
XSEED: Accurate and Fast Cardinality Estimation for XPath Queries

Ning Zhang M. Tamer Özsu Ashraf Aboulnaga Ihab F. Ilyas

School of Computer Science, University of Waterloo
{nzhang, tozsu, ashraf, ilyas}@uwaterloo.ca

Abstract

We propose XSEED, a synopsis of path queries for
cardinality estimation that is accurate, robust, efficient, and
adaptive to memory budgets. XSEED starts from a very
small kernel, and then incrementally updates information
of the synopsis. With such an incremental construction, a
synopsis structure can be dynamically configured to accom-
modate different memory budgets. Cardinality estimation
based on XSEED can be performed very efficiently and
accurately. Extensive experiments on both synthetic and
real data sets show that even with less memory, XSEED
could achieve accuracy that is an order of magnitude better
than that of other synopsis structures. The cardinality
estimation time is under 2% of the actual querying time for
a wide range of queries in all test cases.

1 Introduction

Cost-based optimization of XML queries requires the
calculation of the cost of query operators. Usually the cost
of an operator for a given path query is heavily dependent on
the number of final results returned by the query in question,
and the number of temporary results that are buffered for its
sub-queries (see e.g., [13]). Therefore, accurate cardinality
estimation is crucial for a cost-based optimizer.

The problem of cardinality estimation for a path query
in XML distinguishes itself from the problem of cardinality
estimation in relational database systems. One of the
major differences is that a path query specifies structural
constraints (a.k.a. tree patterns) in addition to value-
based constraints. These structural constraints suggest a
combined combinatorial and statistical solution. That is,
we need to consider not only the statistical distribution of
the values associated with each element, but also the struc-
tural relationships between different elements. Estimating
cardinalities of queries involving value-based constraints
has been extensively studied within the context of relational
database systems, where histograms are used to compactly

represent the distribution of values. Similar approaches
have been proposed for XML queries [7]. In this paper,
we focus on the structural part of this problem and propose
a novel synopsis structure, called XSEED1, to estimate
the cardinality for path queries that only contain structural
constraints. Although XSEED can be incorporated with
the techniques developed for value-based constraints, the
general problem is left for future work.

The XSEED synopsis is inspired by the previous work
for estimating cardinalities of structural constraints [5, 4,
8]. These approaches, usually, first summarize an XML
document into a compact graph structure called a synopsis.
Vertices in the synopsis correspond to a set of nodes
in the XML tree, and edges correspond to parent-child
relationships. Together with statistical annotations on the
vertices and/or edges, the synopsis is used as a guide
to estimate the cardinality using a graph-based estimation
algorithm. In this paper, we follow this general idea but
develop a solution that meets multiple criteria. We consider
the accuracy of the estimations, the types of queries and
data sets that this synopsis can cover, the adaptivity of
the synopsis to different memory budgets, the cost of the
synopsis to be created and updated, and the estimation time
comparing to the actual querying time. We believe that
these are all important factors for a synopsis to be useful
in practice.

None of the existing approaches considers all these cri-
teria. For example, TreeSketch [8] focuses on the accuracy
of the cardinality estimation. It starts off by building
a bisimulation graph to capture the complete structural
information in the tree (i.e., cardinality estimation can be
100% accurate for all types of queries). Then it relies on
an optimization algorithm to reduce the bi-simulation graph
to fit into the memory budget and still retain information
as much as possible. Due to the NP-hardness of the
optimization problem, the solutions are usually sub-optimal
and the construction time could be prohibitive for large
and complex data sets (e.g., it takes more than 13 hours to
construct the synopsis for the 100MB XMark [9] data set

1XSEED stands for XML Synopsis based on Edge Encoded Digraph.

1



on a dedicated machine). Therefore, this synopsis is hardly
affordable for a complex data set.

In contrast, XSEED takes the opposite approach: an
XSEED structure is constructed by first building a very
small kernel (usually a couple of KB for most data sets
that we tested), and then by incrementally adding/deleting
information to/from the synopsis. The kernel captures
the coarse structural information in the data, and can be
constructed easily. The purpose of the small kernel is not
to make it optimal in terms of accuracy; it has to work
for all types of queries and data sets, while, at the same
time, having a number of desirable features such as the
ease of construction and update, a small footprint, and the
efficiency of the estimation algorithm. A unique feature
of the XSEED kernel is that it recognizes and captures
recursions in the XML documents. Recursive documents
usually represent the most difficult cases for path query
processing and cardinality estimation. None of the existing
approaches address recursive documents and the effects of
recursion over the accuracy of cardinality estimation. To the
best of our knowledge, this is the first work to treat recursive
documents and recursive queries.

Even with the small kernel, XSEED provides reasonably
good accuracy in many test cases (see Section 6 for details).
In some cases, XSEED performs an order of magnitude
better than other synopses (e.g., TreeSketch) that use a
larger memory budget. One of the reasons is that the
kernel captures the recursion in the document, which is
not captured by other techniques. Nevertheless, the high
compression ratio of the kernel introduces information loss,
which inevitably results in greater estimation errors in some
cases. To remedy the accuracy deficiency for these cases,
we introduce another layer of information, called hyper-
edge table (HET), on top of the kernel. The HET captures
the special cases that are far from the assumptions that the
kernel relies on. Our experiments show that even a small
amount of this extra information can greatly improve the
accuracy for many cases. The HET can be pre-computed
in a similar or shorter time than other synopses, or it can
be dynamically fed by a self-tuning optimizer using query
feedback. This information can be easily maintained, i.e., it
can be added to or deleted from the synopsis whenever the
memory budget changes. When the underlying XML data
change, the optimizer can choose to update the information
eagerly or lazily. In this way, XSEED enjoys better accuracy
as well as adaptivity.

