ReStore: Reusing Results of MapReduce Jobs

Iman Elghandour
University of Waterloo

ielghand@cs.uwaterloo.ca

ABSTRACT

Analyzing large scale data has emerged as an important ac-
tivity for many organizations in the past few years. This
large scale data analysis is facilitated by the MapReduce
programming and execution model and its implementations,
most notably Hadoop. Users of MapReduce often have anal-
ysis tasks that are too complex to express as individual
MapReduce jobs. Instead, they use high-level query lan-
guages such as Pig, Hive, or Jaql to express their complex
tasks. The compilers of these languages translate queries
into workflows of MapReduce jobs. Each job in these work-
flows reads its input from the distributed file system used by
the MapReduce system and produces output that is stored
in this distributed file system and read as input by the next
job in the workflow. The current practice is to delete these
intermediate results from the distributed file system at the
end of executing the workflow. One way to improve the per-
formance of workflows of MapReduce jobs is to keep these
intermediate results and reuse them for future workflows
submitted to the system. In this paper, we present ReStore,
a system that manages the storage and reuse of such in-
termediate results. ReStore can reuse the output of whole
MapReduce jobs that are part of a workflow, and it can
also create additional reuse opportunities by materializing
and storing the output of query execution operators that are
executed within a MapReduce job. We have implemented
ReStore as an extension to the Pig dataflow system on top
of Hadoop, and we experimentally demonstrate significant
speedups on queries from the PigMix benchmark.

1. INTRODUCTION

Massive scale data analysis has become a main activity for
many enterprises and research groups. Companies such as
Facebook, Yahoo, and Google now own petabyte-scale data
warehouses that are accessed on a regular basis using ad hoc
queries and periodic batch jobs [7, 16], and terabyte-scale
data warehouses are now common in many smaller compa-
nies. This large scale data analysis is currently supported

Ashraf Aboulnaga

University of Waterloo
ashraf@cs.uwaterloo.ca

Store result
of whole job

Store result of
sub-job

Figure 1: An example workflow of MapReduce jobs.

by the MapReduce programming and execution model [9]
and its implementations such as Hadoop [1], which is now
one of the major platforms for data analysis.

Users of MapReduce often have analysis tasks that are too
complex to express as one MapReduce job. Instead, they
often use high-level query languages such as Pig Latin [11,
14], Hive [15], or Jaql [8] to express their complex analy-
sis tasks. The compilers of these query languages translate
queries into workflows of MapReduce jobs, such as the one
shown in Figure 1. Optimizing the performance of such
workflows is important given the popularity of MapReduce
and these query languages on top of it.

Each job in a workflow of MapReduce jobs produces out-
put that is stored in the distributed file system used by the
MapReduce system (e.g., HDFS [3] in the case of Hadoop).
These intermediate results are used as input by subsequent
jobs in the workflow. For example, Job3in Figure 1 produces
output that is used as input by Jobj and Job5. The current
practice is to delete these intermediate outputs after finish-
ing the execution of the workflow. In this paper, we present
ReStore, a system that improves the performance of work-
flows of MapReduce jobs generated from high-level query
languages by storing the intermediate results of executed
workflows and reusing them for future workflows submitted
to the system.

We expect reusing the output of MapReduce jobs to be
beneficial since it is common for enterprises to have large
data sets on which many data analysis queries are executed
(e.g., the usage log data in internet companies such as Face-
book). Queries on these data sets typically perform the fol-
lowing steps: (1) load the data set, (2) perform some simple
processing to filter out unnecessary data, and (3) perform
extra processing on the small fraction of the loaded data that
passes the filter. Steps 1 and 2 of one workflow are likely
to be repeated in other workflows, and even parts of Step 3.
These steps are repeated in many queries, and the MapRe-

duce jobs that execute them can be replaced by reading the
stored outputs of similar jobs that were executed in past
workflows, and whose output we have stored using ReStore.
Moreover, even if full jobs cannot be reused, parts of a job
(which we call a sub-job) can be useful for future workflows,
and ReStore can materialize and store the outputs of such
sub-jobs.

Finding sharing opportunities among queries that are sub-
mitted in the same batch to a MapReduce cluster has been
studied in [5] and [13], but these works focus on sharing
between queries that are executed concurrently and are lim-
ited to sharing one operator between multiple queries. In
this paper, we enable queries submitted at different times
to share results and we can share large portions of the exe-
cuted workflows. The importance of sharing is illustrated by
the fact that Facebook stores the result of any query in its
MapReduce cluster for seven days so that it can be shared
among users [16].

ReStore can be built on top of dataflow language proces-
sors such as Pig, Hive, or Jaql. These language processors
translate queries into workflows of MapReduce jobs. Each
of these MapReduce jobs has a physical query execution plan
that contains one or more physical operators that are exe-
cuted by this job. Each language has a fixed set of physical
operators such as Filter, Select, and Join. The workflows
of MapReduce jobs are submitted to ReStore, which per-
forms the following: (1) it rewrites the MapReduce jobs in
a submitted workflow to reuse job outputs previously stored
in the system, (2) it stores the outputs of executed jobs
for future reuse, (3) it creates more reuse opportunities by
storing the outputs of sub-jobs in addition to whole MapRe-
duce jobs, and (4) it selects the outputs of jobs to keep in the
distributed file system and those to delete. After ReStore
rewrites a MapReduce job, it submits it to the MapReduce
system to be executed. These steps can be viewed as analo-
gous to the steps of building and using materialized views for
relational databases [12]. In this paper, we focus on describ-
ing steps 1-3 and present a brief discussion of techniques for
performing step 4.

In the rest of the paper we present the following contri-
butions:

e A framework for creating reuse opportunities between
workflows of MapReduce jobs and taking advantage of
these opportunities (Section 2).

e A technique to rewrite input workflows of MapReduce
jobs to reuse the results of previously executed jobs
stored in the system (Section 3).

e A technique to increase reuse opportunities by materi-
alizing the outputs of sub-jobs of the executed MapRe-
duce jobs (Section 4).

e A proposal of a primitive set of heuristic rules for de-
ciding which of the candidate MapReduce job outputs
to keep and which to discard (Section 5).

e An implementation of ReStore on top of the Pig sys-
tem [11, 14] (Section 6), and an experimental study
using this implementation (Section 7).

2. OVERVIEW OF RESTORE

The compilers of dataflow languages such as Pig Latin
or Hive translate an input SQL-like query into a physi-
cal query execution plan that consists of physical operators

such as Filter, Select, and Join. The compiler then embeds
the operators of this query execution plan into a workflow
of MapReduce jobs. The reason for having a workflow of
MapReduce jobs and not just one MapReduce job is that
some physical operators such as Join and Group need to be
divided between a mapper stage and a reducer stage [14].
Consequently, when more than one of these physical opera-
tors exist in a query execution plan, each one of them has
to be embedded in a separate MapReduce job. Each gener-
ated MapReduce job reads its inputs from the distributed
file system using one or more Load operators and stores its
output in the distributed file system using a Store opera-
tor. After embedding all physical operators into mapper
and reducer stages, the result is a workflow of MapReduce
jobs, each with its own physical query execution plan. The
compiler then generates code for each MapReduce job in
the workflow and passes this job to the MapReduce sys-
tem (e.g., Hadoop) for execution. ReStore extends such a
dataflow system by adding functionality that enables future
workflows to reuse the output of full MapReduce jobs with
all the physical operators that they contain, or the output of
sub-jobs representing some of the physical operators within
a MapReduce job.

