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ABSTRACT

In this paper we present a technique for building a high-availability
(HA) database management system (DBMS). The proposed tech-
nique can be applied to any DBMS with little or no customization,
and with reasonable performance overhead. Our approach is based
on Remus, a commodity HA solution implemented in the virtual-
ization layer, that uses asynchronous virtual machine (VM) state
replication to provide transparent HA and failover capabilities. We
show that while Remus and similar systems can protect a DBMS,
database workloads incur a performance overhead of up to 32%
as compared to an unprotected DBMS. We identify the sources of
this overhead and develop optimizations that mitigate the problems.
We present an experimental evaluation using two popular database
systems and industry standard benchmarks showing that for certain
workloads, our optimized approach provides very fast failover (≤ 3

seconds of downtime) with low performance overhead when com-
pared to an unprotected DBMS. Our approach provides a practical
means for existing, deployed database systems to be made more re-
liable with a minimum of risk, cost, and effort. Furthermore, this
paper invites new discussion about whether the complexity of HA
is best implemented within the DBMS, or as a service by the in-
frastructure below it.

1. INTRODUCTION
Maintaining availability in the face of hardware failures is an im-

portant goal for any database management system (DBMS). Users
have come to expect 24×7 availability even for simple non-critical
applications, and businesses can suffer costly and embarrassing dis-
ruptions when hardware fails. Many database systems are designed
to continue serving user requests with little or no disruption even
when hardware fails. However, this high availability (HA) comes
at a high cost in terms of complex code in the DBMS, complex
setup for the database administrator, and sometimes extra special-
ized hardware. In this paper, we present a reliable, cost-effective
HA solution that is transparent to the DBMS, runs on commodity
hardware, and incurs a low performance overhead. A key feature of
our solution is that it is based on virtual machine (VM) replication
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and leverages the capabilities of the underlying virtualization layer.
Providing HA guarantees as part of the DBMS can add a sub-

stantial amount of complexity to the DBMS implementation. For
example, to integrate a simple active-standby approach, the DBMS
has to support propagating database updates from the active to the
standby (e.g., by shipping log records), coordinating transaction
commits and aborts between the active and standby, and ensuring
consistent atomic handover from active to standby after a failure.

In this paper, we present an active-standby HA solution that is
based on running the DBMS in a virtual machine and pushing much
of the complexity associated with HA out of the DBMS, relying in-
stead on the capabilities of the virtualization layer. The virtualiza-
tion layer captures changes in the state of the whole VM at the ac-
tive host (including the DBMS) and propagates them to the standby
host, where they are applied to a backup VM. The virtualization
layer also detects failure and manages the failover from the active
host to the standby, transparent to the DBMS. During failover, all
transactional (ACID) properties are maintained and client connec-
tions are preserved, making the failure transparent to the DBMS
clients.

Database systems are increasingly being run in virtual machines
for easy deployment (e.g., in cloud computing environments [1]),
flexible resource provisioning [27], better utilization of server re-
sources, and simpler administration. A DBMS running in a VM
can take advantage of different services and capabilities provided
by the virtualization infrastructure such as live migration, elastic
scaleout, and better sharing of physical resources. These services
and capabilities expand the set of features that a DBMS can offer to
its users while at the same time simplifying the implementation of
these features. Our view in this paper is that adding HA to the set
of services provided by the virtualization infrastructure continues
down this road: any DBMS running on a virtualized infrastructure
can use our solution to offer HA to its users with little or no changes
to the DBMS code for either the client or the server. Our design
decisions ensure that the setup effort and performance overhead for
this HA is minimal.

The idea of providing HA by replicating machine state at the
virtualization layer is not new [5], and our system is based on Re-

mus [8], a VM checkpointing system that is already part of the Xen
hypervisor [4]. Remus targets commodity HA installations and
transparently provides strong availability guarantees and seamless
failure recovery. However, the general VM replication used by sys-
tems such as Remus imposes a significant performance overhead
on database systems. In this paper, we develop ways to reduce this
overhead and implement them in a DBMS-aware VM checkpointing

system that we call RemusDB.
We identify two causes for the performance overhead experi-



enced by a database system under Remus and similar VM check-
pointing systems. First, database systems use memory intensively,
so the amount of state that needs to be transferred from the pri-
mary VM to the backup VM during a checkpoint is large. Sec-
ond, database workloads can be sensitive to network latency, and
the mechanisms used to ensure that client-server communication
can survive a failure add latency to the communication path. Re-
musDB implements techniques that are completely transparent to
the DBMS to reduce the amount of state transferred during a check-
point (Section 3). To reduce the latency added to the client-server
communication path, RemusDB provides facilities that are not trans-
parent to the DBMS, but rather require minor modifications to the
DBMS code (Section 4). We use RemusDB to add high availability
to PostgreSQL and MySQL, and we experimentally demonstrate
that it effectively recovers from failures and imposes low overhead
on normal operation (Section 5). For example, as compared to Re-
mus, RemusDB achieves a performance improvement of 29% and
30% for TPC-C workload running under PostgreSQL and MySQL,
respectively. It is also able to recover from a failure in ≤ 3 sec-
onds while incurring 3% performance overhead with respect to an
unprotected VM.

2. BACKGROUND & SYSTEM OVERVIEW
In our setup, shown in Figure 1, two servers are used to pro-

vide HA for a DBMS. One server hosts the active VM, which han-
dles all client requests during normal operation. As the active VM
runs, its entire state including memory, disk, and active network
connections are continuously checkpointed to a standby VM on a
second physical server. Our objective is to tolerate a failure of the
server hosting the active VM by failing over to the DBMS in the
standby VM, while preserving full ACID transactional guarantees.
In particular, the effects of transactions that commit (at the active
VM) before the failure should persist (at the standby VM) after the
failover, and failover should not compromise transaction atomicity.

