
Accelerating Entity Lookups in Knowledge Graphs
Through Embeddings

Ghadeer Abuoda‡, Saravanan Thirumuruganathan†, Ashraf Aboulnaga†
‡College of Science and Engineering, HBKU
†Qatar Computing Research Institute, HBKU

{gabuoda, sthirumuruganathan, aaboulnaga}@hbku.edu.qa

Abstract—Tabular data is widespread on the web and in
enterprise data lakes. Recently, there has been increasing interest
in developing algorithms for matching tabular data with knowl-
edge graphs. This involves learning correspondences between
tabular entities such as cells, rows, and columns and entities
in the knowledge graph. Such semantic annotation of tabular
entities has numerous applications such as entity disambiguation,
knowledge graph expansion, error detection and repair in tabular
data, and more. A key first step for all these applications is the
lookup function that matches a query string to a candidate set
of knowledge graph entities. Despite the importance of entity
lookup, current implementations are not optimized, not robust
to misspellings, and ignore semantic relationships.

To address these problems, we represent each entity as an
embedding – a compact vector representation that is cognizant of
syntactic and semantic similarities and supports fast lookup. We
propose, EMBLOOKUP, a novel and efficient approach for learning
such an embedding. EMBLOOKUP is based on deep metric learn-
ing with triplet loss and supports accurate and efficient lookup of
knowledge graph entities. We conduct extensive experiments that
demonstrate that EMBLOOKUP achieves 1-2 orders of magnitude
speedup while being tolerant to many types of errors in the query
and data. We demonstrate the generality of EMBLOOKUP over
diverse application scenarios in semantic table annotation, entity
disambiguation, and data repair.

I. INTRODUCTION

Tabular data is the most common format to publish data on
the web and in enterprise data lakes. This could be in the form
of relational databases, CSV files, or spreadsheets. The usabil-
ity of tabular data in different applications is often limited by
missing or incomplete metadata and other data quality issues.
A promising approach for improving the usability of tabular
data is to leverage knowledge graphs (KGs) as a semantic
reference for elements in the tables. Specifically, there has
been extensive recent work on semantic table annotation.
This involves linking individual table elements such as cells,
columns, and their respective relations to resources from
knowledge graphs such as classes (types), entities (elements),
and properties (relations). Once such a mapping is established,
it could be used for various downstream tasks such as cell-
entity annotation, column type annotation, data error detection
and repair, KG expansion and completion, and more.

The Entity Lookup Operation. These seemingly diverse
applications rely on a fundamental operation as the first step –
lookup. Given a keyword q, lookup [11], [19] retrieves a set
of entities in the KG that are most relevant to q. For example,
looking up the keyword BERLIN on Wikidata might result in

entities such as Q64 (capital city of Germany), Q56037 (East
Berlin), Q821244, or Q614184 (cities named Berlin in the
USA). These entities are then processed in an application-
specific manner. For example, entity disambiguation could
rank these entities according to some metric and return the
top-ranked entity. Note that the keyword q may not neces-
sarily match precisely with the text of the relevant entity,
for example, due to misspellings. Thus, the lookup operation
should support fuzzy matching based on some similarity
metric. We return to this point later in this section. Despite
the seeming simplicity, lookup is a crucial building block for
many knowledge graph applications. In fact, almost all of the
state-of-the-art approaches for semantic table annotation rely
on multiple lookup services followed by sophisticated lexical
matching [11], [14], [16], [24].

Prior Approaches and Their Limitations. Let us first
consider the syntactic lookup setting where the goal is to
retrieve a set of candidate entities from a possibly misspelled
query string. For example, given strings such as BERLIN
or BELRIN, lookup must retrieve entities including Q64,
Q56037, Q821244, and Q614184. Prior work on semantic
table annotation uses three common approaches for perform-
ing the lookup operation. First, one could leverage remote
lookup services (such as Wikidata or DBPedia lookup) through
their API endpoints. However, this approach suffers from
rate limits imposed by the endpoints and, thus, cannot allow
extensive lookups. Furthermore, there is limited support for
fuzzy queries as they might require an expensive table scan.
Second, one could build a local index using the titles of
all entities in the KG. Such an index requires substantial
storage requirements, and it is often targeted towards a specific
similarity metric. For example, Elastic Search1 uses a weighted
combination of word and trigram based BM25 score for fuzzy
matching [4]. Support for other metrics is either limited or
has to be implemented manually. The final approach solves
this issue by implementing the custom similarity metrics from
scratch or using fuzzy matching libraries such as Fuzzy-
Wuzzy [22]2. Unfortunately, none of these approaches is well
optimized for bulk lookup involving millions of queries, which
is often needed. For example, consider the SemTab 2020
challenge [16], which aims to benchmark systems for semantic

1https://www.elastic.co
2https://pypi.org/project/fuzzywuzzy

https://www.elastic.co
https://pypi.org/project/fuzzywuzzy

table annotation. The third round of this challenge required
semantic annotation of 768K cells from 63K tables. Some of
the submissions required as much as 2-3 days using remote
lookup services [4] and up to 96 hours [12] locally, even when
using an optimized Levenshtein distance module.

Support for Sophisticated Lookup Operations. Almost all
of the current implementations of lookup are focused on
syntactic similarity (such as edit distance). This severely limits
the applicability of lookup in several real-world settings such
as enterprise data lakes where (a) there is often a wide
variety of errors and data cleanliness issues, and (b) semantic
similarity is not always captured by syntactic similarity. For
example, the lookup operation must be able to determine
that the pairs (GERMANY and DEUTSCHLAND), (EUROPEAN
UNION and EU), and (BILL GATES and WILLIAM GATES)
are all similar. In other words, searching for DEUTSCHLAND
should retrieve the entity corresponding to GERMANY, even
though DEUTSCHLAND is not an entity but an alias for the
entity GERMANY.

We would like to note that knowledge graph embeddings
are not directly applicable in this scenario. Such embeddings
are focused on learning similarities between entities (such as
GERMANY and BERLIN) and not on entity mentions/aliases
(such as GERMANY and DEUTSCHLAND). While one could
efficiently retrieve the embedding for an entity using its entity-
id, retrieving the embedding based on a string requires a two-
step process – identify the entity id for the string and then
retrieve the corresponding entity embedding. For example, one
could efficiently retrieve the embedding for entity BERLIN
using the entity-id Q64 but not using the string BERLIN.

To the best of our knowledge, we are not aware of any
existing system that can handle both syntactic and semantic
similarities and is robust to typos, abbreviations, aliases, etc.
In other words, the system must be able to retrieve the
entity GERMANY given diverse strings for lookup such as
GERMANY, DEUTSCHLAND, or even GERMONEY.

Overview of Our Approach. We propose EMBLOOKUP,
a novel and unified approach for entity lookup. Instead of
optimizing for individual similarity metrics (such as edit
distance), our framework trains a deep learning (DL) model to
learn a generic similarity metric in an unsupervised manner.
Our approach is based on deep metric representation learning
with triplet loss [3], [20]. We train our model based on triplet
strings of the form (a, p, n). Our goal is to learn an appropriate
representation such that the embedding of the anchor a is
closer to the positive example p than the negative example
n. We generate the training data through a careful process of
triplet mining that ensures that the embedding for an arbitrary
lookup query q will be closer to entities that are similar
to it semantically or syntactically. We design an appropriate
DL architecture that can balance both syntactic and semantic
similarities. We index the embeddings on the entities in a
space-efficient manner using product quantization [13]. This
allows us to have a compact entity embedding index that is
smaller than a wide variety of other indexing techniques while

supporting fast queries. Our proposed approach is modular
and can be easily customized for specific applications. EM-
BLOOKUP is robust to a wide variety of noise types and is
also optimized for bulk querying.

Problem Scope. EMBLOOKUP is not a new KG embedding
algorithm. Nor is it a new algorithm for various semantic
annotation tasks. Instead, EMBLOOKUP seeks to optimize the
lookup operation that underpins diverse semantic annotation
applications over large tabular data and knowledge graphs.
Our goal is to be a transparent (and efficient) replacement
for syntactic lookup services used by prior work. As an
additional bonus, EMBLOOKUP also provides support for
semantic lookups.