To illustrate the various result reuse opportunities in this
paper, we use as an example two queries Q1 and Q2. The
workflows of MapReduce jobs for these queries and the phys-
ical query execution plans that are embedded in these jobs
are shown in Figures 2 and 3. These workflows would be
the inputs to ReStore. The Q2 physical plan in Figure 3 is
divided into two MapReduce jobs because each of the Join
and Group operators in Q2 needs to be placed in a separate
reducer stage.

Query Q1 (based on PigMix L2): Return the esti-
mated revenue for each user viewing web pages

A = load ’page_views’ as (user, timestamp,
est_revenue, page_info, page_links);
B = foreach A generate user, est_revenue;

alpha = load ’users’ using (name, phone,
address, city);

beta = foreach alpha generate name;

C = join beta by name, A by user;

store C into ’L2_out’;

Query Q2 (based on PigMix L3): Return the total
estimated revenue for each user viewing web pages,
grouped by user name

A

load ’page_views’ as (user, timestamp,
est_revenue, page_info, page_links);
B = foreach A generate user, est_revenue;
alpha = load ’users’ using (name, phone,
address, city);
beta = foreach alpha generate name;
C = join beta by name, A by user;
D = group C by $0;
E = foreach D generate group, SUM(C.est_revenue);
store E into ’L3_out’;

Next, we describe the reuse opportunities that we exploit
in this paper and the expected benefit of such reuse, and in
Section 2.2 we present the ReStore architecture.

Throughout this paper, we use queries that are written
in Pig Latin [14] and that come from the PigMix bench-
mark [4].

MR Jobl

Datal |__: @ @
/

J
Data2 |_; @ @
/

Figure 2: The MapReduce workflow for query Q1.

Data o/p
oin Q1

MR Job1 MR JlobZ
I

Data
1 B
J
Data
2 B

Figure 3: The MapReduce workflow for query Q2.

— - Data
oin > Group p{ A | o/
p ee o

2.1 Types of Result Reuse in ReStore

Every job in the workflow does not start until all the jobs
on which it depends finish. Therefore, the total time needed
to execute Jobn, Tiotai(Jobrn), equals the time needed to
finish executing the job, ET(Joby), in addition to the time
needed to finish all jobs, Vicy Job;, where Y is the set of
jobs on which Job,, depends, which is the time needed for
the slowest of these jobs to finish. Hence, Tiotqi(Joby) can
be expressed as:

Tiotar(Jobn) = ET(Jobyn) + maziey{ Tiotai(Job:)} (1)

ReStore generates two types of reuse opportunities by
materializing the output of: (1) whole jobs, which reduces
mazicy { Tiotar(Jobi)} in future workflows, and (2) opera-
tors in jobs (sub-jobs), which reduces ET(Joby) in future
workflows. Next, we discuss these two reuse opportunities.

A MapReduce job can appear in multiple workflows that
are generated by the dataflow language compiler for different
queries that are submitted to the system at different times.
Keeping the output of any job, Ja, in the distributed file
system and reusing it in future workflows that have Ja re-
occurring in them is expected to reduce the execution time
of these workflows. For example, Q1 (Figure 2) joins two
data sets in a MapReduce job, and Q2 also joins the same
two data sets and then performs grouping and aggregation
on the result of the join. Thus, if we keep the output of Q1
in the distributed file system, we can rewrite Q2 to reuse
this output. Figure 4 shows the rewritten workflow of Q2.

In Equation 1, if all dependant jobs of Job, were pre-
viously executed and are stored in the system, the total
time to execute Job, can now be reduced to: Tiorai(Jobrn) =
ET(Joby). If a subset of these jobs, X C Y, is not al-
ready stored in the system and therefore we still need to ex-
ecute these jobs before Job,,, the total time to execute Job,

MR Rewritten Job2
I

Stored Data o/p
o/pQl Agg Q2

Figure 4: The MapReduce workflow for query Q2
after rewriting it to reuse the output of query Q1.

MR Job1l
__________ N
-
i)
| |
Stored
MR,Jobl
S N \

Stored

Figure 5: Different MapReduce jobs that can be
used to rewrite query Q1.

when rewritten to reuse stored job outputs is reduced only
if maxiex{Tiotar(Jobs)} is less than mazicy { Tiotar(Jobs)}.

Reusing the output of previously executed MapReduce
jobs can significantly reduce the execution time of a work-
flow. However, it may not be easy to find a complete MapRe-
duce job occurring unchanged in multiple workflows. It is
more likely to find a DAG of physical operators that forms
part of the query execution plan within one MapReduce job
in one workflow occurring again in a MapReduce job in an-
other workflow. The second type of reuse in ReStore is to
materialize the output of such a DAG of physical opera-
tors that is part of a MapReduce job (i.e., a sub-job) and
store it for future reuse. For example, consider the physical
plan of Q1 shown in Figure 2. The plan starts with Load
and Project operators that read data from two different data
sources and discard the unnecessary columns. The output
of the two Project operators is then pipelined into a Join
operator. If we assume that the Load and Project operators
on the two data sources form sub-jobs whose outputs were
previously materialized and stored by ReStore, we can load
these materialized outputs and pipeline them into the Join
operator. Figure 5 shows the MapReduce jobs that produce
these outputs, and Figure 6 shows Q1 after rewriting it to
reuse these outputs.

The execution time of a job can be modeled as:

ET(JObn) = Tloa,d + Z ET(OP’L) + Tso'rt + Tsto're (2)

7

where Tjoqq is the time required to load the data, ET(OP;)
is the time required to execute physical operator OP;, Tsort
is the time required to sort and shuffle the data between
the mappers and reducers of the job, and Tsiore is the time
required to store the final output of the job. Reducing the

MR Rewritten Job1

Stored
o/pA [
J —
Data o/p
Join Q1
Stored
o/pB [
\/_

Figure 6: The MapReduce workflow for query Q1
after rewriting it to reuse the outputs of sub-jobs.

size of the loaded data will reduce Tjoqq. Furthermore, load-
ing the stored outputs of some of the operators also reduces
the time needed to execute these operators, Y . ET(OPF;).
These reductions add up and reduce ET(Job.,).

2.2 ReStore System Architecture

Figure 7 shows the main components of ReStore and how
it is connected to the dataflow and MapReduce systems on
which it is built. The input to ReStore is a workflow of
MapReduce jobs generated by a dataflow system for an in-
put query. The outputs are: (1) a modified MapReduce
workflow that exploits prior jobs executed in the MapRe-
duce system and stored by ReStore, and (2) a new set of job
outputs to store in the distributed file system.

ReStore keeps a repository to manage the stored MapRe-
duce job outputs. This repository contains for each stored
job output: (1) the physical query execution plan of the
MapReduce job that was executed to produce this output,
(2) the filename of the output in the distributed file system,
and (3) statistics about the MapReduce job that produced
the output and the frequency of use of this output by dif-
ferent workflows. The physical plan of a MapReduce job
contains information about the input data, the output data,
and the operators that were executed to compute the output
data. For example, we store in the repository the physical
plan shown in Figure 2 along with the filename in the dis-
tributed file system of the output of the MapReduce job
that executed Q1. We also store in the repository statistics
about the MapReduce job that executed the physical plan,
such as the size of the input, the size of the output, and the
average execution time of mappers and reducers. In addi-
tion, we store statistics about how frequently the physical
plan was used to rewrite queries submitted to ReStore. In
Section 5, we describe how these statistics can be used to
evaluate the benefit of keeping results in the repository.