During normal operation, Remus takes frequent, incremental
checkpoints of the complete state of the virtual machine on the ac-
tive server. These checkpoints are shipped to the standby server
and “installed” in the virtual machine there. The checkpoints also
act as heartbeat messages from the active server (Server 1) to the
standby server (Server 2). If the standby times out while waiting
for a checkpoint, it assumes that the active server has failed. This
causes a failover, and the standby VM begins execution from the
most recent checkpoint that was completed prior to the failure. This
failover is completely transparent to clients. The standby VM has
the same IP address as the active VM, and the standby server’s hy-
pervisor ensures that network packets going to the (dead) active
VM are automatically routed to the (live) standby VM after the
failure, as in live VM migration [7]. In checkpoint-based whole-
machine protection systems like Remus, the virtual machine on the
standby server does not mirror the execution at the active server
during normal operation. Rather, the activity at the standby server
is limited to installation of incremental checkpoints from the active
server, which reduces the resource consumption at the standby.

Remus’s checkpoints capture the entire state of the active VM,
which includes disk, memory, CPU, and network device state. Thus,
this captures both the state of the database and the internal execu-
tion state of the DBMS, e.g., the contents of the buffer pool, lock
tables, and client connection state. After failover, the DBMS in the
standby VM begins execution with a completely warmed up buffer
pool, picking up exactly where the active VM was as of the most
recent checkpoint, with all session state, TCP state, and transac-
tion state intact. This fast failover to a warm backup and no loss
of client connections is an important advantage of our approach.
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Figure 1: RemusDB System Architecture.

Some DBMS-level HA solutions provide similar features, but these
features add more code and complexity to the already complex sys-
tems. With our approach, these features are essentially free.

Figure 2 shows a simplified timeline illustrating checkpoints and
failover. In reality, checkpoint transmission and acknowledgement
is carefully overlapped with execution to increase performance
while maintaining consistency [8]. However, the simplified time-
line shown in Figure 2 is sufficient to illustrate the important fea-
tures of this approach to DBMS high availability. When the fail-
ure occurs in Figure 2, all of the work accomplished by the active
server during epoch C is lost. If, for example, the active server had
committed a database transaction T during epoch C, any trace of
that commit decision will be destroyed by the failure. Effectively,
the execution of the active server during each interval is specula-

tive until the interval has been checkpointed, since it will be lost
if a failure occurs. Remus controls output commit [28] to ensure
that the external world (e.g., the DBMS clients) sees a consistent
view of the server’s execution, despite failovers. Specifically, Re-
mus queues and holds any outgoing network packets generated by
the active server until the completion of the next checkpoint. For
example, outgoing packets generated by the active server during
epoch B in Figure 2 will be held by Remus until the completion of
the checkpoint at the end of B, at which point they will be released.
Similarly, a commit acknowledgement for transaction T, generated
during epoch C, will be held by Remus and will be lost when the
failure occurs. This network buffering ensures that no client will
have been able to observe the speculative commit of T and con-
clude (prematurely or incorrectly) that T is durably committed. The
output commit principle is also applied to the disk writes generated
at the active server during an epoch. At the standby server, Remus
buffers the writes received from active server during epoch B and
releases them to its disk only at the end of the epoch. In the case of
failure during epoch C, Remus discards the buffered writes of this
epoch, thus maintaining the overall consistency of the system.

For a DBMS, the size of a Remus checkpoint may be large,
which increases checkpointing overhead. Additionally, network
buffering introduces message latency which may have a significant
effect on the performance of some database workloads. RemusDB
extends Remus with optimizations for reducing checkpoint size and
for reducing the latency added by network buffering. We present
these optimizations in the next two sections.

3. MEMORY OPTIMIZATIONS
Remus takes a deliberately simple approach to memory check-

pointing: at every checkpoint, it copies all the pages of memory
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Figure 2: A Primary Server Execution Timeline.

that change from the active host and transmits them over the net-
work to the backup host. The authors of Remus argue that this sim-
plicity is desirable: it provides high availability with an acceptable
degree of overhead, with an implementation that is simple enough
that one can have confidence in its correctness, regardless of the
target application or hardware architecture. This is in stark contrast
to the complexity of previous systems, even those implemented in
the hypervisor [5]. And while this argument for simplicity holds for
database systems, the overhead penalty is higher: database work-
loads tend to modify more memory in each checkpoint epoch than
other workloads. This section describes a set of optimizations de-
signed to reduce this overhead.

3.1 Sending Less Data
Compressing checkpoints is beneficial when the amount of data

to be replicated is large, and the data contains redundancy. Our
analysis found that both of these conditions apply to database work-
loads: (a) they involve a large set of frequently changing pages
of memory (most notably buffer pool pages), and (b) the memory
writes often change only a small part of the pages on which they
occur. This presents an opportunity to achieve a considerable re-
duction in replication traffic by only sending the actual changes to
these pages.

To achieve this, we implemented an LRU-based cache of fre-
quently changing pages from previous checkpoints. This cache is
maintained in domain 0, the privileged VM used for control by the
Xen hypervisor. Our experimentation showed that a cache size of
10% of VM memory offers the desired performance improvement
while maintaining an acceptable memory footprint in domain 0.
When sending pages to the backup, we first check to see if the
previous version of the page exists in this cache. If it does, the con-
tents of the two pages are XORed, usually resulting in a page that
contains mostly zeros, reflecting the large amount of identical data.
The result is then run-length encoded for transmission. If the page
is not found in the cache, it is sent uncompressed, and is added to
the cache using the standard LRU eviction policy.