Summary of Experimental Results. We conduct extensive
experiments that show that EMBLOOKUP is fast, compact,
and accurate for both syntactic and semantic lookups. Our
experiments are conducted over two major knowledge graphs
– Wikidata and DBPedia. We demonstrate the generality of
EMBLOOKUP by choosing a diverse set of applications and
replacing the lookup service of each application with that of
EMBLOOKUP. We conduct experiments over six applications
from the four diverse application scenarios of cell type identifi-
cation, column type identification, entity disambiguation, and
data repair. EMBLOOKUP achieves 1-2 orders of magnitude
speedup in the lookup operation in each of these applications.
Interestingly, it achieves this feat with almost no reduction in
accuracy. We also evaluate these applications under wide vari-
ety of noise injection techniques and show that EMBLOOKUP
is more tolerant of misspellings and other errors than the
original lookup implementations.

Summary of Contributions. We make the following major
contributions.

1) We identify the crucial role played by the lookup oper-
ation in many KG applications. Existing approaches are
not expressive and not optimized for the bulk lookup
operations needed in enterprise data lake settings.

2) We propose EMBLOOKUP, a novel framework that can
perform lookup based on syntactic and semantic simi-
larities and is robust to a wide variety of errors.

3) We conduct experiments over four application scenarios
and demonstrate that using EMBLOOKUP results in
significant speedup without sacrificing accuracy.

Paper Outline. In Section II, we introduce the relevant termi-
nology and desiderata for the lookup operation. We describe
the technical details of EMBLOOKUP in Section III. We
rigorously evaluate the efficacy of EMBLOOKUP in Section IV.
Relevant prior work is described in Section V followed by
parting thoughts in Section VI.

II. PRELIMINARIES

In this section, we introduce the necessary terminology, de-
fine the lookup operation, and highlight concrete applications
that rely on lookup. Finally, we enumerate the desiderata that
must be satisfied by an ideal lookup operation.

Tabular Data. We are given a relational table T
with m rows and n columns represented as T =
{(t1,1, . . . , t1,n) , . . . , (tm,1, . . . , tm,n)}. We represent the i-th
row as ri = (ti,1, . . . , ti,n) and j-th column as cj =
(t1,j , ..., tm,j). ti,j represents the cell at the intersection of
the i-th row and j-th column. ti,j could represent an entity or
could be a literal such as a number.

Knowledge Graph (KG). We represent the KG as a quadru-
plet ⟨E , T ,P,F⟩ [4]. E = {e1, e2, . . . , } is the set of entities,
T = {τ1, τ2, . . .} is the set of types, and P = {p1, p2, . . . , }
is the set of properties. F = {f1, f2, . . .} is the set of facts,
where each fact fi is a triplet ⟨si, pi, oi⟩ with si ∈ E , pi ∈ P ,
and oi could be an entity or a literal.

Lookup Operation. We use the term entity mention to denote
a string that refers to an entity. For example, the strings
GERMANY, DEUTSCHLAND, FRG, and BRD could all refer
to the entity GERMANY. Given an entity mention q and a non-
negative integer k, the goal of lookup(q, k) is to return a set
of entities Cq,k = {eq,1, . . . , eq,k} where each eq,i ∈ E and
is relevant to q. A relevance scoring function score(q, Cq,k)
measures the suitability of each eq,i to q. An ideal lookup
operation seeks to efficiently retrieve Cq,k that maximizes
score(q, Cq,k). For example, the lookup lookup(‘Berlin’, 4)
could return {Q64, Q56037, Q821244, Q614184}. Given
q, we refer to the set Cq,k as a candidate set of entities. The
post processing of Cq,k is often application specific. Our goal
is to improve and accelerate the lookup function lookup(q, k)
for any q and k.

There are two broad categories of lookup operations. The
syntactic lookup retrieves the set of candidate entities that are
lexicographically similar to the query string according to a
distance function such as edit distance or Levenshtein distance
(e.g., GERMANY and GERMONEY). The semantic lookup re-
trieves the set of candidate entities that are conceptually related
to the entity represented in the query string (e.g., GERMANY
and DEUTSCHLAND). Note that semantically similar entities
need not be syntactically similar and vice versa.

Semantic Annotation Tasks. We demonstrate the generality
and efficacy of EMBLOOKUP for four major tasks.

• Cell Entity Annotation (CEA): Given an entity mention
ti,j ∈ T , the goal of CEA is to find entity ek ∈ E that is
referred to by ti,j .

• Column Type Annotation (CTA): Given a column cj ∈ T ,
the goal of CTA is to associate it with the most specific
entity type τk ∈ T .

• Entity Disambiguation (EA): Given a list of entity men-
tions ⟨q1, q2, . . . , qK⟩, the goal of EA is to output an en-
tity configuration ⟨E1, E2, . . . , EK⟩ where each Ei ∈ E
is the correct entity referred to by qi.

• Data Repair (DR): Given a row ri = (ti,1, . . . , ti,n) with
some missing values, DR imputes the missing values
using the knowledge graph ⟨E , T ,P,F⟩.

Desiderata of Lookup Operation. The goal of EMBLOOKUP
is to design an efficient and effective lookup operation that

can handle both syntactic perturbations (such as typos, ab-
breviations) and semantic similarities (such as aliases and
synonyms). It should provide fast lookup with accuracy com-
parable to the traditional syntactic approaches, even for large
values of k. Finally, it should support bulk querying and must
be able to leverage GPU acceleration when available.

III. EMBEDDINGS FOR ACCELERATING LOOKUPS

In this section, we describe the model architecture for
EMBLOOKUP. We first describe how to learn embeddings
for an entity lookup involving a single query string. Next,
we describe how to compress the entity embedding without
affecting retrieval accuracy.

Overview of Our Approach. Figure 1 illustrates the major
components of EMBLOOKUP. The embedding learner takes
as input a set of triplet strings of the form (a, p, n) that
demonstrate similar and dissimilar entity mentions. It seeks
to learn an embedding for arbitrary query strings that encodes
both syntactic and semantic similarity. Specifically, the goal is
to learn an appropriate representation such that the embedding
of the anchor a is closer to the positive example p than the
negative example n. Once the embedding learner is trained,
we generate embeddings for each entity in the knowledge
graph. We describe the sub-components of the embedding
learner in the following sections and illustrate it in Figure 2.
We then compress these entity embeddings using product
quantization and store them. Given a new query string, we
compute its embedding and search for the k nearest neighbors
from the compressed embedding index. We then return the
corresponding entities as the output of the lookup operation.

A. From Symbolic to Continuous Representations for Lookup

Consider a hypothetical function D(·, ·) that takes two entity
mentions mi and mj as input and outputs a score that takes
syntactic and semantic similarities between mi and mj into
account. Hence, when looking up an entity mention mi, D
should return a high similarity score for entities mj that are
similar to mi.

Currently, most of the lookup functions operate on the
symbolic representation, i.e., the strings. This representation
is appropriate for simple variants such as fuzzy lookups
involving simple typos. However, this representation is not
expressive enough to handle many common scenarios such as
aliases (GERMANY and DEUTSCHLAND) and abbreviations
(EUROPEAN UNION and EU), among others. Hence, we
propose a transformation to the continuous domain where we
transform each entity mention into an embedding such that
this embedding encodes both syntactic and semantic similarity.
Specifically, we represent each entity as a 64-dimensional
vector (requiring 64 × 4 = 256 bytes of storage that we
shall compress to 8 bytes in Section III-D). We reiterate that
our approach only has a limited connection to knowledge
graph embeddings. KG embeddings are often expensive to
train and are optimized for tasks such as link prediction and
node classification and cannot be used for lookup. In contrast,

Knowledge Graph

Embedding
Learner

Embeddings
for

Entities in KG

Embedding Model

Product Quantized
Embedding Index

Syntactic and Semantic
Lookup Queries

Entities in KG

Fig. 1: Overview of EMBLOOKUP.

our approach is lightweight, efficient, and designed explicitly
for accelerating lookups.

