US007363324B2

a2 United States Patent

Aboulnaga et al.

US 7,363,324 B2
Apr. 22,2008

(10) Patent No.:
45) Date of Patent:

(54) METHOD, SYSTEM AND PROGRAM FOR (56) References Cited
PRIORITIZING MAINTENANCE OF
DATABASE TABLES U.S. PATENT DOCUMENTS
6,366,901 B1* 4/2002
(75) Inventors: Ashraf Ismail Aboulnaga, Waterloo 6,421,661 Bl 7/2002
(CA); Peter Jay Haas, San Jose, CA g’gfﬁ’?gz g} N ggggz
(US); Sam Sampson Lightstone, 2002/0174049 AL* 11/2002
Toronto (CA), Volker Gerhard Markl, 2003/0221162 Al* 11/2003
San Jose, CA (US); Ivan Popivanov,
Markham (CA); Vijayshankar Raman, OTHER PUBLICATIONS
San Jose, CA (US) MySQL Administrator’s Guide by MySQL AB (Jul. 26, 2004)
. (http://proquest.safaribooksonline.com/0672326345/
(73) Assignee: International Business Machines ch04lev1sec6.*
Corporation, Armonk, NY (US) . .
* cited by examiner
(*) Notice: Subject. to any disclaimer,. the term of this Primary Examiner—Cam Y Truong
patent is extended or adjusted under 35
US.C. 154(b) by 407 d Assistant Examiner—Dennis Myint
S.C. 154(b) by ays. 74) Attorney, Agent, or Firm—Sughrue Mion, PLLC
Y, AL 2
(21) Appl. No.: 11/016,233 (57) ABSTRACT
(22) Filed: Dec. 17, 2004 There is disclosed a data processing system implemented
. A method, a data processing system, and an article of manu-
(65) Prior Publication Data facture for directing a data processing system to maintain a
US 2006/0136499 Al Jun. 22, 2006 database table associated with an initial maintenance sched-
uling interval. The data processing system implemented
(51) Inmt. Cl method includes selecting a randomizing factor, and select-
GO6F 17/30 (2006.01) ing a new maintenance scheduling interval for the database
52) US.Cl .o 707/200; 707/10; 707/100 table based on the initial maintenance scheduling interva
; 707/10; 707/ ble based he initial mai heduling i 1
58) Field of Classification Search 707/2; and the selected randomizing factor.
(58) ; g
370/205

See application file for complete search history.

15 Claims, 5 Drawing Sheets

[100

TO NETWORK
T I‘ ________________________
i L
: NETWORK |/

! INTERFACE
! 104 12106
| STORAGE\ cu | \,\
-1 J
e I 1= o=
! (R 1 lea | leall
A e B jma 1 =531
: |_|J (] |_|J |._.,al_r| L‘.J I,--l_J (S} I_lJ
]] | 1 ! 1 A 101] 1])
' / " ——— R
botof 23 103 101 I Vg 103 123-"403-" i
]
]
i I 105 —l 109
) VIDEO J 10 i
|| InTERFACE INTERFACE {
| |
]]
b] e
[|
VIDEO DISK
DISPLAY KEYBOARD MOUSE DRIVE \

KH)B \110

107

K 114
v

7| MEDIA

16

U.S. Patent Apr. 22,2008 Sheet 1 of 5 US 7,363,324 B2

100
TO NETWORK [

NETWORK |

INTERFACE

104 106
- 124-
STORAGE\ ST D A \\\

|
(|
| |
| |
| |
| I
| |
| |
| |
: I

|
| |
: _--—1-124 / / | :
| — -4 | — ~ 5L —_ e - |
! : : -3 : Polea : : : : L : : !
| ~ = I -~ = ~ " |
: l_'l.l LI‘JLI‘J L TL.I‘.IH\..I ,,-—LJ L4 Lo :
! , 101 A !
L a0r Mgos N 101-7 |\, ,,>-103 AN
: 101 ~123 103 123 123 103~ :
| l
l 105 109 l
|
| VIDEQ j Ho J l
| | INTERFACE INTERFACE !
| |
e . J

