
DAX: A Widely Distributed Multi-tenant Storage Service for
DBMS Hosting

Rui Liu
University of Waterloo

r46liu@uwaterloo.ca

Ashraf Aboulnaga
University of Waterloo

ashraf@uwaterloo.ca

Kenneth Salem
University of Waterloo

kmsalem@uwaterloo.ca

ABSTRACT
Many applications hosted on the cloud have sophisticated
data management needs that are best served by a SQL-based
relational DBMS. It is not difficult to run a DBMS in the
cloud, and in many cases one DBMS instance is enough to
support an application’s workload. However, a DBMS run-
ning in the cloud (or even on a local server) still needs a
way to persistently store its data and protect it against fail-
ures. One way to achieve this is to provide a scalable and
reliable storage service that the DBMS can access over a
network. This paper describes such a service, which we call
DAX. DAX relies on multi-master replication and Dynamo-
style flexible consistency, which enables it to run in mul-
tiple data centers and hence be disaster tolerant. Flexible
consistency allows DAX to control the consistency level of
each read or write operation, choosing between strong con-
sistency at the cost of high latency or weak consistency with
low latency. DAX makes this choice for each read or write
operation by applying protocols that we designed based on
the storage tier usage characteristics of database systems.
With these protocols, DAX provides a storage service that
can host multiple DBMS tenants, scaling with the number
of tenants and the required storage capacity and bandwidth.
DAX also provides high availability and disaster tolerance
for the DBMS storage tier. Experiments using the TPC-C
benchmark show that DAX provides up to a factor of 4 per-
formance improvement over baseline solutions that do not
exploit flexible consistency.

1. INTRODUCTION
In this paper we present a storage service that is intended

to support cloud-hosted, data-centric applications. There is
a wide variety of cloud data management systems that such
applications can use to manage their persistent data. At
one extreme are so-called NoSQL database systems, such as
BigTable [7] and Cassandra [20]. These systems are scalable
and highly available, but their functionality is limited. They
typically provide simple key-based, record-level, read/write

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 4
Copyright 2013 VLDB Endowment 2150-8097/13/02... $ 10.00.

App

DAX

StorageTier

DBMS

Tenant

DAX

Client Lib

DBMS

Tenant

DAX

Client Lib

DBMS

Tenant

DAX

Client Lib

DBMS

Tenant

DAX

Client Lib

App App AppApp App

Data Center Data Center

Figure 1: DAX architecture.

interfaces and limited (or no) support for application-defined
transactions. Applications that use such systems directly
must either tolerate or work around these limitations.

At the other extreme, applications can store their data
using cloud-hosted relational database management systems
(DBMS). For example, clients of infrastructure-as-a-service
providers, such as Amazon, can deploy DBMS in virtual
machines and use these to provide database management
services for their applications. Alternatively, applications
can use services such as Amazon’s RDS or Microsoft SQL
Azure [4] in a similar way. This approach is best suited
to applications that can be supported by a single DBMS
instance, or that can be sharded across multiple indepen-
dent DBMS instances. High availability is also an issue, as
the DBMS represents a single point of failure – a problem
typically addressed using DBMS-level high availability tech-
niques. Despite these limitations, this approach is widely
used because it puts all of the well-understood benefits of
relational DBMS, such as SQL query processing and trans-
action support, in service of the application. This is the
approach we focus on in this paper.

A cloud-hosted DBMS must have some means of persis-
tently storing its database. One approach is to use a persis-
tent storage service provided within the cloud and accessed
over the network by the DBMS. An example of this is Ama-
zon’s Elastic Block Service (EBS), which provides network-
accessible persistent storage volumes that can be attached
to virtual machines.

In this paper, we present a back-end storage service
called DAX, for Distributed Application-controlled Consis-
tent Store, that is intended to provide network-accessible
persistent storage for hosted DBMS tenants. Each DBMS
tenant, in turn, supports one or more applications. This
architecture is illustrated in Figure 1. We have several ob-



jectives for DAX’s design that set it apart from other dis-
tributed storage services:

• scalable tenancy: DAX must accommodate the ag-
gregate storage demand (space and bandwidth) of all of
its DBMS tenants, and it should be able to scale out to ac-
commodate additional tenants or to meet growing demand
from existing tenants. Our focus is on scaling out the
storage tier to accommodate more tenants, not on scal-
ing out individual DBMS tenants. A substantial amount
of previous research has considered techniques for scaling
out DBMS [12, 14, 22] and techniques like sharding [15]
are widely used in practice. These techniques can also be
used to scale individual hosted DBMS running on DAX.
Furthermore, while DBMS scale-out is clearly an impor-
tant issue, current trends in server hardware and software
are making it more likely that an application can be sup-
ported by a single DBMS instance, with no need for scale
out. For example, it is possible at the time of this writing
to rent a virtual machine in Amazon’s EC2 with 68 GB of
main memory and 8 CPU cores, and physical servers with
1 TB of main memory and 32 or more cores are becom-
ing commonplace. While such powerful servers reduce the
need for elastic DBMS scale-out, we still need a scalable
and resilient storage tier, which we provide with DAX.

• high availability and disaster tolerance: We ex-
pect the storage service provided by DAX to remain avail-
able despite failures of DAX servers (high availability),
and even in the face of the loss of entire data centers
(disaster tolerance). To achieve this, DAX replicates data
across multiple geographically distributed data centers. If
a DBMS tenant fails, DAX ensures that the DBMS can be
restarted either in the same data center or in a different
data center. The tenant may be unavailable to its ap-
plications while it recovers, but DAX will ensure that no
durable updates are lost. Thus, DAX offloads part of the
work of protecting a tenant DBMS from the effects of fail-
ures. It provides highly available and widely distributed
access to the stored database, but leaves the task of en-
suring that the database service remains available to the
hosted DBMS.

• consistency: DAX should be able to host legacy
DBMS tenants, which expect to be provided with a consis-
tent view of the underlying stored database. Thus, DAX
must provide sufficiently strong consistency guarantees to
its tenants.

• DBMS specialization: DAX assumes that its clients
have DBMS-like properties. We discuss these assumptions
further in Section 2.

A common way to build strongly consistent highly avail-
able data stores is through the use of synchronous master-
slave replication. However, such systems are difficult to dis-
tribute over wide areas. Therefore, we have instead based
DAX on multi-master replication and Dynamo-style flexi-
ble consistency [16]. Flexible consistency means that clients
(in our case, the DBMS tenants) can perform either fast
read operations for which the storage system can provide
only weak consistency guarantees or slower read operations
with strong consistency guarantees. Similarly, clients can
perform fast writes with weak durability guarantees, or rel-
atively slow writes with stronger guarantees. As we show
in Section 3, these performance/consistency and perfor-
mance/durability tradeoffs can be substantial, especially in

widely distributed systems. DAX controls these trade-offs
automatically on behalf of its DBMS tenants. Its goal is
to approach the performance of the fast weakly consistent
(or weakly durable) operations, while still providing strong
guarantees to the tenants. It does this in part by taking ad-
vantage of the specific nature of the workload for which it is
targeted, e.g., the fact that each piece of stored data is used
by only one tenant.

This paper makes several research contributions. First,
we present a technique called optimistic I/O, which con-
trols the consistency of the storage operations issued by the
DBMS tenants. Optimistic I/O aims to achieve performance
approaching that of fast weakly consistent operations while
ensuring that the DBMS tenant sees a sufficiently consistent
view of storage.

Second, we describe DAX’s use of client-controlled syn-
chronization. Client-controlled synchronization allows DAX
to defer making guarantees about the durability of updates
until the DBMS tenant indicates that a guarantee is re-
quired. This allows DAX to hide some of the latency associ-
ated with updating replicated data. While client-controlled
synchronization could potentially be used by other types
of tenants, it is a natural fit with DBMS tenants, which
carefully control update durability in order to implement
database transactions.