Specifically, we propose a two-step approach. First, we
learn an embedding transformation f(·) that takes an entity
mention and converts it into an embedding such that a pre-
determined distance function d(·, ·) (such as cosine distance
or Euclidean distance) could be used to measure the similarity
between the corresponding mentions. Ideally, we would like
to ensure that

D(mi,mj) ≈ d(f(mi), f(mj)) (1)

However, the function D is hypothetical and cannot be
directly estimated. Hence, we take an indirect approach for
approximation. Consider three entity mentions mi,mj , and
mk. We would like to ensure that whenever D(mi,mj) <
D(mi,mk)

d(f(mi), f(mj)) < d(f(mi), f(mk)) (2)

This objective will ensure that the order of the distance
function is maintained. In other words, if mj is closer to mi

than mk according to function D, we would like our learned
similarity function to exhibit a similar ordering. This ordering
constraint will ensure that the top-l results are more relevant
than the top-l′ results for l′ > l. Without loss of generality,
for the rest of the paper we assume d to be the Euclidean
distance. Our goal then boils down to learning an embedding
function f(·).

B. Embeddings for Entity Lookup

In this section, we describe how to convert a single entity
mention into an embedding. Note that the mention could
consist of a single word (such as ‘Germany’) or multiple words
(such as ‘East Berlin’). We use a deep leaning approach for
generating the embeddings. Hence, there are two key design
choices to be made: (a) the DL architecture for converting
entity mentions to embeddings, and (b) the appropriate loss
function for optimization.

Data Preprocessing. Let e be an entity in the knowledge
graph and let m1,m2, . . . correspond to the entity mentions
of e. These could be obtained from the labels of the entities
and from aliases obtained from properties such as rdfs:label,
skos:altLabel, and dbo:wikiPageWikiLinkText [11]. Let A be
the alphabet of the entity mentions and let L be the length of

the longest entity mention. Given a single character c, we can
represent it as an L-dimensional vector that has the value 0
for all dimensions except pos(c), where pos(c) provides the
positional order of character c in A. Then, given a string mq ,
we can extend this one-hot encoding to convert it into a matrix
X of dimensions |A|×L. The i-th column of X stores to the
one-hot encoding of the i-th character of mq . If there are fewer
than L characters in mq , then the last L−|mq| columns of X
are filled with 0. This transformation is widely used, including
in [8], [23].

Example. Suppose that A = {a, b, c, d, e} and L = 4. Given
an entity mention mq = ‘cad’, we represent it as a matrix with
5 rows and 4 columns whose column values are [0, 0, 1, 0,
0], [1, 0, 0, 0, 0], [0, 0, 0, 1, 0] and [0, 0, 0, 0, 0].

DL Network Architecture. EMBLOOKUP uses two separate
embedding models for modeling syntactic and semantic sim-
ilarities. We empirically found that using a single embedding
model that subsumes both syntactic and semantic similarities
was less accurate than using two separate models. Further-
more, this two-model approach allows further customization.
As we shall describe later, we bootstrap the model for seman-
tic similarity with the model of fastText [2]. The syntactic
embedding model uses a CNN-based architecture that has an
inductive bias for syntactic perturbations [8].

We use convolutional neural networks (CNNs) for learning
an embedding that estimates syntactic similarity. There are two
key reasons. First, CNNs can be trained much more efficiently
than NLP-based DL architectures. Second, it has been recently
observed [8] that CNNs have an appealing property wherein
the output of a CNN model with max-pooling over two strings
that are transformed using one-hot encoding preserves the
bounds on edit distance. Our DL architecture consists of 5
convolutional layers with 8 kernels of size 3 in each of them.
We use max-pooling to aggregate outputs.

We piggyback on the extensive work from the NLP com-
munity on word embeddings for learning embeddings for
semantic similarity. First, we generate training data consisting
of entity names and their synonyms. We then use fastText [2]
to learn an embedding model such that embeddings of entity
names and their synonyms are close together. The fastText
model produces a 64-dimensional embedding. Intuitively, the
CNN and the fastText model have complementary strengths.

While the embeddings from the CNN model can handle syn-
tactic similarities and misspellings, they cannot handle seman-
tic similarity. On the other hand, the fastText model can handle
semantic similarities but cannot easily handle misspellings.
Finally, we aggregate the output of the two diverse embeddings
using a two-layer linear layer with ReLU activation to produce
a single 64-dimensional embedding vector.

Triplet Loss Function. We use the aforementioned model
(CNN and fastText) for transforming a string into an embed-
ding. The goal is now to train the model using an appropriate
loss function so that it encodes syntactic and semantic sim-
ilarities. We use the triplet loss function [3], [20] that takes
a triplet (anchor, positive, negative) and outputs a score. It is
formally defined as

max(||f(anchor)− f(positive)||22−
||f(anchor)− f(negative)||22 +margin, 0) (3)

where f(·) is the embedding transformation, and margin is
a positive value that accentuates the difference in distance
between the pairs (anchor, positive) and (anchor, negative).
This formulation will ensure two main properties. First, the
distance between the embeddings of anchor and negative is
larger than the distance between the embeddings of anchor
and positive. Second, the distance between the embeddings of
anchor and negative is larger than the margin.

Model Training Procedure. Given a triplet, we encode each
of its components using one-hot encoding, pass the encoded
matrices for the triplets through the embedding model and
use it to compute the triplet loss function. We then back-
propagate the loss function to improve the embedding model.
This process is repeated for 100 epochs. We use a batch size
of 128 and use the Adam optimizer.

Triplet Generation. The core of the training process is
triplet mining, which involves collecting the appropriate set
of (a, p, n) triplets. For each entity ei ∈ E , we generate
triplets for encoding semantic similarity as follows. First, we
generate a set of synonyms (such as rdfs:label, skos:altLabel,
dbo:wikiPageWikiLinkText, etc.). Each of these becomes a
positive example. We generate the negative examples by
choosing labels of randomly chosen entities. For example,
given the entity Q183 (‘Germany’), some potential triplets
include: {(Germany, FRG, blah1), (Germany, Deutschland,
blah2), (Germany, Federal Republic of Germany, blah3),
(Germany, BRD, blah4), . . .}. Here ‘blahX’ is the label of
a randomly chosen entity that is unlikely to be related to
Germany.

Heuristics for Triplet Mining. It is possible to use heuristics
to generate more informative triplets in order to improve the
training dataset. We next describe a couple of such heuristics
that are employed by EMBLOOKUP to enable incorporat-
ing some domain knowledge. We would like to note that
these heuristics are non-comprehensive. First, we generate
additional triplets to encode syntactic similarities. As men-
tioned above, CNNs could encode simple edit distance-based

similarities. Given an anchor, one could produce additional
positive elements by artificially injecting certain types of
errors such as dropping some characters, transposing pairs of
characters, adding unrelated characters, and so on. If there are
some errors that are pretty common, this approach provides
a seamless process to inject such domain knowledge. For
example, the triplets generated could be {(Germany, Grmany,
blah1), (Germany, Germaney, blah2), (Germany, Gemrany,
blah3), . . .}. Second, we generate triplets where the anchor
and positive belong to the same type or share some property.
For example, we generate triplets such as {(Germany, France,
blah1), (Germany, Austria, blah2)} where the anchor and
positive are both countries. This provides a lightweight way
to incorporate some semantic similarity between entities based
on their types or properties.

We also vary the training procedure to improve the learning.
Recall that we use 100 epochs for learning the embedding. For
the first 50 epochs, we follow a static offline approach where
we apply the triplet loss on all the triplets in the training data.
For the next 50 epochs, we follow an online mining approach
where only a subset of ‘hard’ triplets are used for training.
Recall from Equation 3 that given a triplet (a, p, n), a margin
m, and a distance function d, the triplet loss function is defined
as

L = max(d(a, p)− d(a, n) +m, 0)

Here we abuse the notation so that a, p, n also represent
their corresponding embeddings f(a), f(p), f(n), respectively.
Whenever d(a, p) + m < d(a, n), the loss function becomes
0. These correspond to ‘easy’ triplets that the embedding
model has already learned. By repeatedly including these easy
triplets, we reduce the average triplet loss thereby slowing the
learning process. There are two types of ‘hard’ triplets – those
with d(a, n) < d(a, p) and those with d(a, p) < d(a, n) <
d(a, p) + m. When d(a, n) < d(a, p), the embedding of n
is closer to the anchor a than p. These are often called hard
triplets. When d(a, p) < d(a, n) < d(a, p)+m, the embedding
of n is not closer to a than p, but it still has a positive loss. For
such semi-hard negative triplets, it is often preferable to nudge
the embeddings such that loss becomes 0. Hence, we focus
only on the harder triplets in the second half of the training
procedure and ignore the easy triplets. Figure 2 provides a
high-level overview of the training process of EMBLOOKUP.