ReStore has three main components: (1) plan matcher
and rewriter, (2) sub-job enumerator, and (3) enumerated
sub-job selector. For each job in the input workflow of
MapReduce jobs, the plan matcher and rewriter searches
the ReStore repository for the outputs of past jobs that can
be used to answer all or part of this input job. The plan
matcher and rewriter then rewrites the input job to reuse
any outputs that it finds. The result of rewriting an input
workflow of MapReduce jobs is a new workflow that likely
performs less work than the input workflow and potentially
has fewer jobs. The next step is to identify operators in
the MapReduce jobs of the rewritten workflow that we ex-

MapReduce

MapReduce System MapReduce
job job stats

Prepare
MapReduce

Dataflow System
(e.g., Pig, Hive, Jaqgl)

MapReduce
plan with
injected

Workflow of Rewritten
MapReduce Plan MapReduce
jobs Matcher
(physical plan)

Enumerated
Sub-job

Enumerator
Selector

ReStore

Repository of

MapReduce Job Outputs

Figure 7: ReStore system architecture.

pect can be reused by future MapReduce workflows, which is
done by the second and third components of ReStore. The
second component is the sub-job enumerator, which enu-
merates for a given input MapReduce job the subsets of the
physical operators within this job (DAGs of physical oper-
ators, or sub-jobs) that can be materialized and stored in
the distributed file system. After executing the rewritten
workflow in the MapReduce system, the enumerated sub-
job selector — the third component of ReStore — examines
the statistics collected for the MapReduce jobs that make
up this workflow and selects which job outputs to keep in
the repository and which to discard.

Note that matching, sub-job enumeration, and enumer-
ated sub-job selection are based on physical plans. This
makes ReStore portable across different dataflow systems
since all these systems have similar physical operators. Cus-
tomizing ReStore for a specific dataflow system only requires
making it aware of the specific physical operators of the sys-
tem. All algorithms would work with the new physical op-
erators with little or no change. Next, we discuss the three
components of ReStore in more detail.

3. MATCHING INPUT MAPREDUCE JOBS
WITH PLANS FROM THE REPOSITORY

The first phase of ReStore is the plan matcher and rewriter.
Matching and rewriting are performed on the physical plan
of the input workflow of MapReduce jobs. The ReStore
repository contains outputs of previously executed MapRe-
duce jobs and the physical plans of these jobs, and the goal
of matching and rewriting is to find physical plans in the
repository that can be used to rewrite the jobs that make
up the input workflow.

Matching and rewriting processes one MapReduce job at a
time. Each MapReduce job in the input workflow is matched
against the repository and rewritten to use job outputs in
the repository if possible. The first jobs to be matched
against the repository are the ones that read the input data
sets, and the last jobs to be matched are the ones that pro-
duce the final results. Before a job J is matched against the
repository, all other jobs that J depends on (i.e., the jobs
whose outputs J reads as input) have to be matched and
rewritten to use the job outputs stored in the repository.

To match an input MapReduce job against the repository,
ReStore scans sequentially through the physical plans in the
repository and tests whether each plan matches the input
MapReduce job. A physical plan in the repository is consid-
ered to match the input MapReduce job if this physical plan
is contained within the physical plan of the input MapRe-
duce job. As soon as a match is found, the input MapRe-
duce job is rewritten to use the matched physical plan in
the repository. Rewriting is done by identifying the part of
the physical plan of the input MapReduce job that matches
the physical plan selected from the repository. The matched
part of the input physical plan is replaced with a Load op-
erator that reads the output of the repository plan from
the distributed file system. After rewriting, a new sequen-
tial scan through the repository is started to look for more
matches to the rewritten MapReduce job. Thus, more than
one physical plan in the repository can be used to rewrite
an input MapReduce job. If a scan through the repository
does not find any matches, ReStore proceeds to matching
the next MapReduce job in the workflow.

It is possible that the physical plan in the repository
matches a full MapReduce job J in the input workflow (i.e.,
the entire physical plan for J is already in the repository).
In this case, other MapReduce jobs in the workflow that use
the output of J as input are rewritten so that they load their
input data from the output of the repository plan instead
of loading it from J. This enables the plan matcher and
rewriter to use job outputs in the repository for all MapRe-
duce jobs in the input workflow, even jobs whose input is the
output of other jobs that are also stored in the repository.

Note that ReStore performs plan matching at the level of
physical plans and not logical plans. The reason is that Re-
Store reuses results computed by past MapReduce jobs, and
each of these MapReduce jobs is generated by the dataflow
language compiler from a physical plan through a simple
process of grouping physical operators into mappers and re-
ducers. This direct correspondence between the physical
plan and the MapReduce jobs makes matching simpler and
more robust. Moreover, doing the matching at the physical
plan level makes it easy to adapt ReStore to any dataflow
system regardless of the input language and the logical query
translation and optimization techniques used by the sys-
tem. Adapting ReStore to a new system requires defining
the physical operators of this system in ReStore, regardless
of the optimization process that generates these operators.

Next, we turn our attention to the physical plan match-
ing algorithm that is at the core of ReStore’s plan matcher
and rewriter. This algorithm tests whether a physical plan
in the repository is contained in the physical plan of the
input MapReduce job, and it is based on operator equiv-
alence. Two operators are equivalent if: (1) their inputs
are pipelined from operators that are equivalent or from the
same data sets, and (2) they perform functions that produce
the same output data. To match two plans, both plans are
traversed simultaneously starting from the Load operators
until mismatching operators are found or all the operators
of the plan in the repository are found to have equivalent
operators in the plan of the input MapReduce job.

Algorithm 1 illustrates the depth first traversal algorithm
that we use to traverse two plans simultaneously. The
PairwisePlanTraversal function is initially called with the
Load operators of the input plan being examined by ReStore
as succsPlan1 and the Load operators of the plan from the

Algorithm 1 PairwisePlanTraversal (operator, succsPlanl,
succsPlan2, seen, lastMatch)

if succsPlan2 == ¢ then
2 return lastMatch

3: else if succsPlanl == ¢ then
4 return null

5: end if
6

7

8

—

: for all succ € succsPlanl do
if succ ¢ seen then
: seen < seen U {succ}
9: equivOP < findEquivalentOP (succ, succsPlan?2)

10: if equivOP == null then

11: continue {to next succ}

12: else

13: newSuccsPlanl < getSuccessors (succ)

14: newSuccsPlan2 < getSuccs(equivalentOP)

15: retVal — PairwisePlanTraversal (succ,
newSuccsPlanl, newSuccsPlan2, seen, succ)