Third, we define a consistency model for DAX that ac-
counts for the presence of explicit, DBMS-controlled syn-
chronization points. The model defines the consistency
requirements that a storage system needs to guarantee to
ensure correct operation when a DBMS fails and is restarted
after the failure (possible in a different data center).

Finally, we present an evaluation of the performance of
DAX running in Amazon’s EC2 cloud. We demonstrate its
scalability and availability using TPC-C workloads, and we
also measure the effectiveness of optimistic I/O and client-
controlled synchronization.

2. SYSTEM OVERVIEW
The system architecture illustrated in Figure 1 includes a

client library for each DBMS tenant and a shared storage
tier. The DAX storage tier provides a reliable, widely dis-
tributed, shared block storage service. Each tenant keeps
all of its persistent data, including its database and logs, in
DAX. We assume each DBMS tenant views persistent stor-
age as a set of files which are divided into fixed-size blocks.
The tenants issue requests to read and write blocks. The
DAX client library intercepts these requests and redirects
them to the DAX storage tier.

Since the tenants are relational DBMS, there are some
constraints on the workload that is expected by DAX. First,
since each tenant manages an independent database, the
storage tier assumes that, at any time, only a single client
can update each stored block. The single writer may change
over time. For example, a tenant DBMS may fail and be
restarted, perhaps in a different data center. However, at
any time, each block is owned by a single tenant. Second,
because each DBMS tenant manages its own block buffer
cache, there are no concurrent requests for a single block.
A DBMS may request different blocks concurrently, but all
requests for any particular block are totally ordered.

Since each DBMS tenant reads and writes a set of non-
overlapping blocks, one way to implement the DAX storage
tier is to use a distributed, replicated key/value store. To



do this, we can use block identifiers (file identifier plus block
offset) as unique keys, and the block’s contents as the value.
In the remainder of this section, we describe a baseline im-
plementation of the DAX storage tier based on this idea.

We will use as our baseline a distributed, replicated, multi-
master, flexible consistency, key/value system. Examples
of such systems include Dynamo [16], Cassandra [20], and
Voldemort [21]. The multi-master design of these systems
enables them to run in geographically distributed data cen-
ters, which we require for disaster tolerance in DAX. Next,
we briefly describe how such a system would handle DBMS
block read and write requests, using Cassandra as our model.

In Cassandra, each stored value (a block, in our case)
is replicated N times in the system, with placement deter-
mined by the key (block identifier). A client connects to any
Cassandra server and submits a read or write request. The
server to which the client connects acts as the coordinator
for that request. If the request is a write, the coordina-
tor determines which servers hold copies of the block, sends
the new value of the block to those servers, and waits for
acknowledgements from at least a write quorum W of the
servers before sending an acknowledgement to the client.
Similarly, if the request is a read, the coordinator sends a
request for the block to those servers that have it and waits
for each least a read quorum R of servers to respond. The
coordinator then sends to the client the most recent copy of
the requested block, as determined by timestamps (details
in the next paragraph). The Cassandra client can balance
consistency, durability, and performance by controlling the
values of R and W . As we will illustrate in the next sec-
tion, these tradeoffs can be particularly significant when the
copies are distributed across remote data centers, as message
latencies may be long.

Since a DBMS normally stores data in a file system or
directly on raw storage devices, it expects that when it
reads a block it will obtain the most recent version of that
block, and not a stale version. In classic quorum-based
multi-master systems [17], this is ensured by requiring that
R + W > N . Global write-ordering can be achieved by re-
quiring that W > N/2, with the write order determined by
the order in which write operations obtain their quorums.
Cassandra takes a slightly different approach to ordering
writes: clients are expected to supply a timestamp with each
write operation, and these timestamps are stored with the
data in Cassandra. The global write-ordering is determined
by these client-defined timestamps. That is, the most recent
write is defined to be the write with the largest timestamp.
Thus, in our baseline DAX implementation, we can ensure
that each read sees the most recent version of the block as
follows. First, the client library chooses monotonically in-
creasing timestamps for each block write operation issued
by its DBMS tenant. This is easy to do since all updates
of a given block originate from one tenant and are not con-
current. Second, the client submits read and write requests
on behalf of its tenant, choosing any R and W such that
R+W > N . This ensures that each read of a block will see
the most recent preceding update.

There are two potentially significant drawbacks to this
baseline. First, it may perform poorly, especially in a geo-
graphically distributed setting, because of the requirement
that R + W > N . Second, failures may impact the perfor-
mance and availability of such a system. In the remainder of
the paper, we describe how DAX addresses these drawbacks.

3. OPTIMISTIC I/O
We conducted some simple experiments to quantify the

performance tradeoffs in widely-distributed, multi-master,
flexible consistency systems, like the baseline system de-
scribed in the previous section. We again used Cassandra as
a representative system and deployed it in Amazon’s EC2
cloud. In each experiment we used a small 6-server Cassan-
dra cluster deployed in one of three different configurations:

1 zone: All six servers are in the same EC2 availability
zone, which is roughly analogous to a data center.

1 region: The servers are split evenly among three avail-
ability zones, all of which are located in the same ge-
ographic region (EC2’s US East Region, in Virginia).

3 regions: The servers are split evenly among three avail-
ability zones, with one zone in each of three geograph-
ically distributed EC2 regions: US East, US West-1
(Northern California), and US West-2 (Oregon).

We used the Yahoo! Cloud Serving Benchmark [10] to pro-
vide a Cassandra client application which reads or writes
values from randomly selected rows in a billion-key Cassan-
dra column family (a collection of tuples), at a rate of 1000
requests/second. The client runs in the US East region. In
these experiments, the degree of replication (N) is 3, and we
ensure that one copy of each row is located in each zone in
the multi-zone configurations. The client can be configured
to generate read operations with R = 1, R = N/2 + 1, or
R = N , henceforth referred to as Read(1), Read(QUORUM),
and Read(ALL) respectively. Similarly, writes can be config-
ured with W = 1 (Write(1)), W = N/2+1 (Write(QUORUM)),
or W = N (Write(ALL)). We measured the latency of these
operations in each Cassandra configuration.

Figure 2(a) illustrates the read and write latencies for
the 1-zone configuration, in which we expect the servers
to have low-latency interconnectivity. In this configuration,
Read(ALL) and Write(ALL) requests take roughly 60% longer
than Read(1) and Write(1), with the latency of Read(QUORUM)
and Write(QUORUM) lying in between. The situation is simi-
lar in the 1-region configuration (Figure 2(b)), although the
latency penalty for reading or writing a quorum of copies or
all copies is higher than in the 1-zone configuration.

In the 3-region configuration (Figure 2(c)), latencies
for Read(ALL) and Write(ALL) operations, as well as
Read(QUORUM) and Write(QUORUM), are significantly higher,
almost ten times higher than latencies in the 1-region
configuration. The performance tradeoff between Read(1)
and Read(QUORUM) or Read(ALL), and between Write(1) and
Write(QUORUM) or Write(ALL), is now much steeper – about a
factor of ten. Furthermore, note that Read(1) and Write(1)
are almost as fast in this configuration as they were in the
two single-region configurations. Although Cassandra sends
Read(1) and Write(1) operations to all replicas, including
those in the remote regions, it can respond to the client
as soon as the operation has completed at a single replica,
which will typically be local.

In summary, operations which require acknowledgements
from many replicas are slower than those that require only
one acknowledgement, and this “consistency penalty” is sig-
nificantly larger when the replicas are geographically dis-
tributed. In our baseline system, either read operations or
write operations (or both) would suffer this penalty.