C. Embedding Lookup as Similarity Search

Once the embedding model is learned, we use it to compute
the embedding of each entity e ∈ E . We represent each
entity as a 64-dimensional embedding vector. By default, we
use the label of the entity for computing its embedding. For
example, the embedding for entity Q183 is derived from its
label ‘Germany’. One could obtain alternate embeddings for
Q183 by evaluating the embedding model on its aliases (such
as Deutschland, FRG, and BRD). This could possibly increase
the lookup accuracy but with higher storage and retrieval cost.

Let I be a matrix of dimension N × D where N is the
number of embeddings and D is the embedding dimension

Knowledge
Graph

Anchors

Positives

Negatives

Syntactic
Embedding

Semantic
Embedding

Embedding
AggregatorTriplet

Miner

Embedding Model

Fig. 2: Process for training embeddings for EMBLOOKUP.

(such as 64). The i-th row corresponds to the embedding of
entity ei. Given a lookup query lookup(q, k), we convert q into
an embedding vector f(q) and then retrieve the k entities from
I whose embeddings are nearest to f(q) based on the distance
function d. A naive brute-force approach would compute the
distance between f(q) and each embedding in I and return
the nearest top-k.

One could accelerate the similarity search by trading off
some accuracy for efficiency. A number of applications (in-
cluding those that we evaluate in Section IV) are robust
to such approximation. EMBLOOKUP is modular and could
accommodate either exact or approximate similarity search.
There are several libraries for performing efficient approximate
similarity search such as FAISS3, nmslib4, and annoy5. These
libraries preprocesses I and build an index that can accelerate
lookups by avoiding distance computation with all embeddings
in I. We conducted an empirical analysis and settled on
FAISS [17] as it provides a wide variety of indexing options,
requires less storage, and allows GPU acceleration.

D. Embedding Compression Through Quantization

Approximate similarity search achieves speedup through
indexing and minimizing the number of distance computations.
It is possible to achieve further speedup by approximating the
embeddings being stored. While there are many approaches,
we focus on embedding compression. Intuitively, the goal is
to identify an alternate representation for each embedding
that requires less storage. The reduced storage results in a
smaller index and faster retrieval. The key challenge is to
choose an appropriate method for compression that achieves
faster retrieval without significant loss of accuracy. By default,
we represent each embedding as a 64-dimensional vector
requiring 256 bytes. Hence, we need at least 256 MB for
storing the embeddings for 1 million entities. We use product
quantization to compress the embeddings so that each entity
can be represented with just 8 bytes.

Recall that I is an N ×D matrix storing the embeddings.
The goal of product quantization is to reduce the storage cost
of I such that each embedding can be represented with D′

bytes. Note that this is different from dimensionality reduction,
which transforms each embedding into a low-dimensional
vector. We begin by partitioning the embedding vector into

3https://github.com/facebookresearch/faiss
4https://github.com/nmslib/nmslib
5https://github.com/spotify/annoy

groups of length D′ each. For example, if D = 64 and
D′ = 8, then the groups correspond to dimensions {0−7, 8−
15, . . . , 56−63}. This will result in 8 matrices of size N×D′,
where the j-th sub-matrix stores the embedding dimensions
[j×D′, (j+1)×D′−1]. We next run k-means clustering on the
rows of these sub-matrices with k = 2D

′
. Using the example

above, we run it with k = 28 = 256 resulting in k centroids
for each of the 8 matrices. We can ‘compress’ the matrix by
treating the k centroids as a codebook. Consider a sub-matrix
Mj of size N × D′. First, we replace each row of Mj with
the closest centroid resulting in limited approximation. One
could further save space by storing the cluster id instead of
the entire cluster. Given that there are only 256 clusters, we
could represent the cluster id using one byte. This allows us
to store the entire sub-matrix using just N bytes and the entire
matrix with N ×D′ bytes. The mapping between cluster ids
and centroid values is stored in a codebook. Please refer to [13]
for additional details on product quantization.

Embedding compression is an optional component of EM-
BLOOKUP. Hence, an accuracy-conscious practitioner could
disable the embedding compression component. A practitioner
could select an appropriate compression mechanism based
on their accuracy-storage-latency tradeoff requirements. For
example, EMBLOOKUP uses product quantization since many
applications of EMBLOOKUP (such as those that are evaluated
in Section IV) retrieve a large number of neighbors (k=20-100)
and perform customized post-processing, which minimizes the
impact of approximation due to compression.

IV. EXPERIMENTS

We would like to reiterate that EMBLOOKUP is not a
new algorithm for KG embedding or semantic annotation.
Instead, it provides an alternate lookup implementation that is
efficient and robust to misspellings and can be transparently
used by various applications. In this section, we experimen-
tally evaluate EMBLOOKUP through this prism. The code
for EMBLOOKUP can be found at https://github.com/qcri/
EmbLookup.

In our first set of experiments, we show how EMBLOOKUP
could be used for accelerating lookups in four tasks related to
three different application scenarios – semantic table annota-
tion, entity disambiguation, and data repair. We demonstrate
the speedup through three concrete systems for semantic table
annotation and one each for entity disambiguation and data
repair. These experiments are conducted using three bench-

https://github.com/facebookresearch/faiss
https://github.com/nmslib/nmslib
https://github.com/spotify/annoy
https://github.com/qcri/EmbLookup
https://github.com/qcri/EmbLookup

mark datasets over two major knowledge graphs – Wikidata
and DBPedia. The experiments show that EMBLOOKUP can
achieve 1-2 orders of magnitude speedup with almost no
reduction in accuracy. Second, we show that EMBLOOKUP is
robust to common types of error such as misspellings. The per-
formance of the five chosen systems experiences a steep drop
under extensive noise. However, the impact is comparatively
minor for EMBLOOKUP. Third, we show that EMBLOOKUP
can support semantic lookups. In contrast, the chosen systems
provide poor results when they rely on local indices that
can only support syntactic lookups. Finally, we conduct an
analysis to study the impact of the major hyperparameters of
EMBLOOKUP.

Hardware and Software Platform. We conducted all exper-
iments on an Intel Xeon E5-2686 CPU with 18 cores and 64
GB RAM. We implemented EMBLOOKUP in Python 3.8. The
DL models were implemented in PyTorch. The model training
and GPU acceleration of FAISS was done on an Nvidia V100
GPU. The end-to-end training of EMBLOOKUP including
triplet mining, learning embeddings, and quantization took less
than 1 hour on the GPU.

Dataset. The statistics of the tabular datasets used in our
experiments can be found in Table I. The ST-Wikidata and ST-
DBPedia datasets are from SemTab-2020 [16] and SemTab-
2019 [15]. SemTab is an annual competition for benchmarking
systems for matching tabular data with knowledge graphs.
As the name indicates, ST-Wikidata and ST-DBPedia seek
to match tabular datasets with the Wikidata and DBPedia
knowledge graphs, respectively. The third dataset, Tough Ta-
bles [7], is intended as a challenging dataset for semantic table
annotation tasks. It consists of tables that have a wide variety
of noise and ambiguous cell values. For each of the tabular
datasets, the ground truth labels are available. Specifically,
for each cell Ti,j to be annotated, we know the correct KG
entity id (such as ‘Germany’=Q183). For each column cj ,
we are provided with the correct type (such as cj is of type
‘country’=Q6256). We used these tabular datasets to evaluate
the performance of EMBLOOKUP on the four tasks defined
in Section II: Cell Entity Annotation (CEA), Column Type
Annotation (CTA), Entity Disambiguation (EA), and Data
Repair (DR). In order to evaluate the DR task, we randomly
replaced 10% of the cells with missing values. The goal of
the DR task is to impute those cells correctly.