16: if retVal == null then

17: return null

18: else

19: succsPlan?2 < succsPlan2 — {equivOP}

20: if succsPlan2 == ¢ then

21: break

22: end if

23: end if

24: end if

25: end if

26: end for

27: return retVal

repository as succsPlan2. In this initial call the parameter
seen is set to the empty set and the parameter lastMatch
is set to null. For every operator in the set of operators
succsPlanl, we try to find an operator in succsPlan2 that is
equivalent to it (Line 9). If no equivalent operator is found,
we continue trying to find an equivalent operator for other
operators in succsPlani. If an equivalent operator is found,
we continue to match the successors of the operators that we
found equivalent (Line 15). The successors of a physical op-
erator are the operators that consume as one of their inputs
the output produced by this operator. When the traversal
of the successors of the operators succ and equivOP returns
a value that is not null (Line 18), ReStore removes equivOP
from the set of operators succsPlan2 so it will not match
with any other operators from succsPlani (Line 19). If af-
ter the last step, succsPlan2 becomes empty, we exit the
loop (Line 21). If all the operators of the plan found in the
repository have equivalent operators in the input plan being
examined by ReStore, the repository plan is contained in
the input plan and it is declared as a potential match for
the input plan. As an example, Figures 4 and 6 show the
workflows of MapReduce jobs for the queries in Figures 3
and 2, respectively, after matching and rewriting.

ReStore uses the first match that it finds in the repository
to rewrite an input MapReduce job. This makes matching
more efficient, but requires us to order the physical plans
in the repository so that the first match found is the best
match (i.e., the one that achieves the maximum reduction
in the execution time of the input workflow). We use the
following rules to order the physical plans in the repository:

1. Plan A is preferred to plan B if plan A subsumes plan
B, meaning that all the operators in plan B have equiv-
alent operators in plan A. For example, applying this
rule on the plans in Figures 2 and 5, we can deduce that
the former plan subsumes the latter plan and therefore
ReStore should choose the former plan (Figure 2) to
rewrite Q2 (Figure 3). This order of plans in the repos-
itory is enforced by the candidate generation algorithm
described in Section 4.

2. If neither of plans A and B subsumes the other, we
order them based on the following two metrics (the
higher the better): (1) the ratio between the size of the
input data and output data, and (2) the execution time
of the MapReduce job. These metrics are calculated
from the statistics collected by the MapReduce system
during job execution after plan rewriting and sub-job
generation.

4. GENERATING CANDIDATE SUB-JOBS
FOR STORING IN THE REPOSITORY

Having described how to match the MapReduce jobs of
a workflow with plans in the ReStore repository, we now
turn our attention to populating the repository. In this sec-
tion, we describe our approach for generating MapReduce
job outputs that are candidates for storing in the reposi-
tory. These candidate job outputs are all computed during
the execution of the input MapReduce workflow (after it is
rewritten to use plans in the repository) and stored in the
distributed file system.

As discussed in Section 2.1, it is useful to store the output
of whole MapReduce jobs and also the output of sub-jobs.
Therefore, every MapReduce job output in ReStore is a can-
didate for including in the repository. The question is which
sub-jobs should also be considered as candidates. We focus
on this question in the rest of this section.

It is possible to treat the output of every physical operator
P in the physical plan of an input MapReduce job as a
candidate sub-job. Let us call this sub-job Jp. This sub-job
has a physical plan that contains all the physical operators in
the input MapReduce job starting from the Load operators
that read data from the distributed file system up to and
including the operator P. If P, the last physical operator in
Jp is a Store, the output of Jp would already be stored in
the distributed file system after the execution of the input
workflow. If P is not a Store, we can add a Store as the last
operator to ensure that the output of Jp is stored in the
distributed file system. Each candidate sub-job Jp can be
viewed as a complete MapReduce job that can be executed,
stored, and matched independently of the rest of the input
workflow. Sub-job Jp is in fact stored in the repository as
a full, independent MapReduce job that is indistinguishable
from other jobs in the repository. As an example, Figure 5
shows two candidate sub-jobs that can be generated from
the MapReduce job in Figure 2. Note that these two sub-
jobs are Map only jobs.

Treating all possible sub-jobs as candidates and storing
their outputs in the distributed file system during the exe-
cution of the input MapReduce workflow has two problems.
First, it would require a substantial amount of storage in the
distributed file system. Second, the overhead of storing all
this intermediate data would considerably slow down the ex-
ecution of the input MapReduce job. Furthermore, some of

MR Job1l

Stored
o/pA
\/—

Datal

Data
o/pQl
/

Stored
o/pB
\/—

Figure 8: The MapReduce workflow for query Q1
after introducing extra Store operators after Project
operators.

these sub-jobs may not be useful for future workflows. Thus,
we need to select only a subset of the possible sub-jobs to
consider as candidates, so that we can materialize and store
these candidates in the distributed file system with reason-
able cost. Some physical operators such as Project and Filter
in Pig and similar systems are known to reduce the size of
their input and are therefore good sub-job candidates ac-
cording to Equation 2. Many MapReduce workflows are
I/0O bound [9], so reducing the size of the loaded data can
significantly improve performance. Other physical opera-
tors such as Join and Group are known to be expensive,
so their outputs are also good sub-job candidates because
replacing them with stored output reduces), ET(OF;) in
Equation 2.

Based on this reasoning, it is possible to identify a set
of physical operators that reduce their input size or are ex-
pensive, and to use the outputs of these operators as the
candidate sub-jobs. This is indeed what we do in ReStore.
To reduce the number of injected Store operators in the in-
put physical plan, we propose the following two heuristics
for choosing candidate sub-jobs:

1. Conservative Heuristic: Use the outputs of opera-
tors that are known to reduce their input size as candi-
date sub-jobs. These operators are Project and Filter.

2. Aggressive Heuristic: Use the outputs of operators
that are known to reduce their input size and also the
outputs of operators that are known to be expensive
as candidate sub-jobs. These operators are Project,
Filter, Join, Group, and CoGroup.

The conservative heuristic imposes less overhead on the
execution of the input workflow than the aggressive heuris-
tic, but the potential for savings due to reuse is also lower.
We quantify this tradeoff in the experiments in Section 7.

The technique we use to generate candidate sub-jobs for
an input MapReduce job is as follows. We parse the physi-
cal plan of the input MapReduce job starting from its Load
operators. For every parsed physical operator, we check if
the heuristic that we are using requires us to generate a sub-
job for this operator. If so, we inject a new Store operator
after the parsed physical operator if the parsed operator is
not already a Store. However, to include this Store oper-
ator in the physical plan of the input MapReduce job we

need to also insert an operator that branches the output
into two, similar to a Unix tee command. An example of
this branching operator is the Split operator in Pig [11]. The
output of the operator for which a sub-job is being gener-
ated is pipelined into the newly inserted Split operator. One
branch of the output of the Split operator is pipelined into
successor operators in the MapReduce job, and the other
branch is pipelined into the new Store operator. Figure 8
shows the physical plan for Q1 after injecting two Store op-
erators after the Project operators in the plan.

The sub-job generation step is performed for every MapRe-
duce job in the input workflow of jobs. After this, ReStore
submits the workflow of jobs to the MapReduce system for
execution. The outputs of all MapReduce jobs in the work-
flow and the outputs of the injected Store operators (the
sub-jobs) are all stored in the distributed file system. Stor-
ing the outputs of candidate sub-jobs introduces overhead,
hence the need for the conservative and aggressive heuristics
to choose these sub-jobs.