VIDEO DISK
DISPLAY KEYBOARD MOUSE DRIVE -\

\ \ \ 114
108 110 112 ﬁ
| MeDA

107

FIG. 1

US 7,363,324 B2

Sheet 2 of 5

Apr. 22,2008

U.S. Patent

"UOReISY JUBLIND

ul pajenjens
S9|qe} 10} [PAIB)UI
SoURUBIUIEW ‘ uOneIAY }XauU YJIM NURUOD
aepdn (1 (Jaziwndo Buiuses)
e Buisn 6°9)
sishjeue
iz jo adA) angeussye
ue buisn 80¢
$9|qe} J03)8s (¢
212 UOIRJBY SIY) Ul PaJSPISU0D
1]¥4 3q 0} ale Jey) so|qe) suiwex3
90¢
N gy ¥ Y
fwoud (uono9)i09
kq s91€) palEs uoneJa}l sonsne)s ‘6-9) onsne)s uonesay
40 (10800 30uBUBUIRW aoueuajuew 3|qe} auo Jses| Bunoadn
s u;m_«m.a s 60) — aLnd o 10} 9|98} —] SUILLEXD ‘UONRIA) |t— Ul UOTENIEAS [0
- Ul 90UBUSJUIBW IO} 109|985 ‘abueyd SIy} U1 pajenieas ' uonen| 4
aoueusjuew sajqe; Aypuapi (|
s|qe) azpuold (§ ejep juesyiubis aq 0} S3|qe)} Jo4 (g
anoax3 (9
s1aseyy | (¢

c0e

U.S. Patent Apr. 22,2008 Sheet 3 of 5 US 7,363,324 B2

A A A

Vil Vil

X
v

€0
€0
(1)

!

FIG. 3B

U.S. Patent Apr. 22,2008 Sheet 4 of 5 US 7,363,324 B2

l 2%

U.S. Patent Apr. 22,2008 Sheet 5 of 5 US 7,363,324 B2

A A A

VI

Vil

4

:

OOSS

OO0 fj

500A —/‘

FIG. 5B
FIG. 5C

US 7,363,324 B2

1

METHOD, SYSTEM AND PROGRAM FOR
PRIORITIZING MAINTENANCE OF
DATABASE TABLES

BACKGROUND

The present invention relates to database management
systems generally, and more particularly the present inven-
tion relates to a method, a data processing system and an
article of manufacture for prioritizing maintenance of data-
base tables.

Modem database schemas can be very large and complex,
with a database management system (“DBMS”) managing
perhaps tens, hundreds, or even thousands of tables. The
tables may contain tens or hundreds of columns each and
millions of records collectively. As known to those skilled in
the art, it is necessary regularly to perform maintenance
tasks on the database tables to achieve satisfactory database
performance over an extended period of time.

Consider a specific example. Many modern databases use
a standardized query language known as Structured Query
Language (“SQL”). With SQL, a user is able to specify a
database query using declarative language, leaving it up to
the DBMS to figure out how to best access and join tables
in the database in order to extract matching records.

For any given SQL query, there may be numerous ways
in which tables may be joined and accessed to obtain the
requested data. Many modern DBMS products include
query optimizers to evaluate alternative query execution
plans (“QEPs”) and to select one that is suitable. Evaluating
many possible QEPs may involve estimating costs (i.e.
resources consumed) for each possible QEP based on math-
ematical models. These mathematical models typically
require input from various statistics collected for each
database table.

Thus, for the purposes of obtaining cost estimates for
alternative QEPs, it is desirable to perform table statistics
collection regularly so that the table statistics are up-to-date.
Otherwise, the cost estimates for QEPs may be inaccurate,
and may lead to reduced database query performance.

In addition to maintenance tasks involving the collection
of'up-to-date table statistics, various other table maintenance
tasks may also be required, such as backup, recovery,
reorganizing of records, log file maintenance, and so on.