The original Remus work maintained that asynchronous,
pipelined checkpoint processing while the active VM continues to
execute is critical to minimizing its performance impact. The bene-
fits of this approach were evident in implementing checkpoint com-
pression: moving the implementation into an asynchronous stage
and allowing the VM to resume execution in parallel with compres-
sion and replication in domain 0 halved the overhead of RemusDB.

3.2 Protecting Less Memory
Compressed checkpoints help considerably, but the work in-

volved in taking and sending checkpoints is still proportional to the
amount of memory changed between checkpoints. In this section,
we discuss ways to reduce checkpoint size by selectively ignoring

changes to certain parts of memory. Specifically, a significant frac-
tion of the memory used by a DBMS goes into the buffer pool.
Clean pages in the buffer pool do not need to be sent in Remus
checkpoints if they can be regenerated by reading them from the

disk. Even dirty buffer pool pages can be omitted from Remus
checkpoints if the DBMS can recover changes to these pages from
the transaction log.

In addition to the buffer pool, a DBMS uses memory for other
purposes such as lock tables, query plan cache, working memory
for query operators, and connection state. In general, memory
pages whose contents can be regenerated, or alternatively can be
safely thrown away may be ignored during checkpointing. Based
on these observations, we developed two checkpointing optimiza-
tions: disk read tracking and memory deprotection. Disk read track-
ing is presented below. Details of memory deprotection can be
found in Appendix A.

Disk Read Tracking

Remus, like the live VM migration system on which it is based [7],
uses hardware page protection to track changes to memory. As in
a copy-on-write process fork, all of the page table entries of a pro-
tected virtual machine are set to read only, producing a trap when
any page is modified. The trap handler verifies that the write is al-
lowed, then updates a bitmap of “dirty” pages, which determines
the set of pages to transmit to the backup server at each checkpoint.
This bitmap is cleared after the checkpoint is taken.

Because Remus keeps a synchronized copy of the disk on the
backup, any pages that have been read from disk into memory may
be safely excluded from the set of dirty pages, as long as the mem-
ory has not been modified after the page was read from disk. Our
implementation interposes on disk read requests from the virtual
machine and tracks the set of memory pages into which the reads
will be placed, and the associated disk addresses from which those
pages were read. Normally, the act of reading data from disk into a
memory page would result in that page being marked as dirty and
included in the data to be copied for the checkpoint. Our implemen-
tation does not mark that page dirty, and instead adds an annotation
to the replication stream indicating the sectors on disk that may be
read to reconstruct the page remotely.

Normally, writes to a disk pass through the operating system’s
(or DBMS’s) buffer cache, and this will inform Remus to invalidate
the read-tracked version of the page and add it to the set of pages to
transmit in the next checkpoint. However, it is possible that the con-
tents of the sectors on disk that a read-tracked page refers to may
be changed without touching the in-memory read-tracked page. For
example, a process different from the DBMS process can perform
a direct (unbuffered) write to the file from which the read-tracked
page is to be read after failure. In this case, read tracking would
incorrectly recover the newer version of the page on failover. Al-
though none of the database systems that we studied exhibited this
problem, protecting against it is a matter of correctness, so Re-
musDB maintains a set of backpointers from read-tracked pages to
the associated sectors on disk. If the VM writes to any of these
sectors, we remove the page from the read tracking list and send its
contents normally.

4. COMMIT PROTECTION
Irrespective of memory optimizations, the single largest source

of overhead for many database workloads on the unmodified Re-
mus implementation was the delay introduced by buffering network
packets for controlling output commit. Client/server interactions
in DBMS environments typically involve long-lived sessions with
frequent interactions over low-latency local area networks. For ex-
ample, a TPC-C transaction on PostgreSQL in our experiments has
an average of 32 packet exchanges between client and server, and a
maximum of 77 packet exchanges. Remus’s network buffering de-
lays all these packets; packets that might otherwise have round trip



times on the order of hundreds of microseconds are held until the
next checkpoint is complete, potentially introducing two to three
orders of magnitude in latency per round trip.

Output commit for all network packets is unnecessarily conser-
vative for database systems since they have their own notion of
transactions with clear consistency and durability semantics. This
makes Remus’s TCP-level per-checkpoint transactions redundant.
To let the DBMS supersede the Remus network transaction pro-
tocol, we relax output commit by allowing the DBMS to decide
which packets sent to the client should be protected (i.e., buffered
until the next checkpoint) and which packets can be unprotected
(i.e., sent unbuffered). The DBMS should be able to protect trans-
action control messages, i.e., acknowledgements to COMMIT and
ABORT requests, and server-generated ABORTmessages. The mes-
sages comprising the contents of the transaction can remain unpro-
tected. We call this approach commit protection.

To implement commit protection, the communication channel
between the database server and the client (e.g., stream sockets)
needs to provide abstractions to dynamically enable or disable
buffering of network messages, i.e., abstractions to protect or de-
protect the channel. Given these abstractions, the following proto-
col can be used to implement commit protection inside a DBMS:

1. If the message received from the client is either COMMIT or
ABORT, or if the server decides to abort an active transaction,
switch the client/server communication channel to protected
mode.

2. Perform all actions necessary to commit or abort the transac-
tion, up to writing the COMMIT or ABORT log record to disk.

3. After successfully committing or aborting the transaction,
send the corresponding acknowledgement to the client
through the (currently protected) channel.

4. Switch the channel back to deprotected mode.

This protocol ensures that committed (aborted) transactions ex-
posed by the primary VM are guaranteed to survive a failure: the
client only receives the acknowledgement of the commit or abort
after state changes made by this transaction at the primary VM have
propagated to the backup VM as part of a Remus checkpoint.