TABLE I: Statistics of the tabular datasets.

ST-
Wikidata

ST-
DBPedia

Tough
Tables

#Tables 109K 14K 180
Avg #Rows 6.6 26.2 1080
Avg #Cols 4.1 5.1 804
#Cells to annotated 2.03M 877K 663K

For the CEA and CTA tasks, we chose three systems from
SemTab 2020: bbw [24], MantisTable [6], and JenTab [1]. In
the challenging Round 4 of the competition, each of these

submissions achieved a precision higher than 0.98 for the
CEA task and 0.93 for the CTA task. Each of them used
different lookup services and lexical matching techniques,
illustrating that EMBLOOKUP is flexible enough to replace
a broad variety of lookup services. Both the ST-Wikidata and
ST-DBPedia datasets were evaluated using these three systems.
For EA and DR, we chose DoSeR [30] and Katara [5],
respectively. Note that each of these systems is chosen as a
competitive representative for the corresponding task. We do
not necessarily claim that they represent the latest in the state
of the art. Instead, our goal is to show that EMBLOOKUP
could be easily plugged in and provides acceleration for a
wide variety of recent real-world systems.

Each of these systems was evaluated on two variants of
the ST-Wikidata and ST-DBPedia datasets: no error and
error. The no error variant consists of the original dataset,
whereas in the error variant we injected some noise into
10% of the cells. These include common misspellings such
as dropping/inserting one or more letters, transposing letters,
swapping the tokens, abbreviations, and so on.

Performance Metrics. We compare EMBLOOKUP to the
alternatives based on two criteria: speed and accuracy. We
measure speed by reporting the speedup of EMBLOOKUP over
the baselines. We use the F-score to measure accuracy.

A. Speedup of EMBLOOKUP for Semantic Annotation Tasks

In our first set of experiments, we replaced the lookup
component of the five systems (bbw, MantisTable, JenTab,
DoSeR, and Katara) with EMBLOOKUP. Lookup is one of
the key bottlenecks, accounting for as much as 45% of the
time taken in each of these systems. We instrumented the time
taken by the original lookup function and that of EMBLOOKUP
and report the speedup ratio. Note that we instrumented the
time taken and not the throughput. This is to provide a fair
comparison for remote services that impose rate limits. For
example, Wikidata only allows five parallel queries per IP.
We evaluate two variants of the lookup operation. The first
variant (denoted as EL) corresponds to EMBLOOKUP where
the embeddings are compressed through product quantization.
The second variant (denoted as EL-NC) corresponds to EM-
BLOOKUP where the compression component is disabled. This
segregation allows us to investigate the impact of compression
on both accuracy and speedup.

Performance of EMBLOOKUP with Compression (EL).
Table II shows the results for the ST-Wikidata dataset. Note
that we used the benchmark results without any injection of
noise. We can see that the F-score of the original lookup and
EMBLOOKUP are almost identical where the largest difference
is just 0.03. EMBLOOKUP does not lose much accuracy even
though product quantization results in approximation of the
embeddings. This showcases an especially appealing property
of EMBLOOKUP: even though EMBLOOKUP is local, it is
competitive with remote lookup services (such as SPARQL
endpoints and meta-search engines that query multiple ser-
vices). Since it is local, it can retrieve results at a much faster

TABLE II: Performance of EMBLOOKUP in accelerating lookups of various systems in ST-Wikidata dataset. EL denotes
EMBLOOKUP while EL-NC denotes EMBLOOKUP without embedding compression.

Speedup (CPU) Speedup (GPU) F-Score
Task System EL EL-NC EL EL-NC Original EL EL-NC
CEA bbw 20x 13x 78x 47x 0.92 0.92 0.92
CEA MantisTable 37x 29x 83x 62x 0.86 0.85 0.86
CEA JenTab 28x 25x 92x 76x 0.89 0.88 0.89
CTA bbw 61x 42x 122x 73x 0.82 0.82 0.82
CTA MantisTable 48x 33x 146x 104x 0.89 0.89 0.89
CTA JenTab 64x 48x 163x 106x 0.78 0.78 0.78

Entity
Disambiguation DoSeR 40x 35x 54x 42x 0.87 0.84 0.86

Data
Repair Katara 28x 20x 96x 61x 0.76 0.76 0.76

TABLE III: Performance of EMBLOOKUP in accelerating lookups of various systems in ST-DBPedia dataset. EL denotes
EMBLOOKUP while EL-NC denotes EMBLOOKUP without embedding compression.

Speedup (CPU) Speedup (GPU) F-Score
Task System EL EL-NC EL EL-NC Original EL EL-NC
CEA bbw 26x 17x 93x 56x 0.89 0.88 0.89
CEA MantisTable 42x 33x 102x 76x 0.88 0.85 0.88
CEA JenTab 38x 34x 118x 97x 0.83 0.83 0.83
CTA bbw 72x 49x 128x 76x 0.88 0.86 0.88
CTA MantisTable 56x 38x 155x 110x 0.82 0.80 0.82
CTA JenTab 73x 55x 168x 107x 0.77 0.77 0.77

Entity
Disambiguation DoSeR 47x 41x 73x 57x 0.81 0.81 0.81

Data
Repair Katara 33x 24x 102x 65x 0.74 0.72 0.74

rate without any rate limits that are imposed by these remote
services. As we shall discuss later, EMBLOOKUP achieves this
feat even though the index of EMBLOOKUP is comparable to
that of other well-optimized indexing systems such as Elastic
Search. In addition to achieving high accuracy, we can also
see that EMBLOOKUP achieves an order of magnitude speedup
when using the CPU. It can achieve further speedup when
there is a GPU (up to 2 orders of magnitude). This is partially
due to the fact that using product quantization reduces the
space requirements of an entity embedding from 256 bytes
to 8 bytes. This results in a smaller index allowing for faster
retrieval. Table III shows similar trends for the ST-DBPedia
dataset. This illustrates that both the accuracy and speedup
achieved by EMBLOOKUP are due to the algorithmic choices
and not inherently due to the knowledge graph or the tabular
datasets used for evaluation.

Performance of EMBLOOKUP without Compression (EL-
NC). Next, we investigate the impact of embedding compres-
sion on accuracy and speedup. From Tables II and III, we
can see that EMBLOOKUP without compression achieves the
same F-score as the original systems in all but one case, where
the difference is 0.01. Furthermore, EMBLOOKUP achieves
significant speedup even without compression. Hence, we can

infer that most of the speedup of EMBLOOKUP is achieved
by reformulating the lookup problem as finding similar vec-
tors in the embedding space rather than from compression.
Nevertheless, compressing the embeddings through product
quantization does produce additional boost in both space
savings and query time. Since the accuracy loss is at most
0.03, the benefits of compression outweigh the cost.

B. Performance of EMBLOOKUP under Noisy Tabular
Datasets

In the next set of experiments, we investigate how the
performance of EMBLOOKUP is impacted by erroneous data.
By default, both ST-Wikidata and ST-DBPedia are largely
error free. Hence, we artificially injected errors into 10%
of the cells. These include common misspellings such as
dropping/inserting one or more letters, transposing letters,
swapping the tokens, abbreviations, and so on. In addition
to these synthetically created noisy datasets, we also evaluate
EMBLOOKUP over the Tough Tables dataset [7], which has a
large amount of erroneous cell values and ambiguity to make
semantic annotation challenging.

The results of this experiment can be found in Table IV.
There is a stark contrast in the performance of the original
systems to the no-error scenario (as shown in Tables II and III).

TABLE IV: Performance of EMBLOOKUP under noisy tabular datasets.