While it may be desirable to be able to perform these
various table maintenance tasks at any time, and as often as
required, this is often not possible. More typically, service
level agreements or other database performance consider-
ations may impose significant restrictions on when table
maintenance may be performed. Thus, a limited window of
opportunity for performing various maintenance tasks may
be made available from time to time (e.g. overnight or
during off-peak hours). For maintenance scheduling pur-
poses, a continuous series of these maintenance windows
must be considered, since a maintenance task that is not
scheduled in a current maintenance window may need to be
rescheduled for a future maintenance window. (In the con-
text of the current discussion, the table maintenance tasks
performed during a maintenance window is referred to as a
maintenance “iteration”.)

For a database schema with a relatively modest number of
tables, it may be possible for a human database administrator
to analyze the maintenance requirements for each table, and
manually schedule the maintenance tasks in upcoming main-
tenance iterations. However, as the number of tables
increases, manual scheduling may quickly become imprac-
tical, if not impossible.

20

25

30

35

40

45

50

55

60

65

2

There are some known techniques and tools for autonomi-
cally scheduling maintenance for databases. However, these
known techniques tend to exhibit certain limitations, such as
a tendency to schedule maintenance unevenly over available
maintenance windows, or to make changes in scheduling
which may not be suitable. Over time, such limitations may
lead to degradation of database performance due to less than
optimal maintenance.

What is needed is an improved technique for scheduling
and prioritizing maintenance for a plurality of database
tables.

SUMMARY

In an aspect of the present invention, there is provided a
data processing system implemented method for directing a
data processing system to maintain a given database table
associated with an initial maintenance scheduling interval,
the data processing system implemented method including:
selecting a randomizing factor; and selecting a new main-
tenance scheduling interval for the given database table
based on the initial maintenance scheduling interval and the
selected randomizing factor.

In another aspect of the invention, there is provided a data
processing system for maintaining a given database table
associated with an initial maintenance scheduling interval,
the data processing system including: a selecting module for
selecting a randomizing factor; and a selection module for
selecting a new maintenance scheduling interval for the
given database table based on the initial maintenance sched-
uling interval and the selected randomizing factor.

In yet another aspect of the invention, there is provided an
article of manufacture for directing a data processing system
to maintain a given database table associated with an initial
maintenance scheduling interval, the article of manufacture
including: a program usable medium embodying one or
more instructions executable by the data processing system,
the one or more instructions including: data processing
system executable instructions for selecting a randomizing
factor; and data processing system executable instructions
for selecting a new maintenance scheduling interval for the
given database table based on the initial maintenance sched-
uling interval and the selected randomizing factor.

Advantageously, the resulting schedule better balances
the maintenance scheduling requirements for a plurality of
database tables, in a manner that may help to maintain
database performance over an extended period.

These and other aspects of the invention will become
apparent from the following more particular descriptions of
exemplary embodiments of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

In the figures which illustrate exemplary embodiments of
the invention:

FIG. 1 is a schematic block diagram of a data processing
system which may provide an operating environment for
practicing exemplary embodiments of the invention;

FIG. 2 shows a block flow diagram of an illustrative
process for identifying, evaluating, and prioritizing tables;

FIGS. 3A-3C is a schematic diagram showing consecu-
tive iterations of a maintenance scheduling technique;

FIG. 4 is an xy graph of a skew function which may be
used in defining a maintenance interval in accordance with
an embodiment of the invention;

US 7,363,324 B2

3

FIGS. 5A-5C is a schematic diagram showing a mainte-
nance scheduling technique in accordance with an illustra-
tive embodiment of the invention;

FIG. 6 is an xy graph of a skew function mirroring the
skew function of FIG. 4, which may be used in defining a
maintenance interval in accordance with an embodiment of
the invention.