To recover from a failure of the active host, we rely on a post-
failover recovery handler that runs inside the DBMS at the backup
VM after it takes over from the primary VM after a failure. The
recovery handler cleanly aborts all in-flight transactions that are
active on any client/server communication channel that was in de-
protected mode before the failure. This is necessary because, due
to deprotection, the client may have been exposed to speculative
state that is lost after a failover, i.e., rolled back to the last Remus
checkpoint. While some active transactions may be aborted during
failover, no transactions that have been acknowledged as commit-
ted will be lost.

To provide a DBMS with the ability to dynamically switch a
client connection between protected and deprotected modes, we
added a new setsockopt() option to Linux. Our implementa-
tion guarantees that protected packets will be buffered until the next
Remus checkpoint is reached. One outstanding issue with commit
protection is that while it preserves complete application seman-
tics, it exposes TCP connection state that can be lost on failover:
unbuffered packets advance TCP sequence counters that cannot be
reversed, which can result in the connection stalling until it times
out. In the current implementation of RemusDB we have not ad-
dressed this problem: only a small subset of connections are af-
fected, and the transactions occurring over them will be recovered
when the connection times out just like any other timed out client

Virtualization
Layer

Guest VM
Kernel

DBMS

Commit
Protection

13 396 103(PostgreSQL),
85(MySQL)

Disk Read
Tracking

1903 0 0

Compression 593 0 0

Table 1: RemusDB Source Code Modifications (Lines of Code).

connection. In the future, we plan to explore techniques by which
we can track sufficient state to explicitly close TCP connections
that have become inconsistent at failover time, in order to speed up
transaction recovery time for those sessions.

We have implemented commit protection in PostgreSQL and
MySQL, with minor modifications to the client connection layer.
Because the changes required are for a small and well-defined part
of the client/server protocol, we expect them to be easily applied
to any DBMS. Table 1 provides a summary of the source code
changes made to different subsystems to implement the different
optimizations that make up RemusDB.

5. EXPERIMENTAL EVALUATION

5.1 Experimental Environment
Our experimental setup consists of two servers each equipped

with two quad-core Intel Xeon processors, 16GB RAM, and two
500GB SATA disks. We use the Xen 4.0 hypervisor (64-bit), De-
bian 5.0 (32-bit) as the host operating system, and Ubuntu 8.04
(32-bit) as the guest operating system. XenLinux Kernel 2.6.18.8
is used for both host and guest operating systems, with disks for-
matted using the ext3 filesystem.

We evaluate RemusDB with PostgreSQL 8.4.0 (referred to
as Postgres) and MySQL 5.0, against representative workloads,
namely TPC-C [31] (OLTP) and TPC-H [30] (DSS). For inter-
ested readers, Appendix B contains additional results with a TPC-
W [32] (e-commerce) workload. To run TPC-C with Postgres and
MySQL we use the TPCC-UVa [19] and Percona [24] benchmark
kits, respectively. We modified the TPCC-UVa benchmark kit so
that it uses one connection per client; the original benchmark kit
uses one shared connection for all clients. Our TPC-H experiments
on Postgres consist of a warmup run with all 22 read-only TPC-
H queries executed serially, followed by one power stream query
sequence. We do not perform TPC-H throughput tests or use the
refresh streams. The benchmark clients are always run from a sep-
arate physical machine.

Table 2 provides a summary of our experimental settings includ-
ing the Remus checkpointing interval (CPI). We use the follow-
ing abbreviations to refer to different RemusDB optimizations in
our experiments: RT – Disk Read Tracking, ASC – Asynchronous
Checkpoint Compression, and CP – Commit Protection. We present
the key results of our experimental study in this section. Further ex-
perimental results can be found in Appendix B.

5.2 Behaviour of RemusDB During Failover
In the first experiment, we show RemusDB’s performance in the

presence of failures of the primary host. We run the TPC-C bench-
mark against Postgres and MySQL and plot throughput in trans-
actions per minute (TpmC). We only plot transactions that com-
plete within 5 seconds as required by TPC-C specifications. We
run the test for 1 hour, a failure of the primary host is simulated at
30 minutes by cutting power to it. We compare the performance
of a database system protected by unoptimized Remus and by Re-



Test DB BP VM Remus

DBMS Benchmark Performance Default Duration Size Size Memory vCPUs CPI

Metric Scale (mins) (GB) (MB) (GB) (ms)

Postgres TPC-C TpmC 20W, 200C 30 1.9 190 2 2 50

TPC-H Execution Time 1 – 2.3 750 1.5 2 250

TPC-W WIPSb 10K Items 20 1.0 256 2 2 100

MySQL TPC-C TpmC 30W, 300C 30 3.0 300 2 2 50

Table 2: Experimental Settings.
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Figure 3: TPC-C Failover (Postgres).

musDB with its two transparent optimizations (ASC, RT) in Fig-
ures 3 and 4. The performance of an unprotected database system
(without HA) is also shown for reference. The throughput shown
in the figure is the average throughput for a sliding window of 60
seconds. Note that MySQL is run with a higher scale (Table 2) than
Postgres because of its ability to handle larger workloads when pro-
vided with the same resources.

Under both versions of Remus, when the failure happens at the
primary physical server, the VM at the backup physical server re-
covers with ≤ 3 seconds of downtime and continues execution.
The database is running with a warmed up buffer pool, no client

connections are lost, and in-flight transactions continue to execute

normally from the last checkpoint. We only lose the speculative
execution state generated at the primary server since the last check-
point. In the worst case, Remus loses one checkpoint interval’s
worth of work. But this loss of work is completely transparent to
the client since Remus only releases external state at checkpoint
boundaries. After the failure, throughput rises sharply and reaches
a steady state comparable to that of the unprotected VM before the
failure. This is because the VM after the failure is not protected, so
we do not incur the replication overhead of Remus.