One Quorum All
0

2

4

6

8

10

L
at

en
cy

 (
m

s)
Read

Write

One Quorum All
0

2

4

6

8

10

12

L
at

en
cy

 (
m

s)

Read

Write

One Quorum All
0

20

40

60

80

100

L
at

en
cy

 (
m

s)

Read

Write

(a) 1 zone (b) 1 region (3 zones) (c) 3 regions

Figure 2: Latency of Read and Write operations in three Cassandra configurations.

3.1 Basic Optimistic I/O
Optimistic I/O is a technique for ensuring consistent reads

for DBMS tenants, while avoiding most of the consistency
penalty shown in the previous section. In this section we
describe an initial, basic version of optimistic I/O, for which
we will assume that there are no server failures. In the
following sections, we consider the impact of server failures
and describe how to refine and extend the basic optimistic
I/O technique so that failures can be tolerated.

Optimistic I/O is based on the following observation: us-
ing Read(1) and Write(1) for reading and writing blocks does
not guarantee consistency, but the Read(1) operation will
usually return the most recent version. This assumes that
the storage tier updates all replicas of a block in response to
a Write(1) request, though it only waits for the first replica
to acknowledge the update before acknowledging the oper-
ation to the client. The remaining replica updates complete
asynchronously. Since all replicas are updated, whichever
copy the subsequent Read(1) returns is likely to be current.
Thus, to write data quickly, the storage tier can use fast
Write(1) operations, and to read data quickly it can op-
timistically perform fast Read(1) operations and hope that
they return the latest version. If they do not, then we must
fall back to some alternative to obtain the latest version.
To the extent that our optimism is justified and Read(1) re-
turns the latest value, we will be able to obtain consistent
I/O using fast Read(1) and Write(1) operations. Note that
using Write(1) provides only a weak durability guarantee,
since only one replica is known to have been updated when
the write request is acknowledged. We will return to this
issue in Section 4.

To implement optimistic I/O, we need a mechanism by
which the storage tier can determine whether a Read(1) has
returned the latest version. DAX does this using per-block
version numbers, which are managed by the client library.
The library assigns monotonically increasing version num-
bers to blocks as they are written by the tenant DBMS.
The storage tier stores a version number with each replica
and uses the version numbers to determine which replica
is the most recent. The client library also maintains an
in-memory version list in which it records the most recent
version numbers of different blocks. When the client library
writes a block, it records the version number associated with
this write in the version list. When a block is read using
Read(1), the storage tier returns the first block replica that
it is able to obtain, along with that replica’s stored version
number. The client library compares the returned version
number with the most recent version number from the ver-
sion list to determine whether the returned block replica is

stale. Version lists have a configurable maximum size. If a
client’s version list grows too large, it evicts entries from the
list using a least-recently-used (LRU) policy.

Since the version list is maintained in memory by the
client library, it does not persist across tenant failures. When
a DBMS tenant first starts, or when it restarts after a failure,
its version list will be empty. The version list is populated
gradually as the DBMS writes blocks. If the DBMS reads
a block for which there is no entry in the version list, DAX
cannot use Read(1), since it will not be able to check the re-
turned version for staleness. The same situation can occur
if a block’s latest version number is evicted from the version
list by the LRU policy. In these situations, the client library
falls back to Read(ALL), which is guaranteed to return the
latest version, and it records this latest version in the version
list.

When the client library detects a stale block read, it must
try again to obtain the latest version. One option is to
perform the second read using Read(ALL), which will ensure
that the latest version is returned. An alternative, which
DAX uses, is to simply retry the Read(1) operation. As
described in Section 6, DAX uses an asynchronous mech-
anism to bring stale replicas up to date. Because of this
asynchronous activity, a retried Read(1) operation will often
succeed in returning the latest version even if it accesses the
same replica as the original, stale Read(1).

4. HANDLING FAILURES
The basic optimistic I/O protocol in Section 3.1 is not

tolerant of failures of DAX servers. Since it uses Write(1),
loss of even a single replica may destroy the only copy of an
update in the storage tier, compromising durability. (Other
copies may have been successfully updated, but there is no
guarantee of this.) Conversely, since it uses Read(ALL) when
Read(1) cannot be used, failure of even a single replica will
prevent read operations from completing until that replica
is recovered, leading to a loss of availability.

Both of these problems can be resolved by increasing W
and decreasing R such that R + W > N is maintained. In
particular, we could use Write(QUORUM) and Read(QUORUM)
in the basic protocol in place of Write(1) and Read(ALL).
The drawback of this simple approach is that Write(QUORUM)
may be significantly slower than Write(1). This is partic-
ularly true, as shown in Figure 2(c), if we insist that the
write quorum include replicas in multiple, georgraphically
distributed data centers. As discussed in Section 4.2, this is
exactly what is needed to tolerate data center failures.

To achieve fault tolerance without the full expense of
Write(QUORUM), DAX makes use of client-controlled synchro-



nization. The idea is to weaken the durability guarantee
slightly, so that the storage tier need not immediately guar-
antee the durability of every write. Instead, we allow each
DBMS tenant to define explicit synchronization points by
which preceding updates must be reflected in a quorum (k)
of replicas. Until a DBMS has explicitly synchronized an
update, it cannot assume that this update is durable.

This approach is very natural because many DBMS are al-
ready designed to use explicit update synchronization points.
For example, a DBMS that implements the write-ahead log-
ging protocol will need to ensure that the transaction log
record describing a database update is safely in the log be-
fore the database itself can be updated. To do this, the
DBMS will write the log page and then issue a write syn-
chronization operation, such as a POSIX fsync call, to ob-
tain a guarantee from the underlying file system that the
log record has been forced all the way to the underlying
persistent storage, and will therefore be durable. Similarly,
a DBMS may write a batch of dirty blocks from its buffer
to the storage system and then perform a final synchroniza-
tion to ensure that the whole batch is durable. Any delay
between a write operation and the subsequent synchroniza-
tion point provides an opportunity for the storage tier to
hide some or all of the latency associated with that write.

When DAX receives a write request from a DBMS tenant,
it uses a new type of write operation that we have defined,
called Write(CSYNC). Like Write(1), Write(CSYNC) immedi-
ately sends update requests to all replicas and returns to the
client after a single replica has acknowledged the update. In
addition, Write(CSYNC) records the key (i.e., the block iden-
tifier) in a per-client sync pending list at the DAX server
to which the client library is connected. The key remains
in the sync pending list until all remaining replicas have,
asynchronously, acknowledged the update, at which point it
is removed. Write(CSYNC) operations experience about the
same latency as Write(1), since both return as soon as one
replica acknowledges the update.

When the DBMS needs to ensure that a write is durable
(at least k replicas updated) it issues an explicit synchroniza-
tion request. To implement these requests, DAX provides
an operation called CSync, which is analogous to the POSIX
fsync. On a CSync, the DAX server to which the client is
connected makes a snapshot of the client’s sync pending list
and blocks until at least k replica update acknowledgements
have been received for each update on the list. This en-
sures that all preceding writes from this DBMS tenant are
durable, i.e., replicated at least k times. The synchroniza-
tion request is then acknowledged to the client.

Figure 3 summarizes the refined version of the optimistic
I/O protocol that uses these new operations. We will refer
to this version as CSync-aware optimistic I/O to distinguish
it from the basic protocol that was presented in Section 3.
In the CSync-aware protocol, Write(CSYNC) is used in place
of Write(1) and Read(QUORUM) is used in place of Read(ALL).
In addition, the client library executes the CSync procedure
when the DBMS tenant performs a POSIX fsync operation.