DETAILED DESCRIPTION

FIG. 1 shows a schematic block diagram of a data
processing system which may provide an operating envi-
ronment for practicing exemplary embodiments of the
invention. The data processing system 100 may include a
central processing unit (“CPU”) 102 connected to a storage
unit 104 and to a random access memory (“RAM™) 106. The
CPU 102 may process an operating system 101, a database
management system (“DBMS”) 103, a database 123 includ-
ing a plurality of database tables managed by the DBMS,
and a program 124 with one or more instructions executable
by the data processing system 100 embodying the invention
as described further below.

The operation system 101, database 123, program 124,
and DBMS 103 may be stored in the storage unit 104 and
loaded into RAM 106, as required. A user 107 may interact
with the data processing system 100 using a video display
108 connected by a video interface 105, and various input/
output devices such as a keyboard. 110, mouse 112, and disk
drive 114 connected by an I/O interface 109. The disk drive
114 may be configured to accept an article of manufacture
comprising a computer-readable medium 116 including
RAM, ROM, flash memory; optical media; magnetic media;
and other well-known computer-readable storage media.
The data processing system 100 may be network enabled via
a network interface 111, allowing the data processing system
100 to communicate with other compatible data processing
systems across a network (not shown).

As an illustrative example, the DBMS 103 may be IBM
DB2™ configured to manage database 123. Database 123
may include numerous tables storing data accessible by
SQL.

The data processing system 100 in FIG. 1 is merely
illustrative, and is not meant to be limiting in terms of the
type of system which may provide a suitable operating
environment for practicing the present invention. For
example, the DBMS 103 and database 123 may operate
within a client-server computing environment over the net-
work, rather than on a single data processing system 100 as
shown.

Referring to FIG. 2, there is shown a simplified block flow
diagram of an illustrative method 200 for scheduling main-
tenance for tables. As shown, method 200 is represented as
a continuous loop of interconnected blocks 202-214. In an
embodiment, method 200 may be embodied as a process
running on data processing system 100 in conjunction with
DBMS 103 of FIG. 1. The loop of method 200 is traversed
once for each maintenance “iteration”, in which a group of
tables in a database are scheduled for maintenance. Method
200 may be briefly summarized as follows:

As shown at block 202, a number of database tables are
first identified for evaluation in an upcoming maintenance
iteration. In an embodiment, except in the very first iteration,
data (which includes the iteration for the next maintenance
of this table) generated on previous iterations is used. In the
very first iteration of method 200, all tables in the database
may be identified at block 202 for evaluation. However, in
subsequent iterations, only certain tables are identified for

20

25

30

35

40

45

50

55

60

65

4

evaluation from the previous maintenance iteration. This
acknowledges the fact that it would be prohibitively expen-
sive to evaluate all tables in a database at each upcoming
iteration.

At block 204, for each table identified at block 202,
various table statistics are examined. For example, in DB2,
update-delete-insert (UDI) counts and table size may be
examined, as provided in the DB2 kernel.

At block 206, a type of analysis known as “data change”
analysis may be performed based on examination of table
statistics at block 204. In particular, if there are significant
changes to data in a table since the last maintenance iteration
(e.g. in terms of UDI counts or table size), the table may be
selected for maintenance (i.e. updated statistics collection at
block 212, described below). If the changes are not signifi-
cant, a table may not be selected for maintenance.

In FIG. 2, arrow 207 indicates that examination of sta-
tistics at block 204 and data change analysis at block 206
may be performed repeatedly for each table identified earlier
for evaluation at block 202. After data change analysis is
completed for each table identified at block 202, the number
of tables remaining for maintenance (i.e. statistics collec-
tion) may be less than the number of tables first identified at
block 202. From block 206, method 200 proceeds to block
210, where tables selected for maintenance (statistics col-
lection) are ranked, as described further below.