Task System
F-Score for

ST-Wikidata
F-Score for
ST-DBPedia

F-Score for
ToughTables

Original EMBLOOKUP Original EMBLOOKUP Original EMBLOOKUP

CEA bbw 0.59 0.88 0.63 0.83 0.51 0.63
CEA MantisTable 0.44 0.69 0.51 0.81 0.48 0.68
CEA JenTab 0.25 0.56 0.38 0.80 0.46 0.64
CTA bbw 0.48 0.68 0.64 0.82 0.56 0.69
CTA MantisTable 0.44 0.54 0.54 0.74 0.54 0.68
CTA JenTab 0.38 0.69 0.47 0.72 0.51 0.66

Entity
Disambiguation DoSeR 0.22 0.69 0.36 0.77 0.24 0.38

Data Repair Katara 0.36 0.56 0.44 0.66 0.21 0.44

Despite the use of sophisticated lexical and fuzzy matching
services, we can see that the performance of many of the
competing baselines completely collapsed. In contrast, EM-
BLOOKUP especially shines when the data is noisy. In fact, the
performance of EMBLOOKUP is not that far off from the no-
error scenario! The robustness to errors is primarily due to the
CNN model and the training based on triplet loss. We would
like to note that the retrieval speed of EMBLOOKUP is not
affected by the presence or absence of errors. So EMBLOOKUP
achieves the same speedup as the no-error scenario.

In summary, EMBLOOKUP achieves comparable accuracy to
the original systems when there are no errors and substantially
better accuracy in the presence of errors. Finally, it provides
1-2 orders of magnitude speedup irrespective of the level of
noise.

C. Comparing EMBLOOKUP with Lookup Services
In the next set of experiments, we perform a head-to-head

comparison of EMBLOOKUP against popular local and remote
lookup services by evaluating their performance in the CEA
task. Both EMBLOOKUP and the baselines are provided with
the same set of queries and retrieve the top-10 relevant entities.
If the correct entity is in the top-10, the query is considered
to be successful. This experiment allows us to quantify the
retrieval speed and accuracy of the lookup services.

We focus on eight representative approaches that are widely
used in semantic annotation tasks. Most of these methods
can be executed locally, while two (Wikidata and SearX)
involve querying remote services. FuzzyWuzzy [22] is a fuzzy
string matching package written in Python. It uses Levenshtein
distance to calculate the differences between string sequences.
Elastic Search is an optimized local search engine that supports
fuzzy queries, also using Levenshtein distance. Locality Sen-
sitive Hashing (LSH) [9] is an approach for efficient approx-
imate nearest neighbor search. We chose a variant optimized
for Levenshtein distance [25]. In addition, we also evaluate
three syntactic operations based on exact match, q-gram, and
Levenshtein distance. We compare EMBLOOKUP against op-
timized implementations of these operations in Elastic Search.
Our first remote lookup service is the Wikidata SPARQL
endpoint. Our second remote lookup service is SearX [21],

a metasearch engine that aggregates results from more than
70 search engine.

Table V provides the results of the evaluation. As in the
previous experiment, we can see that EMBLOOKUP achieves
significant speedup over both local and remote lookup ser-
vices. Even against a highly optimized search engine such as
Elastic Search, EMBLOOKUP provides an order of magnitude
speedup. EMBLOOKUP achieves higher speedups over the
other lookup services, up to 2 orders of magnitude, and even
higher speedups when using GPU. Interestingly, EMBLOOKUP
is able to achieve these speedups while also improving ac-
curacy. Additionally, while EMBLOOKUP can handle a wide
variety of noise types such as abbreviations or aliases, these
noise types cannot be appropriately handled by the other
lookup services, regardless of whether they are local or remote
and which approximation technique they use.

D. Semantic Lookup using EMBLOOKUP

All of the previous experiments were focused on the
relatively straightforward syntactic lookups. In this section,
we evaluate the performance of EMBLOOKUP for semantic
lookups where the query string could be an alias or a synonym
of the entity mention. We relied on the fact that for all three
datasets (ST-Wikidata, ST-DBPedia, and Tough Tables), we
are aware of the ground truth mapping between a cell and the
corresponding entity. We generated a variant of these three
datasets as follows: for each cell in the tabular dataset to
be annotated, we identify the corresponding entity from the
knowledge graph using the ground truth. For example, we
might know that the string ‘Germany’ corresponds to the entity
with id Q183. We retrieve the properties of this entity and
replace the string ‘Germany’ with one of its synonyms/aliases.
If there are none, we do not make any change and lookup the
original string (‘Germany’ in this case). If there are multiple
aliases, we choose the replacement uniformly at random.
For the vast majority of the entities, there were at least
3 aliases/synonyms. We repeated this process to generate 5
perturbed variants of the underlying datasets. For example, in
one variant ‘Germany’ would be replaced with ‘Deutschland’,
while in another, the replacement string could be ‘Federal
Republic of Germany’. However, we expect that lookup returns

TABLE V: Comparison of EMBLOOKUP with popular lookup services for the ST-Wikidata dataset.

Approach Speedup
(CPU)

Speedup
(GPU) F-Score (no error) F-Score (error)

Original EMBLOOKUP Original EMBLOOKUP

FuzzyWuzzy 89x 168x 0.82 0.88 0.78 0.84
Elastic Search 19x 48x 0.77 0.88 0.63 0.84
LSH 48x 124x 0.72 0.88 0.47 0.84
Exact Match 93x 213x 0.85 0.88 0.72 0.84
q-gram 42x 81x 0.79 0.88 0.77 0.84
Levenshtein 53x 96x 0.82 0.88 0.78 0.84
Wikidata API 148x 224x 0.83 0.88 0.69 0.84
SearX API 220x 366x 0.85 0.88 0.72 0.84

TABLE VI: Performance of EMBLOOKUP for semantic lookup queries.

Task System
F-Score for

ST-Wikidata
F-Score for
ST-DBPedia

F-Score for
ToughTables

Original EMBLOOKUP Original EMBLOOKUP Original EMBLOOKUP

CEA bbw 0.32 0.89 0.63 0.86 0.51 0.59
CEA MantisTable 0.29 0.84 0.51 0.81 0.48 0.64
CEA JenTab 0.21 0.86 0.38 0.83 0.46 0.61
CTA bbw 0.42 0.77 0.64 0.78 0.56 0.63
CTA MantisTable 0.43 0.82 0.54 0.76 0.54 0.61
CTA JenTab 0.48 0.68 0.47 0.62 0.51 0.63

Entity
Disambiguation DoSeR 0.24 0.73 0.36 0.71 0.24 0.34

Data Repair Katara 0.12 0.71 0.44 0.68 0.21 0.42

the entity corresponding to ‘Germany’ when looking up either
of these strings. We report the average F-score achieved by
the original systems and EMBLOOKUP for these 5 variants.

Table VI shows the results. Once again, we can see that
the performance of the original systems has a steep drop
when looking up the aliases. This is not surprising as most
of them rely on local indexing systems (such as Elastic
Search) or fuzzy matching libraries (such as FuzzyWuzzy)
that are unaware of these aliases. Of course, it is possible
to tackle this issue by either using remote lookup services or
including the aliases in the local index. Both of these methods
have disadvantages. The remote lookup services impose rate
limit restrictions that significantly increase the response time.
Including the aliases in the local index significantly increases
the index size. For example, the compressed Elastic Search
index for ST-Wikidata requires more than 790 MB (as against
63 MB for only entity mentions). In contrast, EMBLOOKUP
does not need to store these aliases as the semantic similarity is
encoded through the embedding transformation function f(·)
trained using the triplet loss function.

E. Sensitivity Analysis

In the next set of experiments, we investigate the impact
of various hyperparameters of EMBLOOKUP. We report the
results for the ST-Wikidata dataset. The results for other
datasets were quite similar.

Varying the Embedding Algorithm. EMBLOOKUP made
two key design choices: (a) we used a CNN based model
for learning the embeddings instead of a traditional NLP
based model such as LSTM, and (b) we chose to train the
embeddings from scratch instead of using a pre-trained model.
In this experiment, we vary the algorithm for learning the
embeddings and evaluate performance on the CEA task. We
used the pre-trained models for word2vec [18], FastText [2],
and BERT [10]. We also use an LSTM model trained over
the labels and aliases of the KG entities. Table VII shows
that EMBLOOKUP outperforms all of these popular embedding
algorithms, especially in the presence of errors.

TABLE VII: Varying the embedding generation algorithm.