Figure 4 also shows results with MySQL’s integrated replica-
tion solution, Binlog [22, Ch. 5.2.3]. The current stable release of
Postgres, used in our experiments, does not provide integrated HA
support, although such a facility is in development for Postgres 9.
MySQL Binlog replication, in combination with monitoring sys-
tems like Heartbeat [18], provides performance very close to that
of an unprotected VM and can recover from a failure with ≤ 5

seconds of server downtime. However, we note that RemusDB has
certain advantages when compared to Binlog replication:

• Completeness. On failover, Binlog replication can lose up to
one transaction even under the most conservative settings [22,
Ch. 16.1.1.1]. In contrast, even with aggressive optimiza-
tions such as commit protection, RemusDB never loses trans-
actions.
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• Transparency. Client-side recovery is more complex with
Binlog, which loses all existing client sessions at failure.
To show Binlog performance after recovery in Figure 4, we
had to modify the TPC-C client to reconnect after the fail-
ure event. This violates the TPC specification, which re-
quires that clients not reconnect if their server context has
been lost [31, 6.6.2]. Because we are comparing server over-
head, we minimized the client recovery time by manually
triggering reconnection immediately upon failover. In prac-
tice, DBMS clients would be likely to take much longer to
recover, since they would have to time-out their connections.

• Implementation complexity. Binlog accounts for approxi-
mately 18K lines of code in MySQL, and is intricately tied
to the rest of the DBMS implementation. Not only does this
increase the effort required to develop the DBMS (as devel-
opers must be cautious of these dependencies), but it also
results in constant churn for the Binlog implementation, ulti-
mately making it more fragile. Binlog has experienced bugs
proportionate to this complexity: more than 700 bugs were
reported over the last 3 years.

5.3 Overhead During Normal Operation
Having established the effectiveness of RemusDB at protecting

from failure and its fast failover time, we now turn our attention to
the overhead of RemusDB during normal operation. This section
serves two goals: (a) it quantifies the overhead imposed by unop-
timized Remus on normal operation for different database bench-
marks, and (b) it measures how the RemusDB optimizations affect
this overhead, when applied individually or in combination. In this
section, we report results for the TPC-C and TPC-H benchmarks
on Postgres. Results for TPC-W and for MySQL can be found in
Appendix B.

Figure 5 presents TPC-C benchmark results for Postgres. The
benchmark was run for 30 minutes using the settings presented
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in Table 2. The TpmC score reported in this graph takes into ac-
count all transactions during the measurement interval irrespective
of their response time (even if it violates the TPC-C specification).
It is clear from the graph that without optimizations, Remus pro-
tection for database systems comes at a very high cost. The RT op-
timization provides very little performance benefit because TPC-C
has a small working set and dirties many of the pages that it reads.
However, ASC and CP provide significant performance gains (per-
formance of 0.9-0.97 w.r.t. base). TPC-C is particularly sensitive
to network latency and both of these optimizations help reduce this
latency, either by reducing the time it takes to checkpoint (ASC) or
by getting rid of the extra latency incurred due to Remus’s network
buffering for all but commit packets (CP). The combination of all
three optimizations (ASC, RT, CP) yields the best performance at
the risk of a few transaction aborts (not losses) and connection fail-
ures. Other experiments (not presented here) show that on average
about 10% of the clients lose connectivity after failover when CP is
enabled. In most cases, this is an acceptable trade-off given the high
performance under (ASC, RT, CP) during normal execution. This
is also better than many existing solutions where there is a possibil-
ity of losing not only connections but also committed transactions,
which never happens in RemusDB.

Figure 6 presents the results for TPC-H with Postgres. Since
TPC-H is a decision support benchmark that consists of long-
running compute and I/O intensive queries typical of a data ware-
housing environment, it shows very different performance gains
with different RemusDB optimizations as compared to TPC-C. In
particular, as opposed to TPC-C, we see some performance gains
with RT because TPC-H is a read intensive workload, and abso-
lutely no gain with CP because it is insensitive to network latency.
A combination of optimizations still provides the best performance,
but in case of TPC-H most of the benefits come from memory opti-
mizations (ASC and RT). These transparent memory optimizations
bring performance to within 10% of the base case, which is a rea-
sonable performance overhead. Using the non-transparent CP adds
no benefit and is therefore not necessary. Moreover, the opportunity
for further performance improvement by using the non-transparent
memory deprotection interface (presented in Appendix A) is lim-
ited to 10%. Therefore, we conclude that it is not worth the addi-
tional complexity to pursue it.

RemusDB has a lot to offer for a wide variety of workloads that
we study in this experiment. This experiment shows that a combi-
nation of memory and network optimizations (ASC and CP) work
well for OLTP style workloads, while DSS style workloads gain
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Figure 6: TPC-H Overhead (Postgres) [Base Runtime = 921s].
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Figure 7: Effect of DB Buffer Pool Size on RemusDB (TPC-H).

the most benefit from memory optimizations alone (ASC and RT).
It also shows that by using the set of optimizations that we have
implemented in RemusDB, we gain back almost all of the perfor-
mance lost when going from an unprotected VM to a VM protected
by unoptimized Remus.

5.4 Effects of DB Buffer Pool Size
In this experiment, we study the effect of varying the size of

the database buffer pool on different memory optimizations (ASC
and RT). We use the TPC-H workload for this experiment since
the previous experiment showed that memory optimizations offer
significant performance gains for this workload.

We run a scale factor 1 TPC-H workload, varying the database
buffer pool size from 250MB to 1000MB. We measure the total
execution time for the warmup run and the power test run in each
case, and repeat this for different RemusDB optimizations. To have
reasonably realistic settings, we always configure the buffer pool to
be 50% of the physical memory available to the VM. For example,
for a 250MB buffer pool, we run the experiment in a 500MB VM
and so on. Results are presented in Figure 7. The numbers on top of
each bar show the relative overhead with respect to an unprotected
VM for each buffer pool setting.