There may be more than one way to select tables for
prioritization at block 210. By way of example, in addition
to selecting tables using data change analysis at block 206,
tables may also be identified for evaluation by using another
type of analysis using an autonomic “learning optimizer” at
block 208. One such learning optimizer is DB2’s LEO
(LEarning Optimizer) product, which operates as a query
optimizer that is able to compare an estimated performance
cost for a QEP with an actual performance cost observed
when the query is executed. Based on this statistic of a
comparison of estimated to actual costs, LEO may modify,
if necessary, future cost estimates for similar QEPs, or
recommend the collection of statistics on some database
tables. For further details on LEO, the reader is directed to
Markl, V., and Lohman, G., “Learning Table Access Cardi-
nalities with LEO,” Proceedings of the ACM SIGMOD
Conference, Madison, Wis., 2002, which is incorporated by
reference herein in its entirety. Also, the reader is directed to
Stillger, M., Lohman, G, Markl, V., and Kandil, M., “LEO—
DB2’s LEarning Optimizer,” VLDB Conference 2001, pp.
19-28, which is incorporated by reference herein in its
entirety.

In the disclosed example, a table may be selected for
statistics update collection at block 206, at block 208, at
neither block, or at both blocks. As will be explained, the
way in which a table is selected at one of or both blocks 206
and 208 may be used to prioritize the table for maintenance
within a maintenance iteration.

Certain tables having occasional but large step-wise
growth may pose a particular challenge. Such tables are
difficult to effectively prioritize for evaluation as the sudden
change in size may not be anticipated for scheduling pur-
poses. To address this problem, operations that are known to
cause these large step changes may be identified as special
cases. For example, in DB2, operations such as LOAD,
IMPORT and REPLICATION may be identified as causing
large step-wise changes, such that whenever these opera-
tions are performed on one or more tables, the affected tables
are flagged and identified for evaluation. These flagged and
identified tables may then have their ranking increased (e.g.

US 7,363,324 B2

5

at block 210), so that statistics collection for the flagged
tables can be performed more quickly.

At block 210, tables may be prioritized for maintenance
(e.g. statistics collection) in the current maintenance itera-
tion. As statistics collection for a table can be very time
consuming, it is of value to prioritize the sequence of the
statistics collection, in case some of the statistics collection
cannot be completed in the current iteration. By prioritizing
the tables, the more important statistics are collected first, so
that any adverse effect of not updating the statistics may be
minimized.

Atblock 212, table maintenance (e.g. statistics collection)
is performed according to the priorities determined at block
210. For example, in IBM DB2, the RUNSTATS process
may be used for this purpose. In order to provide some
continued capacity for regular database operations, however,
appropriate throttling and lock contention avoidance may be
implemented when running the DB2 RUNSTATS process.

After table maintenance (e.g. statistics collection) has
been performed at block 212, maintenance schedules for
tables examined in the current iteration are updated at block
214.

In an embodiment, table statistics may be examined to
determine whether the amount of data change exceeds a
predetermined upper threshold, falls below a predetermined
lower threshold, or falls somewhere in between the upper
and lower thresholds. If the amount of data change exceeds
a certain upper threshold, then the frequency of maintenance
may be suitably increased (i.e. the maintenance interval may
be suitably decreased). If the amount of data change falls
below a certain lower threshold, then the frequency of
maintenance may be suitably decreased (i.e. the mainte-
nance interval may be suitably increased). If the amount of
data change falls somewhere in between the upper and lower
thresholds, then the frequency of maintenance (and the
maintenance interval) may stay the same.

The amount of data change of a table is one possible table
statistic that may be analyzed. However, it will be appreci-
ated that other table statistics indicative of a requirement for
adjustment of the maintenance interval may also be used.

In an embodiment, a system wide interval factor may be
used for the purposes of adjusting table maintenance sched-
uling. As an illustrative example, the system wide interval
factor may be two. Using this system wide factor, a possible
range for a new maintenance schedule interval may be
defined as extending from the initial maintenance interval to
twice the initial maintenance interval. (While an interval
factor of two has been selected for this illustrative example,
it will be appreciated that another suitable interval factor
could also be used.)