When storing generated jobs in the repository, ReStore
ensures that the order of the physical plans in the reposi-
tory follows the two ordering rules presented at the end of
Section 3. These rules result in a repository in which the
plans are partially ordered. The ordering of the plans in the
repository ensures that the first plan from the repository
that matches an input MapReduce job is the best match for
this job.

S. MANAGING THE RESTORE REPOSI-
TORY

Keeping the output of all generated jobs and sub-jobs in
the repository can be expensive in the long run because
of the storage space required and the increasing number of
plans to match with future workflows. Therefore, for a set
of candidate jobs and sub-jobs generated for an input work-
flow of MapReduce jobs as described in Section 4, we need
to decide which of the outputs of these jobs to keep in the
repository. This decision is made after the workflow is ex-
ecuted, so it is possible to base it on accurate execution
statistics. In addition, we also need to decide when to evict
stored job outputs from the repository.

In this paper, we focus on creating reuse opportunities
and studying the cost and benefit of reuse. Therefore, we
store the outputs of all candidate jobs and sub-jobs in the
repository. Nevertheless, we present in this section some
guidelines that can be used to decide which of the generated
job outputs to store in the repository and when to evict
stored outputs. A job output that is kept in the repository
needs to satisfy two properties: (1) replacing the job with a
Load of the job output from the distributed file system can
reduce the execution time of a workflow that contains this
job, and (2) there are future workflows that can reuse the
output of this job.

We can check these properties based on statistics that the
MapReduce system collects during job execution. For each
candidate job or sub-job, we store in the repository statis-
tics about the size of the input and output data, and the
average execution time of the mappers and reducers. These
statistics can easily be collected by any MapReduce system.
For example, Hadoop already collects these statistics as part
of job execution. We also collect and store statistics about
the most recent time each job output in the repository was

reused by another MapReduce job. These statistics can be
used to decide which candidate jobs or sub-jobs to keep in
the repository, and which jobs to evict from the repository.
We propose the following rules for making these decisions.
Rules 1 and 2 check the first property above (jobs in the
repository reduce execution times when they are reused),
and Rules 3 and 4 check the second property (jobs in the
repository are actually reused).

1. Keep a candidate job in the repository only if the size
of its output data is smaller than the size of its in-
put data. This condition focuses on reducing Tjqq in
Equation 2, and therefore the total execution time of
the job ET(Job;).

2. Keep a candidate job in the repository only if Equa-
tion 1 tells us that there will be a reduction in ex-
ecution time for workflows reusing this job. This
depends on the mazicy { Tiotar(Jobs)} component in
Equation 1.

3. Evict a job from the repository if it has not been reused
within a window of time.

4. Evict a job from the repository if one or more of its
inputs is deleted or modified.

6. RESTORE IMPLEMENTATION

We have implemented ReStore as an extension to Pig
0.8 [2]. We briefly describe the Pig dataflow system and
how its compiler generates a workflow of MapReduce jobs
for a given query. We then present an overview of the im-
plementation of ReStore [10].

6.1 Overview of the Pig Query Compiler

Pig [2, 11] is a dataflow system that compiles SQL-like
queries written in the Pig Latin [14] query language into
workflows of MapReduce jobs that are executed on Hadoop.
The main stages of compiling a Pig Latin query are as fol-
lows: (1) a parser syntactically checks the input query and
transforms it into a logical plan, which is a directed acyclic
graph (DAG) of logical operators, (2) a logical optimizer
applies optimization rules to this logical plan, (3) a MapRe-
duce compiler transforms the logical plan into a physical
plan and then compiles it into a series of MapReduce jobs,
which forms a workflow, (4) a MapReduce optimizer applies
rules to reduce the number of MapReduce jobs in the work-
flow, and (5) a Hadoop job manager submits the jobs in a
workflow to Hadoop for execution taking into account the
dependencies between them.

The JobControlCompiler is a component of the Hadoop
job manager of Pig. Its input is a workflow of MapReduce
jobs, where each job is represented by its physical plan.
The JobControlCompiler iterates though the input work-
flow and decides on the jobs that can be run concurrently.
It then prepares these jobs to be executed in Hadoop from
their physical plans. After every iteration performed by the
JobControlCompiler, a set of prepared jobs is submitted to
Hadoop for execution. After the execution of the Hadoop
jobs finishes, a new iteration of the JobControlCompiler is
invoked. The outputs of the MapReduce jobs that are used
as input to other jobs in the workflow are temporarily stored
in the distributed file system (HDFS). After the completion
of executing all the MapReduce jobs in the workflow, these
intermediate outputs are deleted.

6.2 Implementation of ReStore

ReStore extends the JobControlCompiler of Pig. The in-
put of ReStore is a workflow of MapReduce jobs. In ev-
ery iteration of ReStore over the workflow, jobs that de-
pend on already executed jobs or depend on no other jobs
of the workflow are selected for execution, just as in the reg-
ular JobControlCompiler. Every physical plan of these jobs
passes though two stages: (1) matching with plans in the
repository, and (2) generating candidate sub-jobs. MapRe-
duce jobs are then prepared for the rewritten physical plans
and are submitted to Hadoop for execution using the same
techniques used by the JobControlCompiler. After execut-
ing a MapReduce job, statistics about this job execution are
retrieved from Hadoop and stored in the repository to de-
cide which job outputs to keep (Section 5). We also store
information about the physical plans of stored jobs in the
repository. We implement the repository as a table that con-
tains in every record: (1) a physical plan of a MapReduce
job, (2) the filename of the output of this job in HDFS, and
(3) statistics about this job.

7. EXPERIMENTS

We conducted our experiments on a cluster of 15 servers
(henceforth referred to as “nodes”). Each node has four
Dual Core AMD Opteron 275 processors running at 2.2 GHz
and 8GB of memory. The nodes run SuSE Linux 10.1. Each
node has a 65GB SCSI disk, and the HDFS file system is
created on these disks. The Hadoop cluster is configured
to have the Hadoop TaskTracker and NameNode running
on one dedicated node and each of the remaining 14 nodes
running a TaskTracker and a DataNode. Each TaskTracker
can run a maximum of 4 mappers and a maximum of 2
reducers simultaneously.

We use the PigMix [4] benchmark in our experiments. We
generate the data using the PigMix data generator to create
two instances of the benchmark data: (1) an instance where
the page_views table has 10 million rows and a size of ap-
proximately 15GB in HDF'S before its 3-way replication, and
(2) an instance where this table has 100 million rows and a
size of approximately 150GB before 3-way replication. The
generated instances include other tables, but these tables
are much smaller than the page_views table, so we refer to
these two instances as the 15GB and 150GB instances. In
our experiments we use a subset of the benchmark consisting
of queries L2-L.8 and L11. These queries test a wide range
of features and operators (described in detail in [4]) that
include Join, Group, CoGroup, Filter, Distinct, and Union.
We have excluded L1, L9, and .10 from our experiments be-
cause they test features that are not relevant to result reuse.
To illustrate the effectiveness of reusing the output of whole
jobs, we also created a synthetic workload that is based on
queries L3 and L11 of PigMix, which are each translated
by Pig into a workflow of multiple MapReduce jobs (more
details in Section 7.1). We also use a completely synthetic
workload that is not based on PigMix in Section 7.5.