Focusing on the results with a 250MB buffer pool in Figure 7,
we see a 16.6% performance loss with unoptimized Remus. Opti-
mized RemusDB with RT and ASC alone incurs only 9.4% and
6.6% overhead, respectively. The RemusDB memory optimiza-
tions (ASC, RT) when applied together result in an overhead of
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only 5.8%. As noted in the previous experiment, CP does not offer
any performance benefit for TPC-H. We see the same trends across
all buffer pool sizes. It can also be seen from the graph that the
overhead of RemusDB increases with larger buffer pool (and VM
memory) sizes. This is because the amount of work done by Re-
musDB to checkpoint and replicate changes to the backup VM is
proportional to the amount of memory dirtied, and there is potential
for dirtying more memory with larger buffer pool sizes. However,
this overhead is within a reasonable 10% for all cases.

Another insight from Figure 7 is that the benefit of RT decreases
with increasing buffer pool size. Since the database size is 2.3GB
on disk (Table 2), with a smaller buffer pool size (250 and 500MB)
only a small portion of the database fits in main memory, resulting
in a lot of “paging” in the buffer pool. This high rate of paging (fre-
quent disk reads) makes RT more useful. With larger buffer pool
sizes, the paging rate decreases drastically and so does the bene-
fit of RT, since the contents of the buffer pool become relatively
static. In practice, database sizes are much larger than the buffer
pool sizes, and hence a moderate paging rate is common.

For this experiment, we also measure the savings in replication
network bandwidth usage achieved with different optimizations for
different buffer pool sizes. Results are presented in Appendix B.

5.5 Effect of Database Size on RemusDB
In the last experiment, we want to show how RemusDB scales

with different database sizes. Results for the TPC-C benchmark on
Postgres with varying scales are presented in Figure 8. We use three
different scales: (a) 10 warehouses, 100 clients, 850MB database;
(b) 15 warehouses, 150 clients, 1350MB database; and (c) 20 ware-
houses, 200 clients, 1900MB database. The Postgres buffer pool
size is always 10% of the database size. As the size of the database
grows, the relative overhead of unoptimized Remus increases con-
siderably, going from 10% for 10 warehouses to 32% for 20 ware-
houses. RemusDB with memory optimizations (ASC, RT) incurs
an overhead of 9%, 10%, and 12% for 10, 15, and 20 warehouses,
respectively. RemusDB with memory and network optimizations
(ASC, RT, CP) provides the best performance at all scales, with al-
most no overhead at the lower scales and only a 3% overhead in the
worst case at 20 warehouses.

Results for TPC-H with scale factors 1, 3, and 5 are presented
in Figure 9. Network optimization (CP) is not included in this fig-
ure since it does not benefit TPC-H. Unoptimized Remus incurs an
overhead of 22%, 19%, and 18% for scale factor 1, 3, and 5, respec-
tively. On the other hand, RemusDB with memory optimizations
has an overhead of 10% for scale factor 1 and an overhead of 6%
for both scale factors 3 and 5 – showing much better scalability.

In addition to the experiments shown here, Appendix B presents
an experiment that studies the sensitivity of RemusDB to varying
the length of the checkpointing interval.
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6. RELATED WORK
Several types of HA techniques are used in database systems,

sometimes in combination. Many database systems [6, 16, 20, 21]
implement some form of active-standby HA, which is also the basis
of RemusDB. In active-standby systems, update propagation may
be synchronous or asynchronous. With synchronous propagation,
transaction commits are not acknowledged to the database client
until both the primary and backup systems have durably recorded
the update, resulting in what is known as a 2-safe system [13, 25].
A 2-safe system ensures that a single server failure will not result
in lost updates, but synchronous update propagation may introduce
substantial performance overhead. In contrast, asynchronous prop-
agation allows transactions to be acknowledged as soon they are
committed at the primary. Such 1-safe systems impose much less
overhead during normal operation, but some recently-committed
(and acknowledged) transactions may be lost if the primary fails.
RemusDB, which is itself an active-standby system, uses asyn-
chronous checkpointing to propagate updates to the backup. How-
ever, by controlling the release of output from the primary server,
RemusDB ensures that committed transactions are not acknowl-
edged to the client until they are recorded at the backup. Thus,
RemusDB is 2-safe. RemusDB also differs from other database
active-standby systems in that it protects the entire database server
state, and not just the database.

Alternatives to active-standby HA include shared access and
multi-master HA. Under the former approach, multiple database
systems share access to a single, reliable database image. The lat-
ter approach uses multiple database replicas, each handling queries
and updates. More discussion of these alternatives can be found in
Appendix C.

Virtualization has been used to provide high availability for ar-
bitrary applications running in virtual machines, by replicating the
entire virtual machine as it runs. Replication can be achieved ei-
ther through event logging and execution replay or whole-machine
checkpointing. Event logging requires much less bandwidth than
whole-machine checkpointing, but it is not guaranteed to be able
to reproduce machine state unless execution can be made deter-

ministic. Enforcing determinism on commodity hardware requires
careful management of sources of non-determinism [5, 9], and be-
comes infeasibly expensive to enforce on shared-memory multi-
processor systems [2, 10, 33]. Respec [17] does provide determin-
istic execution recording and replay of multithreaded applications
with good performance by lazily increasing the level of synchro-
nization it enforces depending on whether it observes divergence
during replay, but it requires re-execution to be performed on a dif-
ferent core of the same physical system, making it unsuitable for
HA applications. For these reasons, the replay-based HA systems
of which we are aware support only uniprocessor VMs [26]. Since
RemusDB uses whole-machine checkpointing, it supports multi-
processor VMs.



7. CONCLUSION
We presented RemusDB, a system for providing simple transpar-

ent DBMS high availability at the virtual machine layer. RemusDB
provides active-standby HA and relies on VM checkpointing to
propagate state changes from the primary server to the backup
server. It can make any DBMS highly available with little or no
code changes and it imposes little performance overhead.