Embedding F-score (no error) F-score (error)
EMBLOOKUP 0.88 0.84
word2vec 0.72 0.29
FastText 0.76 0.72
BERT 0.77 0.68
LSTM 0.86 0.78

Varying the Embedding Dimension. By default, EM-
BLOOKUP uses a 64-dimensional embedding that is then
compressed to 8 bytes using quantization. In this experiment,
we study how the embedding dimension impacts accuracy.
We vary the embedding dimension from 32 to 256 and

measure accuracy with no errors and with errors. We store
the entire embedding in FAISS without compression, allowing
us to eliminate the confounding factor caused by product
quantization. Table VIII shows the results. While reducing the
embedding dimension to 32 results in a big drop in accuracy,
there is only a slight improvement when increasing the dimen-
sion up to 256. The practitioner could choose an appropriate
embedding dimension based on the downstream requirements,
with a larger dimension slightly increasing accuracy at the cost
of a larger index size.

TABLE VIII: Varying the embedding dimension.

Dimension F-score (no error) F-score (error)
32 0.64 0.56
64 (default) 0.88 0.84
128 0.90 0.87
256 0.91 0.88

Impact of Training Data. By default, EMBLOOKUP gen-
erates 100 triplets for each entity. Since the total number of
entity pairs is quadratic in the number of entities, it might seem
that using 100 triplets might not sufficiently cover the whole
space. However, this effect is mitigated due to two reasons.
First, the number of synonyms is less than 50 for at least
95% of the KG entities in both DBPedia and and Wikidata.
Hence, we can completely enumerate all the synonyms by
using just 50 triplets. We use the remaining budget of triplets
for syntactic perturbations. Note that the CNN-based architec-
ture of EMBLOOKUP already has an inductive bias for such
perturbations. Second, as mentioned in Section III-B, we use
sophisticated techniques for triplet mining to generate more
informative triplets in order to improve the training dataset.

In this experiment, we investigate the impact of the number
of triplets on the four tasks – CEA, CTA, Entity Disambigua-
tion, and Data Repair. Figure 3 shows the results. We can
see that increasing the number of triplets slightly increases
the accuracy. However, this also proportionately increases the
training time. EMBLOOKUP can be trained in under 1 hour
using a V100 GPU for 100 triplets per entity. It requires around
1.8 hours for 200 triplets per entity, and rises to 9.2 hours for
1000 triplets per entity.

Impact of Compression on Recall. By default, we use
product quantization (PQ) which is an approximate nearest
neighbor search method. The applications studied in the paper
(CEA, CTA, entity disambiguation, and data repair) are re-
silient to this approximation as they retrieve as much as 20-100
most similar entities and perform customized post-processing.
However, it is known that the retrieval accuracy of PQ is
reduced when retrieving a smaller number of neighbors. We
investigate this phenomenon in this experiment. Specifically,
we focus on the CEA task. We observed similar trends for
other tasks. We consider two variants of EMBLOOKUP –
with and without embedding compression. Since we study
the impact of compression, we treat EMBLOOKUP without
compression as the ground truth. Recall from Tables II and III

that EMBLOOKUP without compression achieved an F-score
that is almost identical to that of the original system. Ideally,
EMBLOOKUP with compression should retrieve the same set
of entities. For example, if EMBLOOKUP with compression
retrieves 80% of the entities retrieved by EMBLOOKUP with-
out compression, we compute the recall as 0.8. We measure
the recall for different values of k. Figure 4 shows the results.
While the average recall is relatively low for small values of
k, the performance recovers for larger values of k.

Alternate Compression Schemes. By default, we use prod-
uct quantization for compressing the embeddings. A natural
alternative, which we investigate in this experiment, is to
use techniques based on dimensionality reduction. We choose
PCA as the representative dimensionality reduction algorithm.
Recall that the uncompressed embedding for a KG entity has
64 dimensions requiring 256 bytes of storage. By default, we
reduce the storage requirement to 8 bytes through quantization.
In our experiment, we vary the size of the “compressed” vector
from 256 bytes to 8 bytes (which corresponds to 64 dimensions
to 2 dimensions, respectively, for PCA as each dimension
requires 4 bytes of storage). This fixes the space requirements
for both the approaches allowing us to compare the impact
of compression on accuracy. Figure 5 shows the results for
two tasks – CTA and CEA. For both cases, we modify the
bbw system as it provided the best results. The PQ and PCA
suffixes illustrate the EMBLOOKUP variants that used product
quantization and dimensionality reduction for compression,
respectively. The PQ lines are almost flat since, as we saw
previously, product quantization does not result in significant
loss of accuracy. On the other hand, PCA-based compression
performs much worse.

V. RELATED WORK

Entity Lookup in KG. Lookup is a fundamental operation
in a number of KG tasks. As KGs become larger and larger,
it becomes challenging to store them locally. Hence, most of
the existing systems rely on remote lookup services. Search
in Wikidata is enabled by string-based search engines in the
Wikidata API as well as the SPARQL-based Wikidata Query
Service (WDQS). DBPedia lookup6 is a generic entity retrieval
service for RDF data. It can be configured to index any RDF
data and provide retrieval services that resolve keywords to
entity identifiers. The output of this process is usually a list of
relevant entities ranked according to a similarity function (i.e.,
edit distance). Local lookup services often involve building
indices based on the entity labels and other relevant properties.
The most popular approach is to use a full-text search engine
such as Elastic Search. Finally, one could also use existing text
similarity libraries such as FuzzyWuzzy. Almost all of these
approaches focus on edit-distance-based syntactic similarity
and cannot support semantic similarity.

Embeddings for Strings. Popular approaches for word em-
bedding such as fastText [2] and word2vec [18] are trained

6https://lookup.dbpedia.org

200 400 600 800 1000

Triplets

0.5

0.6

0.7

0.8

0.9

1.0
F

-S
co

re

bbw-CEA

bbw-CTA

DoSeR

Katara

Fig. 3: Impact of training data (#triplets
per entity).

0 20 40 60 80 100

K

0.7

0.8

0.9

1.0

R
ec

a
ll

Algorithm
bbw

MantisTable

JenTab

Fig. 4: Impact of compression on Re-
call@K.

0 10 20 30 40 50 60

Dimension

0.0

0.2

0.4

0.6

0.8

1.0

F
-S

co
re

bbw-CEA-PQ

bbw-CEA-PCA

bbw-CTA-PQ

bbw-CTA-PCA

Fig. 5: Comparing the performance of
Product Quantization and PCA.

on a large corpus of text and output a vector space where
each word in the corpus is represented by a real-valued vector.
These methods are not robust to misspellings and cannot
be directly used for modeling the rich semantic similarities
exhibited by KGs. There has been some recent work on
learning string embeddings for specific tasks such as estimat-
ing edit distance [8] and string cardinality estimation [23].
However, these embeddings are designed for tasks such as
query optimizations and could not be used for lookup.

Knowledge Graph Embedding Models. KG embedding
models learn the latent representations of entities and relations
that could be used for tasks such as link prediction, node clas-
sification, and graph completion. However, these embeddings
cannot be directly used for entity lookups. As a matter of
fact, a common use case for lookup is to identify relevant
entities and then retrieve their entity embeddings from a KG
embedding model for downstream tasks such as column type
prediction. That is, using a KG embedding model requires
separate support for lookup, such as that provided by EM-
BLOOKUP. Optimizing embedding techniques for similarity
applications can be done by incorporating textual information
in the embedding method. One class of work accomplishes this
by optimizing an objective function that combines entity and
text information to learn joint embeddings [26], [28]. These
methods show improved performance over pure knowledge
graph embeddings. However, they do not handle all forms of
semantic similarity in case of misspellings or insufficient text,
nor are they very efficient in searching large-scale KGs.

Similarity Search. There has been extensive work on effi-
ciently retrieving similar entities based on their embeddings.
A key challenge is the high dimensionality of these embed-
dings, which obviates the use of traditional relational and
text databases. Since exact approaches are inefficient, the
embeddings are often preprocessed to answer the queries ap-
proximately without scanning the entire database. An overview
of optimizations can be found in [27], [29]. In this paper, we
use FAISS [17], which supports additional functionalities such
as quantization and GPU acceleration.