Each reported result is based on the average execution
time of three runs as measured by Hadoop. The workflows
that we evaluate are: (1) unmodified workflows as generated
by Pig, (2) workflows after injecting extra Store operators
by ReStore to materialize sub-jobs, and (3) workflows af-
ter being rewritten by ReStore to reuse job outputs in the
repository. In addition to execution time, we use as a perfor-

18 M No Data Reuse
Reusing Jobs

Job execution time on Hadoop (min)
=
1S

13 13a 13b L3¢ 111 L1la L11b L11c L11d
Query

Figure 9: The effect of reusing whole job outputs
for data size 150GB.

mance metric the speedup of a query, which is the execution
time of the query when no data reuse is considered divided
by the execution time of the query when it is rewritten to
reuse job outputs in the repository. We also use as a metric
the overhead of adding Store operators to a query, which is
the execution time of the query when extra Store operators
are injected into the physical plans of its MapReduce jobs
divided by the execution time of the query when the physical
plans are unchanged.

7.1 Reusing the Output of Whole Jobs

In this section, we demonstrate the effectiveness of reusing
the output of whole jobs for rewriting the MapReduce work-
flows of future queries. In Figure 9, we compare the fol-
lowing: (1) the execution time of queries without reusing
outputs from prior executions, and (2) the execution time
when reusing outputs of whole jobs that have been stored
during previous executions of the same query by Hadoop.
In the latter case, we are assuming that all outputs of jobs
that can be reused by a given query are available in the
ReStore repository. Therefore, the execution times of the
PigMix queries reported in Figure 9 are the best that can
be achieved when using the current implementation of Re-
Store and reusing the output of prior executed jobs.

For this experiment we use queries 1.3 and L11 of the Pig-
Mix benchmark. These two queries are translated by Pig
into workflows of more than 1 MapReduce job (2 jobs for
L3 and 3 for L11) making it possible to reuse the output
of whole jobs. The workflow of query L11 contains 3 jobs,
where one job depends on the other two. We generated vari-
ants of the queries to increase the diversity of the workload.
Query L3 does grouping and aggregation, and we changed
the aggregation function to generate different L3 variants.
Query L11 combines two data sets using a union operation,
and we changed the data sets that are combined. Figure 9
shows that the average speedup due to job reuse is 9.8. The
overhead in this case is 0% since no extra Store operators are
inserted in the physical plan. Thus we can see that ReStore
can be highly beneficial.

7.2 Reusing the Output of Sub-Jobs

In this section, we illustrate the benefit of reusing the
outputs of sub-jobs generated by ReStore. For every Pig-
Mix query, we report the following: (1) the execution time
of the query without reusing outputs from prior execution,
(2) the execution time of the query without reusing outputs
from prior execution, but when injecting Store operators in

50

® No Data Reuse
=45 i i
£ Generating Sub-jobs

(mi
IS
S

M Reusing Sub-jobs

w
@

on Hadoop
w
]

(NI
S o

Job execution time
-
G

=
o «n o

Query

Figure 10: The effect of reusing sub-job outputs for
data size 150GB.

,5
2
leeulare
"
u 1]
u

L6 L7 L8 L11

L2 L3 L4 LS

Overhead

Query

15GB M 150GB

Figure 11: Overhead for data data sizes 15GB and
150GB.

the physical plans of the executed MapReduce jobs to ma-
terialize the outputs of sub-jobs that are selected by the
Aggressive Heuristic described in Section 4 (we compare the
two heuristics proposed in Section 4 in the next section),
and (3) the execution time when reusing outputs of sub-
jobs that have been stored in the repository during previous
executions of the same query by Hadoop. The execution
times reported for the last case are measured when all the
sub-jobs that are generated by ReStore are available in the
repository. Figure 10 shows the results of this comparison
for data size 150GB.

Figure 10 shows that the average speedup achieved by
reusing sub-job outputs is 24.4. There is an overhead in-
curred due to injecting extra Store operators for materializ-
ing sub-job outputs. This overhead is seen as an increase in
the execution time of queries (1.6 on average). The overhead
for L6 is high since a Store operator is injected in the reducer
after an expensive Group operator whose output size is large
(5.5 GB). The number of reducers is small and storing large
data in them increases the execution time significantly. This
is the nature of the Aggressive Heuristic: the speedup due
to result reuse is very high, but the overhead can potentially
be high too. In this experiment, using ReStore was bene-
ficial if the output of a sub-job is reused even only once in
the future.

Figure 11 shows the overhead incurred when adding Store
operators to the physical plans of MapReduce jobs of the
PigMix queries for data sizes 15GB and 150GB. For most
PigMix queries, the overhead incurred when executing on
the 15GB data set is higher than that when executing on
the 150GB data set. The average overhead is 2.4 for the

50
45
40

35
£
1
2
@20

15

P J
L2 L3 L4 L5 L6 L7 L8 111

Query

o

15GB M 150GB

Figure 12: Speedup for data data sizes 15GB and
150GB.

bLLLLLLL

Query

i
%)

> o

2R e e
~

S)

Job execution time on Hadoop (min)

o N & O ®

M No Data Reuse Conservative Heuristics M Aggressive Heuristics No Heuristics

Figure 13: Execution time when reusing sub-jobs
chosen by different heuristics (150GB).

15GB data set and 1.6 for the 150GB data set. For small
data sizes, a slight increase in Ts:0re can have a big effect on
ET(Joby) because the time spent in loading the data and
executing the operators is small (Equation 2). However,
increasing Tsiore Will appear less significant for large data
sizes since Tioad, »; ET(OP;), and Tsor¢ are high.

Figure 12 shows the speedup achieved by reusing sub-
job outputs for data sizes 15GB and 150GB. The speedup
achieved by most PigMix queries is higher for the larger
data size. While the average speedup is 3.0 for the 15GB
case, it increases to 24.4 for the 150GB case. In Equation 2,
replacing Tjoqq and part of 3, ET(OP;) with T%,4, which
is the time needed to load sub-job outputs, has a larger
effect on ET(Joby,) for the larger data size because Tioqq is
the most expensive operation in this case. This experiment
demonstrates that reusing the output of sub-jobs is highly
effective, and it is more beneficial for larger data sizes.

7.3 Comparing the Heuristics for Generating
Candidate Sub-Jobs

Section 4 describes two heuristics for choosing the phys-
ical operators in an input MapReduce job whose outputs
to materialize as sub-jobs, the Conservative Heuristic and
the Aggressive Heuristic. If we do not use these heuristics,
we inject a Store operator after each physical operator in
the input MapReduce job. We call this the No Heuristic
case. In this experiment, we compare the performance of
No Heuristic (NH), the Conservative Heuristic (Hc¢), and
the Aggressive Heuristic (Ha). In all of these cases, the out-
puts of Store operators added to the MapReduce jobs are
stored in the distributed file system, which adds overhead

Q I/P| Hc| Ha| NH O/P
(GB) | (GB) | (GB) | (GB)

L2 150.6 3.1 3.1 6.7 | 1.1 MB
L3 150.7 3.2 8.2 | 221 | 629 MB
L4 150.6 2 2.8 10.8 | 34.2 MB
L5 150.7 1.8 4.6 7.4 2B

L6 | 150.6 3.7 10.1 24.3 | 92.7 MB
L7 | 150.6 2.2 5.4 5.4 1.5 MB
L8 150.6 3.3 3.3 11.4 27 B
L11 | 173.6 2.6 2.7 2.8 1.6 GB

Table 1: Total size of input data loaded by different
queries, output of Store operators added by different
heuristics, and final query output.

to the execution of the MapReduce workflows and occupies
storage in the distributed file system. We expect NH to
have the highest overhead and require the most storage, fol-
lowed by Ha, and then Hc. Our goal in this experiment is
to verify this and quantify the difference between the three
strategies. A related question is whether the extra overhead
and storage requirement of a policy such as NH results in
more reuse opportunities and higher speedups.