We see several directions for future work. One direction is mak-
ing RemusDB completely transparent to the DBMS. Currently, the
commit protection of RemusDB requires code changes to the client
communication layer of a DBMS. Implementing these changes in
an ODBC or JDBC driver that can be used by any DBMS or in a
proxy can eliminate the need for these code changes. Another di-
rection for future work is exploring the possibility of using DBMS-
visible deprotection techniques (e.g., memory deprotection) to im-
prove performance and availability. At a higher level, RemusDB’s
approach to high availability opens up new opportunities for DBMS
deployments on commodity hardware in the cloud. High availabil-
ity could be decoupled from the DBMS and offered as a transpar-
ent service by the cloud infrastructure on which the DBMS runs.
Exploring these opportunities is another interesting direction for
future work.
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Figure 10: TPC-C Overhead (MySQL).

APPENDIX

A. MEMORY DEPROTECTION
In addition to disk read tracking, described in Section 3.2, we

also explored the use of a second memory optimization to reduce
the amount of memory protected by RemusDB. This memory opti-
mization aims to provide the DBMS with a more explicit interface
to control which portions of its memory should be deprotected (i.e.,
not replicated during checkpoints). We were surprised to find that
we could not produce performance benefits over simple read track-
ing using this interface.

The idea for memory deprotection stemmed from the Recovery
Box [3], a facility for the Sprite OS that replicated a small region
of memory that would provide important recent data structures to
speed up recovery after a crash (Postgres session state is one of their
examples). Our intuition was that RemusDB could do the opposite,
allowing the majority of memory to be replicated, but also enabling
the DBMS to flag high-churn regions of working memory, such
as buffer pool descriptor tables, to be explicitly deprotected and a
recovery mechanism to be run after failover.

The resulting implementation was an interesting, but ultimately
useless interface: The DBMS is allowed to deprotect specific re-
gions of virtual memory, and these addresses are resolved to phys-
ical pages and excluded from replication traffic. On failover, the
system would continue to run but deprotected memory would sud-
denly be in an unknown state. To address this, the DBMS regis-
ters a failover callback handler that is responsible for handling the
deprotected memory, typically by regenerating it or dropping ac-
tive references to it. The failure handler is implemented as an idle
thread that becomes active and gets scheduled only after failover,
and that runs with all other threads paused. This provides a safe
environment to recover the system.

While we were able to provide what we felt was both a natural
and efficient implementation to allow the deprotection of arbitrary
memory, it is certainly more difficult for an application writer to
use than our other optimizations. More importantly, we were un-
able to identify any easily recoverable data structures for which this
mechanism provided a performance benefit over read tracking. One
of the reasons for this is that memory deprotection adds CPU over-
head for tracking deprotected pages during checkpointing, and the
savings from protecting less memory need to outweigh this CPU
overhead to result in a net benefit. We still believe that the interface
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Figure 12: Effect of DB Buffer Pool Size on Amount of Data

Transferred During RemusDB Checkpointing (TPC-H).

may be useful for other applications and workloads, but we have
decided not to use it in RemusDB.

To illustrate our reasoning, we ran a TPC-H benchmark on Post-
gres with support for memory deprotection in our experimental set-
ting. Remus introduced 80% overhead relative to an unprotected
VM. The first data structure we deprotected was the shared mem-
ory segment, which is used largely for the DBMS buffer pool. Un-
surprisingly, deprotecting this segment resulted in roughly the same
overhead reduction we achieved through read tracking (bringing the
overhead down from 80% to 14%), but at the cost of a much more
complicated interface. We also deprotected the dynamically allo-
cated memory regions used for query operator scratch space, but
that yielded only an additional 1% reduction in overhead. We con-
clude that for the database workloads we have examined, the trans-
parency vs. performance tradeoff offered by memory deprotection
is not substantial enough to justify investing effort in complicated
recovery logic.

B. ADDITIONAL EXPERIMENTAL RE­

SULTS

B.1 Overhead During Normal Operation
In this experiment, we measure the overhead during normal op-

eration for the TPC-C benchmark running on MySQL and the TPC-
W benchmark running on Postgres.
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For TPC-C with MySQL we use the settings presented in Table 2
and present the results in Figure 10. On the x-axis, we have differ-
ent RemusDB optimizations and on the y-axis we present TpmC
scores normalized with respect to an unprotected (base) VM. The
base VM score for MySQL is 365 TpmC. The conclusions are the
same as the ones presented for TPC-C with Postgres in Section 5.3
(Figure 5): network optimizations provide more benefit than mem-
ory optimizations because of the sensitivity of the TPC-C bench-
mark to network latency, while combining various optimizations
brings the performance very close to that of an unprotected VM.

For TPC-W experiments with Postgres we use the TPC-W im-
plementation described in [14]. We use a two-tier architecture with
Postgres in one tier and three instances of Apache Tomcat v6.0.26
in the second tier, each running in a separate VM. Postgres runs on
a virtual machine with 2GB memory and 2 virtual CPUs. We use
a TPC-W database with 10,000 items (1GB on disk). Postgres’s
buffer pool is set to 256MB. Each instance of Apache Tomcat runs
in a virtual machine with 1GB memory, and 1 virtual CPU. In these
experiments, when running with Remus, only the Postgres VM is
protected. In order to avoid the effects of virtual machine schedul-
ing while measuring overhead, we place the Tomcat VMs on a sep-
arate, well-provisioned physical machine.

