because Vertica had a severe performance bug on
this query. In this case, Presto scalability gains begin visibly
plateauing at 16 nodes unlike with the smaller nodes.

4 nodes 8 nodes 16 nodes
0

25

50

75

100

%
o
f

T
o
ta

l
R

u
n
ti

m
e

Figure 9: Redshift Query Compilation Time (% of total
runtime)

We included Redshift and Spectrum in Figures 8c and 8d
because they run on hardware similar to the larger nodes
for the other systems. These results include Redshift query
compilation time, which is representative of running ad hoc
queries. Both systems exhibit essentially no scalability. For
Redshift, this is because query compilation time becomes
the bottleneck given how fast it runs the single-user TPC-H
queries, and AWS states that this overhead is “especially
noticeable” for ad hoc queries [2]. Query compilation times
were in the range of 3-15 seconds per query so query com-
pilation time encompasses an ever increasing percentage of
the faster total query execution time as the cluster size is
increased, as shown in Figure 9. Note that we see more

scalable performance for repeated executions of a query if it
is already compiled.

4.6.2 Vertical Scaling
4x

l

8x
l

16
x
l

0

500

1000

1500

2000

2500

T
ot

al
Q

u
er

y
S

u
it

e
R

u
n
ti

m
e

(s
)

Presto(S3)

Hive(S3)

Vertica(EBS)

Presto(S3)

Hive(S3)

(a) Runtime

4x
l

8x
l

16
x
l

0

2

4

6

8

10

12

T
o
ta

l
Q

u
er

y
S

u
it

e
C

os
t

($
)

Presto(S3)

Hive(S3)

(b) Cost

Figure 10: Vertical Scaling, 4 node cluster (16 queries)

In our limited test set of three systems, vertical scaling
was disadvantageous with the exception of Presto. Scaling
measurements for Redshift are not shown because it has only
two node sizes and the smaller size did not have enough
storage in the 4 node configuration. Athena has no notion
of scale up.

Presto appears to again benefit from more cores even in
the scale up case, as few disk writes to node storage were
observed and network traffic from S3 was not saturated the
vast majority of time.

Summary. Most systems exhibit performance benefits from
horizontal scaling, with Spectrum being the exception. Ver-
tical scaling tests suggest that larger nodes are generally
disadvantageous once moderate to large nodes are already
used.

5. CONCLUSIONS
Cloud economics and architectures promote fundamental

shifts in DBMS design and usage. Being able to choose
the optimal configuration and leverage the full breadth of
DBMS-as-a-service offerings can provide significant cost and
performance benefits.

Our TPC-H benchmarking experiments suggest that cloud
DBMS users should prioritize shared, low-cost block storage
architectures like S3 over more expensive shared block storage
volumes like EBS that provide lower latency. Low cost
object storage provides order of magnitude cost advantages
with minimal performance disadvantages, depending on the
DBMS architecture. Additionally, locally attached instance
storage are faster than EBS workloads and are more cost
effective than EBS, so there are few reasons to use EBS over
these options.

A carefully chosen general use columnar format like ORC
provides the most flexibility for future system optimization
over proprietary storage formats used by shared nothing
DBMSs such as Redshift and Vertica. Such system agnostic
formats appear performant even without highly optimized
partitioning. For shared nothing systems utilizing proprietary
formats, hybrid features (Spectrum and Eon, respectively)
aim to bridge this gap by allowing reading other formats
from S3, but their performance is currently lacking and cost
is high when multiple cost models apply to the same query,
as in the case of Spectrum.

Different system architectures used in proprietary cloud
offerings highlight interesting tradeoffs when they are com-
pared to non-proprietary systems. For example, the aggres-
sive intraquery parallelism of Redshift can offer an order of
magnitude performance advantage for single user workloads,
but doing so causes significantly worse performance as con-
currency increases. Similarly, query compilation to machine
code performed by Redshift speeds up CPU-intensive queries
but reduces scale out performance gains on heterogenous
workloads. It would be interesting for future studies to deter-
mine whether implementing query compilation and aggressive
intraquery parallelism allows other S3 systems to achieve
near Redshift-level performance without local storage.