Figure 13 compares the execution time of PigMix queries
without result reuse and when reusing the sub-jobs stored
by each of NH, Hc, and Ha. The figure verifies our expec-
tation that Ha provides more reuse opportunities and hence
higher benefit than Hc. A very encouraging result from the
figure is that Ha has the same performance as NH. This is
because Ha stores the output of the main set of operators
that increase the execution time of a MapReduce job. The
additional sub-job outputs stored by NH provide no bene-
fit. Also, the fact that Hc stores fewer sub-jobs leads to
lower benefit from sub-job reuse. Therefore, we use Ha as
our default heuristic, as we have seen in the previous section
(Figures 10-12).

The drawbacks of using Ha are the extra storage required
in the distributed file system and the increase in the execu-
tion time of MapReduce jobs due to the extra Store opera-
tors. Table 1 shows for each PigMix query the size of the
loaded data, the size of the data produced by the extra Store
operators under Hc, Ha, and NH, and the size of the final
query output. The extra data stored by the Ha is always
much less than NH and usually close to Hc. This supports
our choice of the Aggressive Heuristic as the default heuris-
tic. There are, however, some cases where Ha stores much
more data than Hc, such as L6. Figure 14 shows the ex-
ecution times of the queries with the extra Store operators
under the three heuristics plus the time with no data reuse
(i.e., no storage of sub-jobs). The conclusions drawn pre-
viously are corroborated by this experiment: Ha is always
better than NH and usually only slightly worse than Hc,
but there are cases like L6 where Ha is much worse than
He.

Thus, we conclude that using the Aggressive Heuristic is
better overall from the point of view of overhead and po-
tential speedup, but it does incur some risk. If we desire
to reduce this risk, we can use the Conservative Heuristic
which reduces overhead but sacrifices some speedup.

L2 L3 L4 L5 L6 L7 L8 L11

B No Data Reuse Conservative Heuristics B Aggressive Heuristics No Heuristics

Figure 14: Execution time with the Store operators
chosen by different heuristics to materialize sub-job
outputs (150GB).

B No Data Reuse
18 Resing Sub-jobs (Conservative Heuristic)
M Resing Sub-jobs (Aggressive Heuristic)
Reusing Jobs

Job execution time on Hadoop (min)

L3 L3a L3b L3¢ L11 L1la L11b L1lc L11d
Query

Figure 15: Reusing whole jobs and sub-jobs for data
size 150GB.

7.4 Reusing Sub-Jobs vs. Whole Jobs

Up to this point, we have seen the results of different
types of reuse in ReStore: reusing the results of whole jobs,
reusing the results of sub-jobs chosen by the Conservative
Heuristic Hc, and reusing the results of sub-jobs chosen by
the Aggressive Heuristic Ha. In this experiment, we sum-
marize the difference between these three types of reuse.
Queries L3 and L11 and their variants are the queries that
we used for evaluating the reuse of whole intermediate jobs.
In Figure 15 we plot the execution time of these queries with
no reuse and with reusing the results of whole intermediate
MapReduce jobs. The figure also shows the execution time
of these queries when reusing sub-jobs chosen using Hc and
Ha. We make two observations about this figure. First, we
see that all types of reuse in ReStore are beneficial, although
to varying degrees. Second, we see that the maximum ben-
efit is obtained when reusing whole jobs or sub-jobs chosen
by Ha, and that the difference between these two cases is
minimal.

Reusing whole jobs is expected to yield the maximum
benefit and it also has the advantage that it does not in-
cur any overhead since the job outputs are already stored in
the distributed file system. However, it is not always pos-
sible to reuse whole jobs, which is why ReStore generates
sub-jobs. Furthermore, sub-jobs are less specific than whole
jobs so they can be useful for more queries. In Figure 15,
the sub-jobs chosen by Ha are indeed less specific and they
do not include all the physical operators that are present
in the whole jobs. Thus, reusing sub-jobs chosen by Ha in-

| Field name | Cardinality | % Selected Data

field6 200 0.5%
field7 100 1%
field3 20 5%
fieldd 10 10%
field10 5 20%
fieldi1 2 50%
field12 16 60%

Table 2: Fields of the generated synthetic data set.

2.5
=4—Overhead

- Speedup

1.5

0.5

0 10 20 30 40 50 60 70 80
Percentage of projected data

Figure 16: The overhead and speedup of different
jobs with Project operators.

curs some extra work when compared to reusing whole jobs.
This extra work is needed to apply the physical operators in
the whole jobs that are missing from the sub-jobs. The fact
that reusing sub-jobs chosen by Ha is as good as reusing
whole jobs tells us that the Aggressive Heuristic is effective
at capturing the most expensive parts of a MapReduce job
while avoiding cheap parts that can be applied easily.

Thus, we see that reusing whole jobs and sub-jobs are
both important. Reusing whole jobs is cheap and effective,
but it is not always possible. However, it is always possible
to create reuse opportunities by generating sub-jobs, and
Ha does so quite effectively, albeit at a cost. If this cost is
a concern, a reasonable benefit can still be derived by using
the lower cost Hc.

7.5 Effect of Data Reduction

One of the benefits of storing sub-jobs, particularly the
output of Filter and Project operators, is that future work-
flows that reuse these sub-jobs will read less data as com-
pared to reading the original data set. As the amount of
data eliminated by the Filter or Project operator increases,
the overhead of storing the sub-job decreases and the ben-
efit of reusing it increases. In this experiment, we aim to
demonstrate this effect.

For this experiment, we generated a data file that con-
tains 200 million rows using the same data generator used
to generate the PigMix data set. The size of the gener-
ated data is 40GB. The generated data file has 12 synthetic
fields, field! through field12. Fields field1 through field5 are
random strings of length 20 characters each, used to study
the Project operator. Fields field6 through field12 are inte-
gers that are used to study the Filter operator, and each of
them has a different cardinality (number of distinct values)
so that when we apply an equality predicate on each field
we select a different percentage of rows from the input table.

n =4=0Overhead
3.5 \\ =& Speedup
\
3 \l
25 N\,

0.5

Percentage of filtered data

Figure 17: The overhead and speedup of different
jobs with Filter operators.

The cardinality and the percentage of rows selected by an
equality predicate for each field are shown in Table 2.