The results for TPC-W with Postgres are presented in Figure 11.
Each test was run with the settings presented in Table 2 for a dura-
tion of 20 minutes. We drive the load on the database server using
252 Emulated Browsers (EBs) that are equally divided among the
three instances of Apache Tomcat. The Apache Tomcat instances
access the database to create dynamic web pages and return them
to the EBs as specified by the TPC-W benchmark standard [32].
We use the TPC-W browsing mix at the clients with image serving
turned off. The y-axis on Figure 11 presents TPC-W scores, Web
Interactions Per Second (WIPS), normalized to the base VM score
(36 WIPS). TPC-W behaves very similar to TPC-C: ASC and CP
provide the most benefit while RT provides little or no benefit.

B.2 Network Bandwidth Savings by RemusDB
For this experiment we use the TPC-H benchmark running on

Postgres that was presented earlier in Section 5.4 (Figure 7). Fig-
ure 12 presents the total amount of data transferred from the pri-
mary server to the backup server during checkpointing for the en-
tire duration of the different TPC-H runs. The different bars in
Figure 12 correspond to the bars in Figure 7. With a 250MB buffer
pool size, unoptimized Remus sends 113GB of data to the backup
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host while RemusDB with ASC and RT together sends 23GB, a
saving of 90GB (or 80%). As we increase the buffer pool size, the
network bandwidth savings for RemusDB decrease for the same
reasons explained in Section 5.4: with increasing buffer pool size
the rate of memory dirtying decreases, and so do the benefits of
memory optimizations, both in terms of total execution time and
network savings. Recall that CP is not concerned with checkpoint
size, and hence it has no effect on the amount of data transferred.

B.3 Effects of RemusDB Checkpoint Interval
This experiment aims to explore the relationship between Re-

musDB’s checkpoint interval (CPI) and the corresponding perfor-
mance overhead. We conducted this experiment with TPC-C and
TPC-H, which are representatives of two very different classes of
workloads. We run each benchmark on Postgres, varying the CPI
from 25ms to 500ms. Results are presented in Figures 13 and 14 for
TPC-C and TPC-H, respectively. We vary CPI on the x-axis, and
we show on the y-axis TpmC for TPC-C (higher is better) and total
execution time for TPC-H (lower is better). The figures show how
different CPI values affect RemusDB’s performance when running
with (ASC, RT) and with (ASC, RT, CP) combined, compared to
an unprotected VM.

From the TPC-C results presented in Figure 13, we see that for
(ASC, RT) TpmC drops significantly with increasing CPI, going
from a relative overhead of 10% for 25ms to 84% for 500ms. This
is to be expected because, as noted earlier, TPC-C is highly sensi-
tive to network latency. Without RemusDB’s network optimization
(CP), every packet incurs a delay of CPI

2
milliseconds on average.

With a benchmark like TPC-C where a lot of packet exchanges
happen between clients and the DBMS during a typical benchmark
run, this delay per packet results in low throughput and high trans-
action response times. When run with memory (ASC, RT) and
network (CP) optimizations combined, RemusDB’s performance
is very close to that of unprotected VM, with a relative overhead
≤ 9% for all CPIs.

On the other hand, the results of this experiment for TPC-H (Fig-
ure 14) present a very different story. In contrast to TPC-C, increas-
ing CPI actually leads to reduced execution time for TPC-H. This is
because TPC-H is not sensitive to network latency but is sensitive
to the overhead of checkpointing, and a longer CPI means fewer
checkpoints. The relative overhead goes from 14% for 25ms CPI
to 7% for 500ms. We see a similar trend for both (ASC, RT) and
(ASC, RT, CP) since CP does not help TPC-H (recall Figure 7).



There is an inherent trade-off between RemusDB’s CPI, work
lost on failure, and performance. Choosing a high CPI results in
more lost state after a failover since all state generated during an
epoch (between two consecutive checkpoints) will be lost, while
choosing a low CPI results in a high runtime overhead during nor-
mal execution for certain types of workloads. This experiment
shows how RemusDB’s optimizations, and in particular the net-
work optimization (CP), helps relax this trade-off for network sen-
sitive workloads. For compute intensive workloads that are also
insensitive to latency (e.g., TPC-H), choosing a higher CPI actu-
ally helps performance.

C. ADDITIONAL RELATED WORK
As noted in Section 6, alternatives to active-standby HA include

shared access and multi-master approaches. In shared access ap-
proaches, two or more database server instances share a common
storage infrastructure, which holds the database. The storage in-
frastructure stores data redundantly, e.g., by mirroring it on multi-
ple devices, so that it is reliable. In addition, the storage intercon-
nect, through which the servers access the stored data (e.g., a SAN),
is made reliable through the use of redundant access pathways. In
case of a database server failure, other servers with access to the
same database can take over the failed server’s workload. Exam-

ples of this approach include Oracle RAC [23], which implements
a virtual shared buffer pool across server instances, failover clus-
tering in Microsoft SQL Server [16], and synchronized data nodes
accessed through the NDB backend API in MySQL Cluster [20].
RemusDB differs from these techniques in that it does not rely on
a shared storage infrastructure.

Like active-standby systems, multi-master systems (also known
as update anywhere or group systems [12]) achieve high availability
through replication. Multi-master systems relax the restriction that
all updates must be performed at a single site. Instead, all replicas
handle user requests, including updates. Replicas then propagate
changes to other replicas, which must order and apply the changes
locally. Various techniques, such as those based on quorum consen-
sus [11, 29] or on the availability of an underlying atomic broad-
cast mechanism [15], can be used to synchronize updates so that
global one-copy serializability is achieved across all of the repli-
cas. However, these techniques introduce both performance over-
head and complexity. Alternatively, it is possible to give up on
serializablility and expose inconsistencies to applications. How-
ever, these inconsistencies must then somehow be resolved, often
by applications or by human administrators. RemusDB is based on
the simpler active-standby model, so it does not need to address the
update synchronization problems faced by multi-master systems.