There are two details of the CSync-aware optimistic pro-
tocol that are not shown in Figure 3. First, DAX ensures
that every block that is on the sync pending list is also on
the version list. (The version list replacement policy, imple-
mented by VersionList.put in Figure 3, simply skips blocks
with unsynchronized updates.) This ensures that the DAX
client library always knows the current version number

Read procedure:

(1) proc Read(blockId) ≡
(2) begin
(3) if blockId ∈ V ersionList
(4) then
(5) (data, v) := Read(1);
(6) comment: v is the stored version number
(7) while v < V ersionList.get(blockId) do
(8) comment: retry a stale read;
(9) comment: give up if too many retries

(10) comment: and return an error
(11) (data, v) := Read(1); od
(12) else
(13) comment: fall back to reading a quorum
(14) (data, v) := Read(QUORUM);
(15) V ersionList.put(blockId, v); fi
(16) return data;
(17) end

Write procedure:

(1) proc Write(blockId, data) ≡
(2) begin
(3) v := GenerateNewV ersionNum();
(4) comment: write the data using blockId as the key
(5) Write(CSYNC);
(6) V ersionList.put(blockId, v);
(7) end

Fsync procedure:

(1) proc Fsync() ≡
(2) begin
(3) comment: blocks until writes on sync pending
(4) comment: list are durable
(5) Csync();
(6) end

Figure 3: CSync-aware optimistic I/O protocol.

for blocks with unsynchronized updates, and need not rely
on Read(QUORUM) to read the current version. Read(QUORUM)
cannot be relied on to do so, since the unsynchronized up-
date may not yet be present at a full write quorum of repli-
cas. Second, DAX maintains a copy of the sync pending

list at the client library, in case the DAX server to which it
is connected should fail. If such a failure occurs, the client
library connects to any other DAX server and initializes the
sync pending list there using its copy.

Two parameters control the availability and durability of
the CSync-aware optimistic I/O protocol: N , the total num-
ber of copies of each block, and k, the number of copies that
must acknowledge a synchronized update. Any synchronized
update will survive up to k− 1 concurrent DAX server fail-
ures. Unsynchronized updates may not, but the DBMS does
not depend on the durability of such updates. DAX will nor-
mally be available (for read, write, and CSync operations),
as long as no more than min(k−1, N−k) servers have failed.
However, client-controlled synchronization does introduce a
small risk that a smaller number of failures may compromise
read availability. This may occur if all DAX servers holding
an unsynchronized update (which is not yet guaranteed to
be replicated k times) should fail. Since Write(CSYNC) sends
updates to all N copies of an object immediately (though
it does not wait for acknowledgements), such a situation is



unlikely. Should it occur, it will be manifested as a failed
read operation (lines 7-11 in Figure 3), which would require
a restart of the DBMS server (see Section 4.1), and hence a
temporary loss of DBMS availability. Since the DBMS does
not depend on the durability of unsynchronized writes, it
will be able to recover committed database updates during
restart using its normal recovery procedure (e.g., from the
transaction log). We never encountered this type of read
failure with our DAX prototype, although we do sometimes
need to retry Read(1) operations. The maximum number of
retries we saw in all of our experiments is 10.

4.1 Failure of a DBMS Tenant
Recovery from a failure of a DBMS tenant is accomplished

by starting a fresh instance of that DBMS, on a new server
if necessary. The new tenant instance goes through the nor-
mal DBMS recovery process using the transaction log and
database stored persistently in the DAX storage tier. This
approach to recovering failed DBMS instances is also used by
existing services like the Amazon Relational Database Ser-
vice (RDS). However, because DAX can be geographically
distributed, a DAX tenant can be restarted, if desired, in a
remote data center. The DBMS recovery process may result
in some tenant downtime. If downtime cannot be tolerated,
a DBMS-level high availability mechanism can be used to re-
duce or eliminate downtime. However, a discussion of such
mechanisms is outside the scope of this paper.

4.2 Loss of a Data Center
If the DAX storage tier spans multiple data centers, it can

be used to ensure that stored data survives the loss of all
servers in a data center, as can happen, for example, due
to a natural disaster. Stored blocks will remain available
provided that a quorum of block copies is present at the
surviving data center(s). DBMS tenants hosted in the failed
data center need to be restarted in a new data center and
recovered as discussed in Section 4.1.

To ensure that DAX can survive a data center failure,
the only additional mechanism we need is a data-center-
aware policy for placement of replicas. The purpose of such
a policy is to ensure that the storage tier distributes replicas
of every stored block across multiple data centers. Our DAX
prototype, which is based on Cassandra, is able to leverage
Cassandra’s replica placement policies to achieve this.

4.3 Consistency
In this section, we discuss the consistency guarantees made

by the CSync-aware optimistic I/O protocol shown in Fig-
ure 3. We will use the example timeline shown in Figure 4
to illustrate the consistency guarantees. The timeline repre-
sents a series of reads and writes of a single stored block. Be-
cause these requests are generated by a single DBMS, they
occur sequentially as disucussed in Section 2. Writes W0
and W1 in Figure 4 are synchronized writes, because they
are followed by a CSync operation. The remaining writes
are unsynchronized. The timeline is divided into epochs.
Each failure of the hosted DBMS defines an epoch bound-
ary. Three different epochs are shown in the figure.

The CSync-aware optimistic I/O protocol ensures that each
read sees the block as written by the most recent preceding
write in its epoch, if such a write exists. Thus, R1 will see
the block as written by W3 and R4 will see the block as writ-
ten by W4. We will refer to this property as epoch-bounded

strong consistency. It is identical to the usual notion of
strong consistency, but it applies only to reads for which
there is at least one preceding write (of the same block) in
the same epoch.

We refer to reads for which there is no preceding write in
the same epoch as initial reads. In Figure 4, R2, R3, and
R5 are initial reads. For initial reads, the CSync-aware opti-
mistic I/O protocol guarantees only that the read will read
a version at least as recent as that written by latest preced-
ing synchronized write. In our example, this means that R2
and R3 will see what is written by either W1, W2, or W3,
and R5 will see one of those versions or the version written
by W4. This may lead to problematic anomalies. For ex-
ample, R2 may return the version written by W3, while R3
returns the earlier version written by W1. If R2 occurs dur-
ing log-based recovery, the DBMS may decide that the block
is up-to-date and thus will not update it from the log. If R3
occurs during normal operation of the new DBMS instance,
those committed updates will be missing from the block.
Thus, the DBMS will have failed to preserve the atomicity
or durability of one or more its transactions from the first
epoch. In the following section, we present strong optimistic
I/O, an extension of the protocol shown in Figure 3 that
provides stronger guarantees for initial reads.

5. STRONG OPTIMISTIC I/O
One option for handling initial reads is to try to extend the

optimistic I/O protocol so that it provides a strong consis-
tency guarantee across epochs as well as within them. How-
ever, such a guarantee would be both difficult to enforce and
unnecessarily strong. Instead, we argue that the DAX stor-
age tier should behave like a non-replicated, locally attached
storage device or file system that has an explicit synchro-
nization operation (i.e., like a local disk). Most DBMS are
designed to work with such a storage system. In such a sys-
tem, unsynchronized writes may survive a failure, but they
are not guaranteed to do so. However, the key point is that
only one version of each block will survive. The survival can-
didates include (a) the version written by the most recent
synchronized update preceding the failure and (b) the ver-
sions written by any (unsynchronized) updates that occur
after the most recent synchronized update. Thus, at R2 the
storage tier would be free to return either the version written
by W1 or the version written by W2 or the version written
by W3. However, once it has shown a particular version to
R2, it must show the same version to R3, since only one
version should survive across a failure, i.e., across an epoch
boundary. Similarly, at R5 the storage tier can return either
the same version that was returned to R2 (and R3) or the
version that was written by W4. We can summarize these
additional consistency requirements as follows:
• A read operation with no preceding operations (on the
same block) in the same epoch (such as R2 and R5 in
Figure 4) must return either (a) the version written by the
most recent synchronized update in the preceding epoch
(or the version that exists at the beginning of the epoch if
there is no synchronized update) or (b) a version written
by one of the (unsynchronized) updates that occurs after
the most recent synchronized update. We refer to this as
Non-deterministic One-Copy (NOC) consistency.