Serverless systems like Athena have been recently intro-
duced and are becoming popular. Athena’s on demand
querying capabilities provide an interesting optimization op-
portunity for cloud DBMSs to farm out different workloads,
which is another reason for choosing a general use columnar
data format over proprietary formats.

Each of these findings poses opportunities for future work
to explore specific architectural tradeoffs further. Addition-
ally, future studies could analyze concurrency, test a different
suite such as TPC-DS, evaluate different data sizes, and
evaluate more systems.

6. ACKNOWLEDGMENTS
Amazon kindly provided a very large number of AWS

credits that we used to perform this study. We also thank
Ben Vandiver, Nga Tran, and the Vertica team; Ippokratis
Pandis at Amazon; and the Starburst Data team for feedback
and guidance on Vertica, Redshift/Spectrum, and Presto,
respectively.

7. REFERENCES
[1] O. Agmon Ben-Yehuda, M. Ben-Yehuda, A. Schuster,

and D. Tsafrir. Deconstructing amazon ec2 spot
instance pricing. ACM Trans. Econ. Comput.,
1(3):16:1–16:20, 2013.

[2] AWS. Redshift documentation: Factors affecting query
performance, 2012. https://docs.aws.amazon.com/
redshift/latest/dg/c-query-performance.html,
Last accessed 2018-06-15.

[3] AWS. Cluster configuration guidelines and best
practices, 2019. https://docs.aws.amazon.com/emr/
latest/ManagementGuide/emr-plan-instances-

guidelines.html, Last accessed 2019-02-01.

[4] D. Bermbach, J. Kuhlenkamp, A. Dey,
A. Ramachandran, A. Fekete, and S. Tai.
Benchfoundry: A benchmarking framework for cloud
storage services. In Proc. Int. Conf. on
Service-Oriented Computing (ICSOC), pages 314–330,
2017.

[5] C. Binnig, D. Kossmann, T. Kraska, and S. Loesing.
How is the weather tomorrow?: Towards a benchmark
for the cloud. In Proc. Second Int. Workshop on Testing
Database Systems, DBTest ’09, pages 9:1–9:6, 2009.

[6] B. F. Cooper, A. Silberstein, E. Tam,
R. Ramakrishnan, and R. Sears. Benchmarking cloud
serving systems with YCSB. In Proc. 1st ACM Sym.
on Cloud Computing, SoCC ’10, pages 143–154, 2010.

[7] B. Dageville, T. Cruanes, M. Zukowski, V. Antonov,
A. Avanes, J. Bock, J. Claybaugh, D. Engovatov,

M. Hentschel, J. Huang, A. W. Lee, A. Motivala, A. Q.
Munir, S. Pelley, P. Povinec, G. Rahn, S. Triantafyllis,
and P. Unterbrunner. The snowflake elastic data
warehouse. In Proc. 2016 Int. Conf. on Management of
Data, SIGMOD ’16, pages 215–226, 2016.

[8] Databricks. Benchmarking Big Data SQL Platforms in
the Cloud: TPC-DS benchmarks demonstrate
Databricks Runtime 3.0’s superior performance, 2017.
https:

//databricks.com/blog/2017/07/12/benchmarking-

big-data-sql-platforms-in-the-cloud.html, Last
accessed 2018-07-15.

[9] M. Dayarathna and T. Suzumura. Graph database
benchmarking on cloud environments with XGDBench.
Automated Software Eng., 21(4):509–533, 2014.

[10] A. Gupta, D. Agarwal, D. Tan, J. Kulesza, R. Pathak,
S. Stefani, and V. Srinivasan. Amazon Redshift and the
case for simpler data warehouses. In Proc. of the 2015
Int. Conf. Management of Data, SIGMOD ’15, pages
1917–1923, 2015.

[11] M. Han, K. Daudjee, K. Ammar, M. T. Özsu, X. Wang,
and T. Jin. An experimental comparison of Pregel-like
graph processing systems. PVLDB, 7(12):1047–1058,
2014.

[12] Hortonworks. Apache Tez: Overview, 2018.
https://hortonworks.com/apache/tez/, Last
accessed 2018-08-01.