SemTab Challenge. This competition aims to benchmark
semantic annotation systems that match tabular data with
knowledge graphs. While SemTab 2019 [15] focused on
matching with DBPedia, SemTab 2020 [16], [14] focused on

Wikidata. The quality of the submissions is tied with the
quality of the lookup functions. Almost all of the submissions
rely on multiple lookup services and sophisticated lexical
matching. However, none of the systems used are efficient and
can handle both syntactic and semantic similarities. SemTab
2020 also introduced Tough Tables [7], which is a challenging
dataset for semantic annotation with misspellings and am-
biguous entity references. We used three representative and
well-performing systems from the SemTab 2020 challenge –
bbw [24], MantisTable [6], and JenTab [1] – to illustrate the
effectiveness of EMBLOOKUP.

VI. CONCLUSION

We identify the entity lookup operation as an essential
workhorse for diverse semantic table annotation tasks. The
current implementations of lookup are not optimized, not ro-
bust to misspellings, ignore semantic similarities, and are often
limited to a single similarity metric (such as edit distance).
These limitations are a major bottleneck that impedes the
widespread use of knowledge graphs in large data settings such
as enterprise data lakes. In this paper, we made some promis-
ing progress in accelerating the lookup operation through our
framework, EMBLOOKUP, which is efficient to train, requires
compact storage, and can overcome a wide range of data
errors. The embeddings learned by EMBLOOKUP are generic
and encode syntactic and semantic aspects vital for lookup.
Specifically, the Euclidean distance between two embeddings
can capture multiple hidden syntactic and semantic distances.
Our experiments showed that EMBLOOKUP can achieve 1-2
orders of magnitude speedup in multiple real-world applica-
tions while being robust to errors.

There are a number of interesting directions for future work
such as evaluating other loss functions and DL architectures.
Training over the most promising triplets through mining
could provide additional speedup. This could allow achieving
the same accuracy while training over a smaller number of
triplets. Finally, an intriguing direction for future work is to
bootstrap the embeddings for lookup from the corresponding
KG embeddings that are optimized for semantic similarity and
adapt them to handle syntactic similarity.

REFERENCES

[1] N. Abdelmageed and S. Schindler. Jentab: Matching tabular data to
knowledge graphs. In The 19th International Semantic Web Conference
(ISWC), 2020.

[2] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. Enriching word
vectors with subword information. TACL, 5:135–146, 2017.

[3] G. Chechik, V. Sharma, U. Shalit, and S. Bengio. Large scale online
learning of image similarity through ranking. J. Machine Learning
Research, 2010.

[4] S. Chen, A. Karaoglu, C. Negreanu, T. Ma, J.-G. Yao, J. Williams,
A. Gordon, and C.-Y. Lin. Linkingpark: An integrated approach for
semantic table interpretation. Semantic Web Challenge on Tabular Data
to Knowledge Graph Matching (SemTab). CEUR-WS. org, 2020.

[5] X. Chu, J. Morcos, I. F. Ilyas, M. Ouzzani, P. Papotti, N. Tang, and
Y. Ye. Katara: A data cleaning system powered by knowledge bases
and crowdsourcing. In ACM SIGMOD, pages 1247–1261, 2015.

[6] M. Cremaschi, R. Avogadro, and D. Chieregato. Mantistable: an
automatic approach for the semantic table interpretation. SemTab@
ISWC, 2019:15–24, 2019.

[7] V. Cutrona, F. Bianchi, E. Jiménez-Ruiz, and M. Palmonari. Tough ta-
bles: Carefully evaluating entity linking for tabular data. In International
Semantic Web Conference, pages 328–343. Springer, 2020.

[8] X. Dai, X. Yan, K. Zhou, Y. Wang, H. Yang, and J. Cheng. Edit distance
embedding using convolutional neural networks. SIGIR, 2020.

[9] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive
hashing scheme based on p-stable distributions. In SoCG, pages 253–
262, 2004.

[10] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. ACL, 2019.

[11] V. Efthymiou, O. Hassanzadeh, M. Rodriguez-Muro, and
V. Christophides. Matching web tables with knowledge base entities:
from entity lookups to entity embeddings. In International Semantic
Web Conference, pages 260–277. Springer, 2017.

[12] V.-P. Huynh, J. Liu, Y. Chabot, T. Labbé, P. Monnin, and R. Troncy.
Dagobah: Enhanced scoring algorithms for scalable annotations of
tabular data. SemTab, 2020.

[13] H. Jegou, M. Douze, and C. Schmid. Product quantization for nearest
neighbor search. IEEE PAMI, 33:117–128, 2010.

[14] E. Jiménez-Ruiz, O. Hassanzadeh, V. Efthymiou, J. Chen, and K. Srini-
vas. Semtab 2019: Resources to benchmark tabular data to knowledge
graph matching systems. In European Semantic Web Conference, pages
514–530. Springer, 2020.

[15] E. Jiménez-Ruiz, O. Hassanzadeh, V. Efthymiou, J. Chen, and K. Srini-
vas. Semtab 2019: Resources to benchmark tabular data to knowledge
graph matching systems. In European Semantic Web Conference, pages
514–530. Springer, 2020.

[16] E. Jimenez-Ruiz, O. Hassanzadeh, V. Efthymiou, J. Chen, K. Srinivas,
and V. Cutrona. Results of semtab 2020. In CEUR, volume 2775, pages
1–8, 2020.

[17] J. Johnson, M. Douze, and H. Jégou. Billion-scale similarity search with
gpus. IEEE Transactions on Big Data, 2019.

[18] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781,
2013.

[19] D. Ritze, O. Lehmberg, and C. Bizer. Matching html tables to dbpedia.
In WIMS, pages 1–6, 2015.

[20] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified
embedding for face recognition and clustering. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages
815–823, 2015.

[21] SearX. Searx. https://searx.github.io/searx, 2021.
[22] SeatGeek. Fuzzywuzzy. https://github.com/seatgeek/fuzzywuzzy, 2021.
[23] S. Shetiya, S. Thirumuruganathan, N. Koudas, and G. Das. Astrid:

accurate selectivity estimation for string predicates using deep learning.
PVLDB, 14(4), 2020.

[24] R. Shigapov, P. Zumstein, J. Kamlah, L. Oberländer, J. Mechnich, and
I. Schumm. bbw: Matching csv to wikidata via meta-lookup. In CEUR
Workshop Proceedings, volume 2775, pages 17–26, 2020.

[25] SuperCowPowers. Data hacking. https://github.com/SuperCowPowers/
data hacking, 2021.

[26] K. Toutanova, D. Chen, P. Pantel, H. Poon, P. Choudhury, and M. Ga-
mon. Representing text for joint embedding of text and knowledge bases.
In EMNLP, pages 1499–1509, 2015.

[27] J. Wang, H. T. Shen, J. Song, and J. Ji. Hashing for similarity search:
A survey. arXiv preprint arXiv:1408.2927, 2014.

[28] Z. Wang, J. Zhang, J. Feng, and Z. Chen. Knowledge graph and text
jointly embedding. In EMNLP, pages 1591–1601, 2014.

[29] P. Zezula, G. Amato, V. Dohnal, and M. Batko. Similarity search: the
metric space approach, volume 32. Springer Science & Business Media,
2006.

[30] S. Zwicklbauer, C. Seifert, and M. Granitzer. Doser-a knowledge-base-
agnostic framework for entity disambiguation using semantic embed-
dings. In European semantic web conference, pages 182–198. Springer,
2016.

https://searx.github.io/searx
https://github.com/seatgeek/fuzzywuzzy
https://github.com/SuperCowPowers/data_hacking
https://github.com/SuperCowPowers/data_hacking

	Introduction
	Preliminaries
	Embeddings for Accelerating Lookups
	From Symbolic to Continuous Representations for Lookup
	Embeddings for Entity Lookup
	Embedding Lookup as Similarity Search
	Embedding Compression Through Quantization

	Experiments
	Speedup of EmbLookup for Semantic Annotation Tasks
	Performance of EmbLookup under Noisy Tabular Datasets
	Comparing EmbLookup with Lookup Services
	Semantic Lookup using EmbLookup
	Sensitivity Analysis

	Related work
	Conclusion
	References