• Consecutive read operations, with no intervening writes,
must return the same version. Thus, in Figure 4, R3 must



W0 W1 W3 R3W2 R1 R2 W4 R4 R5

csync

DBMS

failureepoch 1 epoch 2 epoch 3

DBMS

failure

Figure 4: Timeline example showing reads and writes of a single block in the presence of failures.

return the same version as R2. We refer to this property
as read stability.
Next, we present strong optimistic I/O, a refinement of

optimistic I/O that provides NOC consistency and read sta-
bility, in addition to epoch-bounded strong consistency.

The key additional idea in the strong optimistic I/O pro-
tocol is version promotion. When a block is initially read in
a new epoch, one candidate version of the block has its ver-
sion number “promoted” from the previous epoch into the
current epoch and is returned by the read call. Promotion
selects which version will survive from the previous epoch
and ensures that other versions from that earlier epoch will
never be read. Through careful management of version num-
bers, the version promotion protocol ensures that only one
version of the block can be promoted. In addition, the pro-
motion protocol performs both the read of a block and its
promotion using a single round of messages in the storage
tier, so promotion does not add significant overhead.

The strong optimistic I/O protocol is identical to the
CSync-aware protocol presented in Figure 3, except that the
Read(QUORUM) at line 14 is replaced by a new DAX opera-
tion called ReadPromote (Figure 5). Note that ReadPromote
is used only when the current version number of the block is
not found in the version list. This will always be the case for
an initial read of a block in a new epoch, since the version
list does not survive failure of the DBMS tenant.

To implement ReadPromote, we rely on two-part compos-
ite version numbers V = (e, t), where e is an epoch number
and t is a generated timestamp. We assume that each epoch
is associated by the client library with an epoch number, and
that these epoch numbers increase monotonically with each
failover (i.e., with each failure and restart of the DBMS). We
also rely on each client library being able to generate mono-
tonically increasing timestamps, even across failures. That
is, all version numbers generated during an epoch must have
a timestamp component larger than the timestamps in all
version numbers generated during previous epochs. We say
that V2 > V1 iff t2 > t1. (Because of our timestamp mono-
tonicity assumption, t2 > t1 implies e2 ≥ e1.) Whenever the
client library needs to generate a new version number, it uses
the current epoch number along with a newly generated t
that is larger than all previously generated t’s.
ReadPromote takes a single parameter, which is a version

number V = (e, t) generated in the current interval. It con-
tacts a quorum of servers holding copies of the block to
be read and waits for them to return a response (lines 3-
4). Each contacted server promotes its replica’s version into
epoch e (the current epoch) and returns both its copy of the
block and its original, unpromoted version number. Pro-
moting a version number means replacing its epoch number

ReadPromote procedure:

(1) proc ReadPromote(V ) ≡
(2) begin
(3) {(data1, V1), (data2, V2), ..., (dataq, Vq)}
(4) := ReadAndPromote(QUORUM, epoch(V ));
(6) if ∃1 ≤ i ≤ q : epoch(Vi) = epoch(V )
(7) then comment: choose the latest Vi

(8) return(datai, Vi)
(9) else if (V1 = V2 = ... = Vq)

(10) then return(data1, V1)
(11) else
(12) data := datai with largest Vi

(13) Write(QUORUM, data, V );
(14) return(data, V )
(15) fi
(16) fi
(18) end

Figure 5: ReadPromote operation.

while leaving its timestamp unchanged.
If at least one server returns a version from the cur-

rent epoch (lines 6-8), the latest such version is returned
to the client. Otherwise, all of the returned versions are
from previous epochs. If all of the returned versions are
identical (lines 9-10), then that version will be returned to
the client. That version will already have been promoted
into the current epoch by the quorum of servers that re-
ceived the ReadPromote request. Otherwise, ReadPromote

must choose one of the returned versions to survive from
the previous epoch. This version must be made to exist on
a quorum of the replicas. ReadPromote ensures this by using
a Write(QUORUM) operation to write the selected version of
the block back to the replica servers, using the new version
number V (lines 12-13).

In the (hopefully) common case in which the returned ver-
sions from the previous epoch are the same, ReadPromote

requires only a single message exchange, like Read(QUORUM).
In the worst case, which can occur, for example, if a
write was in progress at the time of the DBMS failover,
ReadPromote will require a second round of messages for
the Write(QUORUM).

Theorem 1. The full optimistic I/O protocol, with
ReadPromote, guarantees epoch-bounded strong consistency,
NOC consistency, and read stability.

Proof: Due to space constraints we only provide a sketch
of the proof. First, ReadPromote is only used for block b



when there are no unsynchronized updates of b in the cur-
rent epoch, since a block with unsynchronized updates is
guaranteed to remain on the version list and be read using
Read(1). If there has been a synchronized update in the
epoch and the block is subsequently evicted from the ver-
sion list, ReadPromote’s initial quorum read must see it and
will return it thereby maintaining intra-epoch strong consis-
tency. Since timestamps increase monotonically even across
epochs, updates from the current epoch always have larger
version numbers than updates from previous epochs, even if
those earlier updates have been promoted. If ReadPromote
is being used for an initial read in an epoch, it will return
a version from a previous epoch and will have ensured that
a quorum of replicas with that version exists, either by dis-
covering such a quorum or creating it with Write(QUORUM).
Replicas in this quorum will have version numbers larger
than any remaining replicas, so this version will be returned
by any subsequent reads until a new version is written in
the current epoch. �

6. DAX PROTOTYPE
To build a prototype of DAX, we decided to adapt an ex-

isting multi-master, flexible consistency, key/value storage
system rather than building from scratch. Starting with an
existing system allowed us to avoid re-implementing com-
mon aspects of the functionality of such systems. For ex-
ample, we re-used mechanisms for detecting failures and
for bringing failed servers back on-line, and mechanisms for
storing and retrieving values at each server.

Candidate starting points include Cassandra and Volde-
mort, both of which provide open-source implementations of
Dynamo-style quorum-based flexible consistency. We chose
Cassandra because it allows clients to choose read and write
quorums on a per-request basis, as required by the optimistic
I/O approach. Voldemort also supports flexible consistency,
but not on a per-request basis. Cassandra also expects a
client-supplied timestamp to be associated with each write
operation, and it uses these timestamps to impose a global
total ordering on each key’s writes. This also fits well with
DAX’s optimistic I/O approach, which requires per-request
version numbers. In our Cassandra-based prototype, we
use these version numbers as Cassandra timestamps. Cas-
sandra also implements data-center-aware replica placement
policies, which we take advantage of. Finally, Cassandra
provides various mechanisms (e.g., hinted-handoff and read-
repair) for asynchronously updating replicas that may have
missed writes. Read-repair, for example, is triggered auto-
matically when Cassandra discovers version mismatches on
a read. These mechanisms help to improve the performance
of optimistic I/O by increasing the likelihood that Read(1)
will find an up-to-date replica.

To build the DAX prototype, we had to modify and ex-
tend Cassandra in several ways. First, we created the DAX
client library, which implements optimistic I/O and serves
as the interface between the DBMS tenants and the stor-
age tier, controlling the consistency-level of each read and
write operation. Second, we added support for the CSync

operation, which involved implementing the sync pending

list at each Cassandra server. Finally, we added support
for the ReadPromote operation described in Figure 5. This
involved the creation of a new Cassandra message type and
the addition of version promotion logic at each server.