FIGS. 3A-3C illustrate a maintenance scheduling
example in which a group of tables are scheduled for
maintenance over three consecutive iterations. Initially, as
shown at FIG. 3A, all tables are grouped together and
scheduled in iteration I for maintenance.

During the next iteration at FIG. 3B, the tables are split
across two different iterations: tables a and b from iteration
I are scheduled in iteration II, and tables c-j from iteration
I are scheduled in iteration III. Thus, in iteration II, main-
tenance is performed on tables a and b, while tables c-j are
considered to be less important so that these tables c-j can
skip one maintenance iteration.

In the following iteration, at FIG. 3C, table a from
iteration II is scheduled in iteration 111, indicating that table
a is important enough to schedule again immediately in the
next maintenance iteration. However, table b has become
less important, so that it can now skip a maintenance

20

25

30

35

40

45

50

55

60

65

6

iteration and be scheduled for iteration IV. Similarly, table ¢
has become more important, so that it is now scheduled for
the next maintenance iteration without skipping an iteration
as before.

As for tables e-j, assume that these tables are even less
important than previously thought, so that instead of skip-
ping every other maintenance iteration, tables e-j may now
skip two maintenance iterations before being scheduled
again.

As illustrated in FIG. 3C, after two scheduling steps, the
tables a-j have been scheduled relatively unevenly, with six
tables in iteration VII, and an empty iteration V.

In accordance with an embodiment of the invention, in
order to provide a more balanced schedule over the available
maintenance windows, a randomizing factor may be used to
select a random value within a defined range to determine a
new scheduling interval for that table.

In an embodiment, the randomizing factor is a skew
function. By way of example, a skew function similar to the
function shown in FIG. 4 may be used. As will be apparent
from FIG. 4, the skew function is more likely to produce
random numbers close to 2*1 than to I (where I is a previous
maintenance interval for the table—or the number of main-
tenance iterations to skip before the next scheduled main-
tenance).

Based on evaluation of various table statistics (as dis-
cussed above), and given a system wide interval factor (as
discussed above), a new maintenance schedule may be
calculated at block 214. More specifically, when increasing
a maintenance interval (i.e. a table is scheduled for main-
tenance less often), instead of defining the new interval to be
simply twice as much as I (i.e. 2*1), the new interval may be
randomly selected to be within a range falling between [and
2*]. However, the probability of being closer to I is low,
while the probability of being closer to 2*I is high. Thus, on
average, the new interval for table maintenance will be
closer to twice as much as the previous interval than to the
previous interval. If the randomly selected value is not an
integer, it may be rounded to the nearest integer value for the
purposes of selecting a maintenance interval.

The effect of using the skew function in FIG. 4 on table
maintenance scheduling is illustrated by way of example in
FIGS. 5A-5C (compare to FIGS. 3A-3C, above). As shown,
the ten tables a-j originally found in iteration I of FIG. 5A
(also in iteration I of FIG. 3A) are scheduled into iteration
II and iteration III during the next iteration in FIG. 5B.
However, based on a random selection of the new interval
using the skew function in FIG. 4, at least one table (table
¢) which would otherwise have been scheduled for iteration
IIT (as shown in FIG. 3B) is now scheduled instead in
iteration II.

Similarly, using the skew function in FIG. 4, tables a-c in
iteration 1I of FIG. 5B are scheduled for iteration III (table
a) and iteration IV (tables b and c) of FIG. 5C. Table d from
iteration III of FIG. 5B is scheduled for iteration IV of FIG.
5C. Table e from iteration III of FIG. 5B is now scheduled
in iteration V of FIG. 5C, and the remainder of tables f-j in
iteration III of FIG. 5B are scheduled in iteration VI of FIG.
5C. As will be apparent, by using the skew function of FIG.
4, the maintenance schedule for the tables is spread out more
evenly in comparison to the maintenance schedule shown in
FIGS. 3A-3C.