[13] D. Kossmann, T. Kraska, and S. Loesing. An
evaluation of alternative architectures for transaction
processing in the cloud. In Proc. of the 2010 Int. Conf.
Management of Data, SIGMOD ’10, pages 579–590,
2010.

[14] A. Lamb, M. Fuller, R. Varadarajan, N. Tran,
B. Vandiver, L. Doshi, and C. Bear. The Vertica
analytic database: C-store 7 years later. PVLDB,
5(12):1790–1801, 2012.

[15] A. Lenk, M. Menzel, J. Lipsky, S. Tai, and
P. Offermann. What are you paying for? performance
benchmarking for infrastructure-as-a-service offerings.
In Proc. 2011 IEEE 4th Int. Conf. on Cloud
Computing, CLOUD ’11, pages 484–491, 2011.

[16] T. Neumann. Efficiently compiling efficient query plans
for modern hardware. PVLDB, 4(9):539–550, 2011.

[17] N. Nix. CIA tech official calls Amazon cloud project
’transformational’. Bloomberg, June 2018.
https://www.bloomberg.com/news/articles/2018-

06-20/cia-tech-official-calls-amazon-cloud-

project-transformational, Last accessed 2018-10-01.

[18] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz. Runtime
measurements in the cloud: Observing, analyzing, and
reducing variance. PVLDB, 3(1-2):460–471, 2010.

[19] R. Sethi, M. Traverso, D. Sundstrom, D. Phillips,
W. Xie, Y. Sun, N. Yigitbasi, H. Jin, E. Hwang,
N. Shingte, and C. Berner. Presto: SQL on everything.
In IEEE 35th Int. Conf. on Data Eng. (ICDE), pages
1802–1813, 2019.

[20] A. Shiu. Why we chose Redshift, 2015.
https://amplitude.com/blog/2015/03/27/why-we-

chose-redshift, Last accessed 2018-11-05.

[21] M. Stonebraker, A. Pavlo, R. Taft, and M. L. Brodie.
Enterprise database applications and the cloud: A
difficult road ahead. In 2014 IEEE Int. Conf. Cloud
Eng.}, pages 1–6, 2014.

[22] D. Sundstrom. Even faster: Data at the speed of Presto
ORC, 2015.
https: // code. fb. com/ core-data/ even-faster-

data-at-the-speed-of-presto-orc/ , Last accessed
2018-04-15.

[23] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Anthony, H. Liu, P. Wyckoff, and R. Murthy. Hive:
A warehousing solution over a map-reduce framework.
PVLDB, 2(2):1626–1629, 2009.

[24] B. Vandiver, S. Prasad, P. Rana, E. Zik, A. Saeidi,
P. Parimal, S. Pantela, and J. Dave. Eon mode:
Bringing the Vertica columnar database to the cloud. In
Proc. 2018 Int. Conf. Management of Data, SIGMOD
’18, pages 797–809, 2018.

[25] B. Varghese, O. Akgun, I. Miguel, L. Thai, and
A. Barker. Cloud benchmarking for performance. In
IEEE 6th Int. Conf. Cloud Computing Technology and
Science, pages 535–540, 2014.

[26] B. Varghese, L. T. Subba, L. Thai, and A. Barker.
Container-based cloud virtual machine benchmarking.
In IEEE Int. Conf. on Cloud Eng. (IC2E), pages
192–201, 2016.

[27] A. Verbitski, A. Gupta, D. Saha, M. Brahmadesam,
K. Gupta, R. Mittal, S. Krishnamurthy, S. Maurice,
T. Kharatishvili, and X. Bao. Amazon Aurora: Design
considerations for high throughput cloud-native
relational databases. In Proc. ACM Int. Conf. on
Management of Data, SIGMOD ’17, pages 1041–1052,
2017.

[28] Vertica. Configuring storage (documentation).
https: // www. vertica. com/ docs/ 9. 1. x/ HTML/

index. htm# Authoring/ UsingVerticaOnAWS/

ConfiguringStorage. htm , Last accessed 2019-01-13.