7. EXPERIMENTAL EVALUATION
We conducted an empirical evaluation of DAX, with the

goals of measuring the performance and effectiveness of op-
timistic I/O and client-controlled synchronization, verifying
the system’s scalability, and characterizing the system’s be-
havior under various failure scenarios. We conducted all of
our experiments in Amazon’s Elastic Compute Cloud (EC2).
EC2 is widely used to host data-intensive services of the kind
that we are interested in supporting, so it is a natural set-
ting for our experiments. Another reason for using EC2 is
that it allowed us to run experiments that use multiple data
centers. All of our experiments used EC2 large instances
(virtual machines), which have 7.5 GB of memory and a sin-
gle, locally attached 414 GB storage volume holding an ext3
file system. The virtual machines ran Ubuntu Linux with
the 2.6.38-11-virtual kernel. Our DAX prototype is based
on Cassandra version 1.0.7. MySQL version 5.5.8 with the
InnoDB storage manager was used as the DBMS tenant.

All of the experiments ran a TPC-C transaction process-
ing workload generated by the Percona TPC-C toolkit for
MySQL [26]. We used a 100-warehouse TPC-C database
instance with an initial size of 10 GB, and the MySQL
buffer pool size was set to 5 GB. The database grows dur-
ing a benchmark run due to record insertions. For each
DBMS, 50 concurrent TPC-C clients were used to gener-
ate the DBMS workload. The performance metric of inter-
est in our experiments is throughput, measured in TPC-C
NewOrder transactions per minute (TpmC). The maximum
size of the version list maintained by the client library was
set to 512K entries, sufficiently large to hold entries for most
of the database blocks.

7.1 Performance of Optimistic I/O
In this experiment, we consider three DAX configurations.

In each configuration, there is one EC2 server running a
single MySQL tenant, and nine EC2 servers implementing
the DAX storage tier. (DAX stores its data on those servers’
locally attached storage volumes.) Each database block is
replicated six times for a total data size of approximately 60
GB across the nine DAX servers. The three configurations
are as follows:
• 1 zone: All ten servers are located in the same EC2
availability zone (roughly analogous to a data center).

• 3 zones: The nine DAX servers are distributed evenly
over three EC2 availability zones, one of which also houses
the MySQL tenant server. All three zones are in the same
geographic region (US East). Two replicas of each block
are placed in each zone.

• 3 regions: Like the 3-zone configuration, except that
the three zones are located in geographically-distributed
EC2 regions: US East, US West-1 and US West-2.
In each EC2 configuration, we tested four versions of DAX,

for a total of twelve experiments. The DAX versions we
tested are as follows:
• Baseline 1: In this configuration, DAX performs I/O
operations using Write(ALL) and Read(1). This ensures
that all database and log updates are replicated 6 times
before being acknowledged to the DBMS, and all I/O is
strongly consistent, i.e., reads are guaranteed to see the
most recently written version of the data. Neither opti-
mistic I/O nor client-controlled synchronization is used.



1 zone 3 zones 3 regions
0

200

400

600

800

1000

1200

1400

1600
T

p
m

C
Basic Optimistic I/O

Strong Optimistic I/O

Baseline 1

Baseline 2

Figure 6: Performance of four DAX variants in three
EC2 configurations.

• Baseline 2:Like Baseline 1, except that Write(QUORUM)
and Read(QUORUM) are used instead of Write(ALL) and
Read(1). A quorum consists of N/2+1 replicas, i.e., 4 of
6 replicas. All I/O is strongly consistent, and neither op-
timistic I/O nor client-controlled synchronization is used.

• Basic Optimistic I/O: In this configuration, DAX
uses the optimistic I/O technique described in Section 3.
This ensures strongly consistent I/O, but only within an
epoch. Furthermore, database updates are not guaranteed
to be replicated at the time the DBMS write operation
completes. The database is, therefore, not safe in the face
of failures of DAX servers.

• Strong Optimistic I/O: In this configuration, DAX
uses the strong optimistic I/O protocol (Section 5), in-
cluding CSync and ReadPromote. I/O operations have
epoch-bounded strong consistency, NOC consistency, and
read stability, and updates are guaranteed to be replicated
at the synchronization points chosen by the DBMS.
Results from this experiment are presented in Figure 6. In

the two single-region configurations, optimistic I/O provides
up to a factor of two improvement in transaction through-
put relative to the baseline systems. In the 3-region con-
figuration, the improvement relative to the baseline is ap-
proximately a factor of four. Unlike the baselines, opti-
mistic I/O is able to handle most read and write requests
using Read(1) and Write(1). In contrast, the Write(ALL) or
Read(QUORUM)/Write(QUORUM) operations performed by the
baseline cases will experience higher latencies. Optimistic
I/O is not completely immune to the effects of inter-region
latency. The performance of the optimistic I/O variants is
lower in the 3-region configuration than in the single-region
configurations. However, the drop in throughput is much
smaller than for the baselines.

Strong optimistic I/O results in only a small performance
penalty relative to basic optimistic I/O, which is not tolerant
to failures. Most importantly, the penalty is small even in
the 3-region configuration. Thus, strong optimistic I/O is
able to guarantee that updates are replicated consistently
across three geographically distributed data centers (thereby
tolerating failures up to the loss of an entire data center)
while achieving only slightly lower throughput than basic
optimistic I/O, which makes no such guarantee.

7.2 Scalability
In this experiment, we investigate the tenant scalability

of DAX with strong optimistic I/O by varying the number

0 6 12 18 24 30

Number of DBMS Tenants

0

100

200

300

400

500

S
in

g
le

-T
en

an
t 

T
p

m
C

1 region

3 regions

Figure 7: Average, min, and max TpmC per DBMS
tenant. The number of DAX servers is 3/2 the num-
ber of tenants.

of DBMS tenants from 6 to 30 and increasing the number
of DAX servers proportionally, from 9 servers to 45 servers.
We use two DAX configurations. In the first, all servers are
located in a single availability zone. In the second, the DAX
servers and DBMS tenants are evenly distributed in three
EC2 regions. Each DBMS tenant manages a separate TPC-
C database with 100 warehouses and serves 50 concurrent
clients. There are three replicas of each database in the
storage tier. Figure 7 shows, for both DAX configurations,
the average, minimum, and maximum TpmC per tenant as
the number of tenants increases. With the ratio of three
DAX storage tier servers to two tenants that we maintained
in this experiment, the TPC-C throughput of the tenants
is limited by the I/O bandwidth at the DAX servers. We
observed nearly linear scale-out up to 30 tenant databases,
the largest number we tested. The per-tenant throughput
is slightly higher when there are fewer DAX servers. This is
because at smaller scales a higher portion of each tenant’s
database will be located locally at the DAX server to which
the tenant connects. As expected, throughput is lower in
the 3-region configuration due to the higher latency between
DAX servers, but we still observe nearly linear scale-out.

7.3 Fault Tolerance
Next, we present the results of several experiments that

illustrate the behavior of DAX under various failure condi-
tions. We present results for DAX with strong optimistic
I/O, and for Baseline 2 (Write(QUORUM)/Read(QUORUM)).
Baseline 1 (Write(ALL)/Read(1)) cannot be used in the pres-
ence of failures since Write(ALL) requires all replicas to be
available. In each case, the experiment begins with the 3-
region EC2 configuration: nine DAX servers, three in the US
East region (primary), three in the US West-1 region, and
three in US West-2 region, with two replicas of each block
in each region. A single MySQL tenant runs in the pri-
mary region. For each experiment, we measure the tenant’s
TPC-C throughput (TpmC) as a function of time. Average
throughput is reported every 10 seconds.