If an interval between maintenance operations for a table
is to be reduced rather than increased, the previous interval
I may be divided by (rather than multiplied by) the system
wide interval factor of two. Thus, for example, if a previous
maintenance interval for a table is once every four iterations,

US 7,363,324 B2

7

dividing the interval by two would cause the table to be
scheduled for every second iteration. If a constant divisor is
used, however, the uneven scheduling problem previously
described may occur again. To avoid this problem, again a
randomizing factor may be used. Again, the randomizing
factor may be a skew function. However, in this case, the
randomizing factor may be a “mirror” of the skew function
of FIG. 4, as illustrated by way of example in FIG. 6. As
shown, the function shown in FIG. 6 is weighted such that
the probability of a reduced interval closer to Y2l is high,
while the probability of a reduced interval closer to I is low.
Again, as the selection of the reduced maintenance interval
is randomized within this range (rounded to the nearest
integer), the resulting table maintenance schedule will be
more evenly distributed. Unlike the case where an increased
interval I can be increased virtually without limit, it will be
appreciated that the reduced interval I cannot be below one
(i.e. scheduled for maintenance during every interval).

Once the tables have been scheduled for maintenance
within a particular iteration as described above, the tables
may undergo further prioritization within the particular
iteration by priority class. By way of example, if a table has
been selected using more than one type of analysis, this fact
may be used to assign to the table a higher priority within the
particular iteration. Alternatively, a table selected using one
type of analysis may be assigned a higher rank than a table
selected using another type of analysis.

In an illustrative embodiment, the defined priority classes
may be as follows:

Priority

class Priority class definition Rank within priority class

A0 Starvation avoidance. Tables Ordered first by DB2’s LEO

that were identified in lower execution count (frequency
priority classes but failed to of use in the workload)
have statistics collected due and then by % change.
to other tables having higher
precedence and the iterations
eventually timeout.
AL Tables selected by both the Ordered first by DB2’s LEO

data change analysis and the execution count (frequency
LEO analysis. of use in the workload)

and then by % change.

Al Tables selected by the data Ordered by % change

change analysis showing large
data changes (>50%) or tables
having no statistics at all.

L Tables identified by LEO Ordered by DB2’s LEO
execution count (frequency
of use in the workload)

A2 Tables identified by the data Ordered by % change

change analysis showing
moderate changes (10-50%)

As shown by way of illustration, the highest priority class
“A0” is assigned to any table that has been identified as
being “starved” of maintenance, such that the table is
beginning to significantly affect database performance. This
may occur, for example, if maintenance for a table having a
relatively low priority is perpetually delayed due to tables
with higher priority jumping the queue. At a certain critical
point, regardless of the lower priority previously assigned to
the table, maintenance may be performed on the table such
that the risk of maintenance starvation is reduced. Thus,
priority class A0 will enforce a maximum age for statistics
in tables.

The next highest priority class “AL” is assigned tables
that have been selected by two different types of analysis

20

25

30

35

40

45

50

55

60

65

8

(e.g. selected at both block 206 and block 208), the assump-
tion being that these tables are more likely to require
maintenance than other tables that have been selected by
only one type of analysis.
Continuing, the next highest priority class “A1” is
assigned to tables that have been selected using data change
analysis only (e.g. selected at block 206), with a large data
change of over 50%. The next highest priority class “L” is
assigned to tables that have been identified using a learning
optimizer only (e.g. selected at block 208).
Finally, priority class “A2” is assigned to tables that have
been selected using data change analysis only (e.g. selected
at block 206), but having a smaller amount of data change
of 10-50%.
It will be apparent from the foregoing that, for a given
table, the statistics used to evaluate when the table will next
be scheduled, and its priority for maintenance in an interval
during which it is scheduled, will be the most recent
statistics available for the table. For a table not recently
maintained, these statistics will be somewhat out-of-date.
As illustrated by the above example, various schemes for
prioritizing tables may be used. Prioritizing tables for main-
tenance within an iteration based on the priority classes may
determine whether or not maintenance scheduled for a table
will actually be performed.
While various illustrative embodiments of the invention
have been described above, it will be appreciated by those
skilled in the art that variations and modifications may be
made. Thus, the scope of the invention is defined by the
following claims.
What is claimed is:
1. A data processing system implemented method for
directing a data processing system to maintain a database
table associated with an initial maintenance scheduling
interval, the data processing system implemented method
comprising:
selecting a randomizing factor;
selecting a new maintenance scheduling interval for the
database table based on the initial maintenance sched-
uling interval and the selected randomizing factor; and