We first study the effect of data reduction in Project op-
erators. For this experiment we created a workload of 5
queries on the synthetic data set that follow the template
QP (below). We vary the number of fields selected by the
Project operator. At a minimum we select fieldl, and at a
maximum we select field! through field5. Our data set is
designed such that when one field is selected by the Project
operator, the size of the output of this operator is around
18% of the original data size and when all five fields are
selected the output is around 74% of the original data.
Query Template QP

A = load ’$synth_data’ as (fieldl, ., field12);

B = foreach A generate fieldl, ...;
C = group B by (fieldl, ...);
D = foreach C generate COUNT($1);

store D into ’$out’;

We compare the execution time of QP without data reuse,
when we inject an extra Store operator in the physical plan
of the MapReduce job after the Project operator, and when
we reuse the output of this Store operator. Figure 16 shows
the overhead of the extra Store operator and the speedup
achieved by reusing the output of this operator as we vary
the number of projected fields from 1 to 5. The figure shows
that as the amount of data reduction due to projection de-
creases, the overhead increases and the speedup decreases.
In this experiment, if the Project operator reduces the size of
the input data by more than half, there will be a net benefit
if this stored data is reused at least once.

Next, we turn our attention to Filter operators. For this
we use query template QF (below), in which we apply an
equality predicate on one of the fields field6 to filed12. The
data reduction for each field varies as shown in Table 2.
Query Template QF
A = load ’$synth_data’ as (fieldl,
B = filter A by $fieldi = $val ;

C = group B by fieldl;
D = foreach C generate COUNT($1);
store D into ’$out’;

., field12);

Figure 17 shows the overhead of injecting an extra Store
operator after the Filter and the speedup due to reusing the
output of this operator for the six different instantiations
of QF. As before, when the amount of data reduction de-
creases, the overhead increases and the speedup decreases.

8. RELATED WORK

Distributed analysis of large data through the MapReduce
model was introduced by Google [9]. Since then, several
implementations of MapReduce have appeared, the most
prominent being Hadoop [1]. Dataflow language processors
such as Pig [11], Hive [15], and Jaql [8] provide an easy way
to write SQL-like queries that are translated into workflows
of MapReduce jobs, thereby enabling users to easily express
more complex analysis tasks.

There has been work on several types of optimizations for
MapReduce, but in this paper we focus on one specific type
of optimization, namely sharing computation between dif-
ferent MapReduce jobs. This type of optimization has been
explored before in [5]. In that work, a study is presented of
how jobs submitted to a MapReduce system can be sched-
uled to benefit from sharing scans over a common set of files.
New policies for scheduling MapReduce jobs are introduced
with the goal of maximizing the likelihood of sharing scans.
That work differs from ours in that it exploits one specific
type of sharing opportunity, and that the sharing happens
between concurrently running MapReduce jobs. In contrast,
our paper can exploit different types of sharing opportuni-
ties, not just of scans (which correspond to Load operators)
but of other more complex physical plans. Moreover, our
paper enables sharing between jobs that are executed at dif-
ferent times by storing and reusing job outputs.

Another work that attempts to share computation in
MapReduce is MRShare [13]. MRShare finds sharing op-
portunities among queries that are submitted in the same
batch to the MapReduce data analysis platform. The main
goal of MRShare is to avoid redundant work by combining
the execution of operators from different queries. In [13],
a cost model is also proposed to find the optimal plan for
merging a group of queries appearing in the same batch. As
with [5], that work differs from ours in that we focus on
reducing work for individual jobs by leveraging previously
stored job outputs, and not for batches of jobs.

Materializing the results of executed queries to be reused
by future queries has been extensively studied in the con-
text of materialized views for relational databases [12]. Most
commercial database systems now include a physical design
advisor that automatically recommends materialized views
given a sample workload of queries (e.g. [6]). In this pa-
per, we focus on creating reuse opportunities that have the
same essence as these previous works, but the details are
fundamentally different because of the distinct challenges
introduced by MapReduce, namely the massive data sizes
and the procedural nature of the query languages.

9. CONCLUSION

The MapReduce model has become widely accepted for
analyzing large data sets. In many cases, users express com-
plex analysis tasks not directly with MapReduce but rather
with higher-level SQL-like query languages that get trans-
lated into workflows of MapReduce jobs. It is important
to improve the performance of these workflows given how
widely adopted they are. When executing a workflow of
MapReduce jobs, intermediate outputs of jobs are stored in
the distributed file system to be read by subsequent jobs.
This behavior creates an opportunity for performance op-
timization: instead of deleting the output of intermediate
jobs, store this output for reuse in answering future work-

flows that are executed by the system and that perform the
same computation as the job whose output is stored.

In this paper, we present ReStore, a system that reuses
intermediate outputs of MapReduce jobs in a workflow to
speed up future workflows executed in the system. In addi-
tion to reusing the outputs of whole MapReduce jobs, Re-
Store can also create more reuse opportunities by storing
the output of some physical query execution operators that
form part of a MapReduce job. We have implemented Re-
Store as an extension to the Pig dataflow system. Our ex-
periments with this implementation show that ReStore can
achieve speedup ups to an order of magnitude, and the over-
head it incurs is not prohibitive

Acknowledgements This work was supported by the Nat-
ural Sciences and Engineering Research Council of Canada
(NSERC) through the Business Intelligence Network strate-
gic networks grant.

10. REFERENCES

[1] Apache Hadoop. Available at:
http://hadoop.apache.org/.

[2] Apache Pig. Available at: http://pig.apache.org/.

[3] Hadoop Distributed File System. Available at:
http://hadoop.apache.org/hdfs/.

[4] PigMix. Available at: https://cwiki.apache.org/
confluence/display/PIG/PigMix.

[5] P. Agrawal, D. Kifer, and C. Olston. Scheduling
shared scans of large data files. Proc. VLDB Endow.
(PVLDB), 1(1):958-969, 2008.

[6] S. Agrawal et al. Database tuning advisor for
Microsoft SQL Server 2005. In Proc. (VLDB), pages
1110-1121, 2004.

[7] M. Ahuja et al. Peta-scale data warehousing at Yahoo!
In Proc. ACM SIGMOD, pages 855-862, 2009.

[8] K. S. Beyer et al. Jagl: A scripting language for large
scale semistructured data analysis. Proc. VLDB
Endow. (PVLDB), 4(12):1272-1283, 2011.

[9] J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. In Proc. OSDI,
pages 137-150, 2004.

[10] I. Elghandour and A. Aboulnaga. ReStore: Reusing
results of MapReduce jobs in Pig (Demo). In Proc.
ACM SIGMOD, 2012.

[11] A. F. Gates et al. Building a high-level dataflow
system on top of Map-Reduce: the Pig experience.
Proc. VLDB Endow. (PVLDB), 2(2):1414-1425, 2009.

[12] A. Y. Halevy. Answering queries using views: A
survey. The VLDB Journal, 10(4):270-294, 2001.

[13] T. Nykiel, M. Potamias, C. Mishra, G. Kollios, and
N. Koudas. MRShare: sharing across multiple queries
in MapReduce. Proc. VLDB Endow. (PVLDB),
3(1-2):494-505, 2010.

[14] C. Olston et al. Pig Latin: a not-so-foreign language
for data processing. In Proc. ACM SIGMOD, pages
1099-1110, 2008.

[15] A. Thusoo et al. Hive: a warehousing solution over a
Map-Reduce framework. Proc. VLDB Endow.
(PVLDB), 2(2):1626-1629, 2009.

[16] A. Thusoo et al. Data warehousing and analytics
infrastructure at Facebook. In Proc. ACM SIGMOD,
pages 1013-1020, 2010.