7.3.1 Failures of DAX Servers
Figure 8 illustrates a scenario in which one DAX server

in the primary data center fails at around the 300th second,
and then re-joins the storage tier at around the 900th sec-
ond. After the server fails, it takes the other DAX servers
30 to 90 seconds to detect the failure. During this pe-



Figure 8: Failure and recovery of a DAX server in
the primary data center. Failure occurs at 300 sec-
onds and recovery occurs at 900 seconds.

riod, read requests that are directed at the failed server will
time out and will have to be retried by the tenant. CSync

requests may also time out. This results in a dip in through-
put immediately after the failure for both strong optimistic
I/O and Baseline 2. The drop in performance relative to the
no-failure performance is about the same for both DAX con-
figurations. Eventually, all DAX servers are made aware of
the failure and no longer direct requests to the failed server.
The tenant’s throughput returns to its original level.

After the failed server re-joins the storage tier, the data
stored on that server will be stale. Read(1) requests that the
strong optimistic I/O protocol directs to the failed server are
likely to retrieve stale data and thus need to be retried by
the tenant, according to the optimistic I/O protocol. The
performance impact of these retries gradually diminishes as
the stale data on the re-joined server is brought into syn-
chronization, which Cassandra does automatically. In our
test scenario, the system required about 10 minutes after
the re-join to return to its full pre-failure performance level.
However, the system remains available throughout this re-
covery period. Furthermore, even when it temporarily dips,
optimistic I/O’s performance is always better than best per-
formance of Baseline 2.

The (poor) performance of Baseline 2 remains unchanged
after the failed server re-joins. That baseline routinely uses
relatively heavyweight Read(QUORUM) operations, even in the
common case of no failure, so it does not experience any
additional performance overhead when a failure occurs. Its
performance remains low in all cases.

Note that the storage tier has only three servers in the
primary region in these experiments, and those servers are
heavily utilized. Thus, the loss of one server represents a
loss of a third of the storage tier’s peak bandwidth at the
primary site. In a larger DAX system, or one that is less
heavily loaded, we would expect the impact of a single stor-
age server failure to be smaller than what is shown in Fig-
ure 8. Specifically, we would expect a shallower performance
dip after the server failure for strong optimistic I/O, and a
faster performance ramp-up after rejoin.

Figure 9 shows the results of an experiment similar to the
previous one, except that the failed DAX server is in one
of the secondary data centers. As in the previous scenario,
there is a brief dip in performance for both configurations
immediately after the failure due to request timeouts. Per-

Figure 9: Failure and recovery of a DAX server in a
secondary data center. Failure occurs at 300 seconds
and recovery occurs at 900 seconds.

formance returns to normal once all DAX servers are aware
of the failure. This time there is little impact on tenant
performance for both configurations when the failed server
re-joins the storage tier. Since the re-joined server is remote,
Read(1) requests issued by the strong optimistic I/O proto-
col are unlikely to be handled by that server. Instead, they
will be handled by servers in the primary region, which are
closer to the DBMS tenant. Since the data on those servers
is up to date, retries are rarely needed.

In both configurations, the re-joined server will gradually
be brought into synchronization in the background by Cas-
sandra, without affecting DBMS performance. As before,
the worst performance of strong optimistic I/O is better
than the best performance of Baseline 2.

7.3.2 Loss of a Data Center
Figure 10 shows the result of an experiment in which the

entire primary EC2 data center fails, resulting in the loss of
the DBMS tenant and all three DAX servers running there.
After the failure, a new MySQL tenant is launched in one
of the secondary data centers to take over from the failed
primary. The new tenant goes through its log-based trans-
actional recovery procedure using the database and transac-
tion log replicas that it is able to access through the DAX
storage servers in the secondary availability zones. Thus,
DAX allows the tenant DBMS to restore its availability
even after the entire primary data center is lost. No spe-
cial DBMS-level mechanisms are required to support this.

Figure 10 shows throughput for strong optimistic I/O and
Baseline 2. For both configurations, there is an unavailabil-
ity window of about 270 seconds while the new DBMS in-
stance goes through its recovery procedure. All of the down-
time is due to the DBMS recovery procedure. Performance
then ramps up gradually to its pre-failure level. The gradual
ramp-up under strong optimistic I/O is due to a combination
of several factors: the cold start of the new DBMS tenant,
the fact that DAX’s workload is more read-heavy during
restart, and the fact that these reads are more expensive
than normal for DAX. The initial read of each database or
log block requires ReadPromote since the block’s identifier
will not yet be present in the version list. Baseline 2 in-
curs the penalty for cold start but not for ReadPromote.
However, as in previous experiments, the performance of
Baseline 2 is always lower than strong optimistic I/O.



Figure 10: Failure of the primary data center and
recovery of MySQL.

8. RELATED WORK
Cloud Storage Systems: There are now many cloud

storage systems, all of which sacrifice functionality or con-
sistency (as compared to relational database systems) to
achieve scalability and fault tolerance. Different systems
make different design choices in the way they manage up-
dates, leading to different scalability, availability, and con-
sistency characteristics. Google’s BigTable [7] and its open
source cousin, HBase, use master-slave replication and pro-
vide strong consistency for reads and writes of single rows.
In contrast, systems such as Dynamo [16] and Cassan-
dra [20] use multi-master replication as described in Sec-
tion 2. PNUTS [9] provides per-record timeline consistency:
all replicas of a given record apply all updates to the record
in the same order. Spinnaker [27] enables client applica-
tions to choose between strong consistency and eventual
consistency for every read. The system only runs in one
data center, and it uses heavyweight Paxos-based replica-
tion, leading to high read and write latencies. All of the
systems mentioned thus far provide consistency guarantees
at the granularity of one row. Other cloud storage systems
offer multi-row consistency guarantees [3, 13, 24, 25, 29],
but such multi-row guarantees are not required by DAX.

The importance of consistent transactions on storage sys-
tems distributed across data centers is highlighted by recent
work in this area. Patterson et al. [24] present a protocol
that provides consistent multi-row transactions across mul-
tiple data centers, even in the presence of multiple writers
for every row. The protocol is fairly heavyweight, and it as-
sumes that the storage system provides strong consistency
for reads and writes of individual rows. In contrast, DAX
uses a lightweight protocol that takes advantage of the prop-
erties of DBMS transactions and the ability of flexibility con-
sistency systems to hide latency across data centers. DAX’s
latency hiding relies on the assumption that reads in even-
tual consistency storage systems usually return fresh data.
This assumption has been verified and quantified in [2].

Database Systems on Cloud Storage: DAX is not the
first cloud storage tier for relational DBMS. ElasTras [12]
is perhaps closest to the work presented here. Like DAX,
ElasTras is intended to host database systems on a shared
storage tier. However, ElasTras assumes that the storage
tier provides strongly consistent read and write operations,
so it is not concerned with questions of managing request
consistency, which is the focus of this paper. Instead, Elas-
Tras is concerned with issues that are orthogonal to this

paper, such as allowing co-located hosted database systems
to share resources. Commercial services, such as Amazon’s
EBS, are also used to provide storage services for DBMS
tenants. EBS provides strongly consistent reads and writes,
but we are not aware of any public information about its
implementation. Unlike DAX, these storage services are not
intended to support geographically distributed replication.

Brantner et al. [6] considered the question of how to host
database systems on Amazon’s Simple Storage Service (S3),
which provides only weak eventual consistency guarantees.
As in our work, they use the underlying storage tier (S3) as a
block storage device. However, their task is more challeng-
ing because of S3’s weak eventual consistency guarantees,
and because they allow multiple hosted database systems
to access a single stored database. As a result, it is dif-
ficult to offer transactional guarantees to the applications
built on top of the hosted database systems. In contrast,
our work takes advantage of a flexible consistency model to
offer transactional guarantees to the hosted DBMS applica-
tions without sacrificing performance.

Recent work [23] has looked at hosting relational database
services on a storage tier that provides tuple-level access as
well as indexing, concurrency control and buffering. The
storage tier in that work is based on Sinfonia [1]. Since DAX
relies on a storage tier that provides a block-level interface,
it resides in a very different part of the design spectrum.