maintaining the database table based on the new mainte-
nance scheduling interval;

wherein the randomizing factor includes a selection of the

new maintenance scheduling interval within a range, a
first end of the range being at the initial maintenance
scheduling interval; and the randomizing factor is a
skew function which favors selection of the new main-
tenance scheduling interval toward a second end of the
range, the second end of the range being opposite to the
first end of the range.

2. The data processing system implemented method of
claim 1 further comprising selecting the second end of the
range to be a multiple of the initial maintenance scheduling
interval.

3. The data processing system implemented method of
claim 2 wherein the multiple represents a system wide
interval factor.

4. The data processing system implemented method of
claim 1 further comprising selecting the second end of the
range to be a fraction of the initial maintenance scheduling
interval.

5. The data processing system implemented method of
claim 4 wherein the fraction represents an inverse of a
system wide interval factor.

6. A data processing system for maintaining a database
table associated with an initial maintenance scheduling
interval, the data processing system comprising:

US 7,363,324 B2

9

a processor;

a computer-implemented randomizing factor selecting
module which selects a randomizing factor;

a computer-implemented maintenance scheduling interval
selection module which selects a new maintenance
scheduling interval for the database table based on the
initial maintenance scheduling interval and the selected
randomizing factor; and

a computer-implemented maintenance module which
maintains the database table, based on the new main-
tenance scheduling interval;

wherein the randomizing factor includes.a selection of the
new maintenance scheduling interval within a range, a
first end of the range being at the initial maintenance
scheduling interval; and the randomizing factor is a
skew function which favors selection of the new main-
tenance scheduling interval toward a second end of the
range, the second end of the range being opposite to the
first end of the range.

7. The data processing system of claim 6 further com-
prising a selecting module for selecting the second end of the
range to be a multiple of the initial maintenance scheduling
interval.

8. The data processing system of claim 7 wherein the
multiple represents a system wide interval factor.

9. The data processing system of claim 6 further com-
prising a selecting module for selecting the second end of the
range to be a fraction of the initial maintenance scheduling
interval.

10. The data processing system of claim 9 wherein the
fraction represents an inverse of a system wide interval
factor.

11. An article of manufacture for directing a data pro-
cessing system to maintain a database table associated with
an initial maintenance scheduling interval, the article of
manufacture comprising:

20

25

30

35

10

a computer readable medium embodying one or more
instructions executable by the data processing system,
the one or more instructions comprising:

data processing system executable instructions for select-
ing a randomizing factor;

data processing system executable instructions for select-
ing a new maintenance scheduling interval for the
database table based on the initial maintenance sched-
uling interval and the selected randomizing factor; and

data processing system executable instructions for main-
taining the database table based on the new mainte-
nance scheduling interval;

wherein the randomizing factor includes a selection of the
new maintenance scheduling interval within a range, a
first end of the range being at the initial maintenance
scheduling interval; and the randomizing factor is a
skew function which favors selection of the new main-
tenance scheduling interval toward a second end of the
range, the second end of the range being opposite to the
first end of the range.

12. The article of manufacture of claim 11 further com-
prising data processing system executable instructions for
selecting the second end of the range to be a multiple of the
initial maintenance scheduling interval.

13. The article of manufacture of claim 12 wherein the
multiple represents a system wide interval factor.

14. The article of manufacture of claim 11 further com-
prising data processing system executable instructions for
selecting the second end of the range to be a fraction of the
initial maintenance scheduling interval.

15. The article of manufacture of claim 14 wherein the
fraction represents an inverse of a system wide interval
factor.