Other Approaches to Database Scalability: DAX
scales out to accommodate additional database tenants and
additional aggregate demand for storage capacity and band-
width. However, by itself it does not enable scale-out of
individual DBMS tenants. There are other approaches to
database scalability that do enable scale-out of individual
database systems. One option is to use DBMS-managed
(or middleware-managed) database replication. Kemme et
al. [19] provide a recent overview of the substantial body of
work on this topic. In such systems, updates are typically
performed at all replicas, while reads can be performed at
any replica. In DAX, each update is executed at only one
DBMS, but the effect of the update is replicated in the stor-
age tier. In some replicated DBMS, a master DBMS or
middleware server is responsible for determining the order
in which update operations will occur at all replicas. Such
systems are closest to DAX, in which each hosted DBMS
tenant determines the ordering of its write operations and
the storage tier adheres to the DBMS-prescribed order.

Database partitioning or sharding [15], which is widely
used in practice, is another approach to DBMS scale-out.
HStore [18] and its commercial spin-off, VoltDB, store
all the data of a database in main memory, partitioned
among many servers and replicated for durability. Mem-
cacheSQL [8] is another system that uses main memory,
integrating buffer pool management in a relational DBMS
with the Memcached distributed caching platform to enable
one DBMS instance to use buffer pools that are distributed
among many servers. Hyder [5] promises to scale a transac-
tional database across multiple servers by exploiting a fast
flash-based shared log. Some of these approaches may be
used in conjunction with DAX if there is a need to scale a
DBMS tenant beyond one server.

Spanner [11], is a recent multi-tenant database service
that supports (a subset of) SQL and runs on a storage sys-
tem distributed across multiple data centers. As such, Span-
ner has the same high level goal as DAX. Spanner is a com-



pletely new system built from the ground up, with a new
replicated storage layer, transaction manager, and query
processor. It is a highly engineered system that supports
a rich set of features, some of which (e.g., multiple writers
for the same database) are not supported by DAX. However,
Spanner relies on a service called TrueTime that minimizes
clock skew among data centers and reports the maximum
possible clock skew. The implementation of TrueTime is
distributed among the data centers in which Spanner runs,
and it relies on special hardware. Further, Spanner uses the
standard, heavyweight Paxos protocol (with some optimiza-
tions) for replication among data centers, which makes its
latency high [28]. In contrast, DAX provides a simpler ser-
vice and focuses on minimizing latency between data centers
while maintaining consistency. It can support existing re-
lational database systems such as MySQL and it does not
rely on any special hardware.

9. CONCLUSIONS
We have presented DAX, a distributed system intended

to support the storage requirements of multiple DBMS ten-
ants. DAX is scalable in the number of tenants it supports,
and offers tenants scalable storage capacity and bandwidth.
In addition, DAX tolerates failures up to the loss of an entire
data center. To provide these benefits, DAX relies on a flexi-
ble consistency key/value storage system, and it judiciously
manages the consistency level of different read and write
operations to enable low-latency, geographically distributed
replication while satisfying the consistency requirements of
the DBMS tenants. Our experiments with a prototype of
DAX based on Cassandra show that it provides up to a fac-
tor of 4 performance improvement over baseline solutions.

10. ACKNOWLEDGMENTS
This work was supported by the Natural Sciences and

Engineering Research Council of Canada (NSERC) and by
an Amazon Web Services Research Grant.

11. REFERENCES
[1] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and

C. Karamanolis. Sinfonia: a new paradigm for
building scalable distributed systems. In SOSP, 2007.

[2] P. Bailis, S. Venkataraman, M. J. Franklin, J. M.
Hellerstein, and I. Stoica. Probabilistically bounded
staleness for practical partial quorums. PVLDB, 2012.

[3] J. Baker et al. Megastore: Providing scalable, highly
available storage for interactive services. In CIDR,
2011.

[4] P. A. Bernstein et al. Adapting Microsoft SQL Server
for cloud computing. In ICDE, 2011.

[5] P. A. Bernstein, C. Reid, and S. Das. Hyder - a
transactional record manager for shared flash. In
CIDR, 2011.

[6] M. Brantner, D. Florescuy, D. Graf, D. Kossmann,
and T. Kraska. Building a database on S3. In
SIGMOD, 2008.

[7] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and
R. E. Gruber. Bigtable: A distributed storage system
for structured data. In OSDI, 2006.

[8] Q. Chen, M. Hsu, and R. Wu. MemcacheSQL - a
scale-out SQL cache engine. In BIRTE, 2011.

[9] B. F. Cooper et al. PNUTS: Yahoo!’s hosted data
serving platform. In PVLDB, 2008.

[10] B. F. Cooper, A. Silberstein, E. Tam,
R. Ramakrishnan, and R. Sears. Benchmarking cloud
serving systems with YCSB. In SoCC, 2010.

[11] J. C. Corbett et al. Spanner: Google’s
globally-distributed database. In OSDI, 2012.

[12] S. Das, D. Agrawal, and A. El Abbadi. ElasTraS: An
elastic transactional data store in the cloud. In
HotCloud, 2009.

[13] S. Das, D. Agrawal, and A. El Abbadi. G-Store: A
scalable data store for transactional multi key access
in the cloud. In SoCC, 2010.

[14] S. Das, S. Nishimura, D. Agrawal, and A. El Abbadi.
Albatross: Lightweight elasticity in shared storage
databases for the cloud using live data migration.
PVLDB, 2011.

[15] Database sharding whitepaper.
http://www.dbshards.com/articles/database-sharding-
whitepapers/.

[16] G. DeCandia, D. Hastorun, M. Jampani,
G. Kakulapati, and A. Lakshman. Dynamo: Amazon’s
highly available key-value store. In SOSP, 2007.

[17] D. K. Gifford. Weighted voting for replicated data. In
SOSP, 1979.

[18] S. Harizopoulos, D. J. Abadi, S. Madden, and
M. Stonebraker. OLTP through the looking glass, and
what we found there. In SIGMOD, 2008.

[19] B. Kemme, R. Jiménez-Peris, and M. Patiño-Mart́ınez.
Database Replication. Synthesis Lectures on Data
Management. Morgan & Claypool Publishers, 2010.

[20] A. Lakshman and P. Malik. Cassandra - a
decentralized structured storage system. In LADIS,
2009.

[21] LinkedIn Data Infrastructure Team. Data
infrastructure at LinkedIn. In ICDE, 2012.

[22] U. F. Minhas, R. Liu, A. Aboulnaga, K. Salem, J. Ng,
and S. Robertson. Elastic scale-out for partition-based
database systems. In SMDB, 2012.

[23] M. T. Najaran, P. Wijesekera, A. Warfield, and N. B.
Hutchinson. Distributed indexing and locking: In
search of scalable consistency. In LADIS, 2011.

[24] S. Patterson, A. J. Elmore, F. Nawab, D. Agrawal,
and A. El Abbadi. Serializability, not serial:
Concurrency control and availability in
multi-datacenter datastores. PVLDB, 2012.

[25] D. Peng and F. Dabek. Large-scale incremental
processing using distributed transactions and
notifications. In OSDI, 2010.

[26] Percona TPC-C toolkit for MySQL.
https://code.launchpad.net/ percona-
dev/perconatools/tpcc-mysql.

[27] J. Rao, E. J. Shekita, and S. Tata. Using Paxos to
build a scalable, consistent, and highly available
datastore. In PVLDB, 2011.

[28] J. Shute et al. F1: the fault-tolerant distributed
RDBMS supporting Google’s ad business. In
SIGMOD, 2012.

[29] Y. Sovran et al. Transactional storage for
geo-replicated systems. In SOSP, 2011.