Figure 1 depicts the process of constructing and main-
taining the XSEED kernel and HET, and utilizing them
to predict the cardinality. In the construction phase, the
XML document is first parsed to generate the NoK XML
storage structure [14], the path tree [1], and the XSEED
kernel. The HET is constructed based on these three data
structures if it is pre-computed. In the estimation phase, the

Optimizer

Path queries

data storage

Path tree

XSEED kernel

XML documents

Construction

Estimation

XSEED HET

Cardinality estimation

Figure 1: Cardinality estimation process using XSEED

optimizer calls the cardinality estimation module to predict
the cardinality for an input query, with the knowledge
acquired from the XSEED kernel and optionally from the
HET. After the execution, the optimizer may feedback the
actual cardinality or selectivity of the query to the HET,
which might results in an update of the data structure.

Our contributions are the following:

• We design a novel synopsis structure, called XSEED,
with the following properties:

– The small kernel of XSEED captures the basic
structural information, as well as recursions (if
any), in the XML documents. The simplicity
of the kernel makes the synopsis robust, space
efficient, and easy to construct and update.

– The HET of XSEED provides additional infor-
mation about the tree structure. It enhances the
accuracy of the synopsis and makes it adaptive to
different memory budgets.

• We propose a novel and very efficient algorithm for
traversing the synopsis structure to calculate the esti-
mates. The algorithm is highly efficient and is well
suited to be embedded in a cost-based optimizer.

• Extensive experiments with different types of queries
on both synthetic and real data sets demonstrate that
XSEED is accurate (an order of magnitude better than
the state-of-the-art synopsis structure) and fast (less
than 2% of actual running time for all test cases).

The rest of the paper is organized as follows: in Sec-
tion 2, we introduce the basic definitions and preliminaries.
In Section 3, we introduce the XSEED kernel. In Section 4,
we present the cardinality estimation algorithm using the
XSEED kernel. In Section 5, we introduce optimization
techniques to improve XSEED accuracy. In Section 6, we
report the experimental results. We compare our approach
with related work in Section 7. Finally, we conclude in
Section 8.

2 Preliminaries
We assume familiarity with the XML data model and

path expressions2. We start by giving an example to
illustrate the basic ideas, and briefly review concepts when-
ever necessary. Throughout the paper, we use a n-tuple

2The formal definitions can be found in [3].



(u1, u2, . . . , un) to denote a path u1 → u2 → · · · → un in
an XML tree or a synopsis structure, and use |p| to denote
the cardinality of a path expression p (the number of XML
elements returned by p).

Example 1 The following DTD describes the structure of
an article document.

<!ELEMENT article (title, authors, chapter*)>
<!ELEMENT chapter (title, para*, sect*)>
<!ELEMENT sect (title?, para*, sect*)>

By common practice, element names can be mapped to
an alphabet consisting of compact labels. For example, the
following mapping f maps the element names in the above
DTD to the alphabet {a,t,u,c,p,s}:

f(article)=a f(title)=t f(authors)=u
f(chapter)=c f(para)=p f(sect)=s

An example XML tree instance conforming to this DTD
and the above element name mapping is depicted in Fig-
ure 2(a). To avoid possible confusion, we use a framed
character, e.g., a , to represent the abbreviated XML tree
node label whenever possible. 2

2.1 Recursion
An interesting property of the XML document is that

it could be recursive, i.e., an element could be directly
or indirectly nested in an element with the same name.
For example, a sect element could contain another sect
subelement. In the XML tree, recursion represents itself as
multiple occurrences of the same label in a rooted path.

Definition 1 (Recursion Levels) Given a rooted path in
the XML tree, the maximum number of occurrences of
any label minus 1 is the path recursion level (PRL). The
recursion level of a node in the XML tree is defined to be
the PRL of the path from root to this node. The document
recursion level (DRL) is defined to be the maximum PRL
over all rooted paths in the XML tree. 2

For example, the recursion level of the path (a,c,s,p)
in Figure 2(a) is 0 since each label only occurs once in the
path, and the recursion level of path (a,c,s,s,s,p) is 2
since there are three s nodes in the path.

Recursion could also exist in a path expression. Recall
that a path expression consists of a list of location steps,
each of which consists of an axis, a NodeTest, and zero
or more predicates. Each predicate could be another path
expression. When matching with the nodes in an XML tree,
the NodeTests specify the tag name constraints, and the axes
specify the structural constraints. We classify path queries
into three classes: simple path expressions that are linear
paths containing /-axes only, branching path expressions
that include branching predicates but also only have /-
axes, and complex path expressions that contain branching
predicates and/or //-axes.

Definition 2 (Recursive Path Expression) A path expres-
sion is recursive with respect to an XML document if an
element in the document could be matched to more than
one NodeTest in the expression. 2

For example, a path expression //s//s on the XML tree
in Figure 2(a) is recursive since an s node at recursion
level greater than zero could be matched to both NodeTests.
It is straightforward to see that simple and branching path
expressions consisting of only /-axis cannot be recursive.
Recursive path queries always contain //-axes, and they
usually present themselves on recursive documents. How-
ever, it is also possible to have recursive path queries on
non-recursive documents, when the queries contain the
sub-expression //*//*. Similarly, we define the query
recursion level (QRL) of a path expression as the maximum
number of occurrences of the same NodeTests with //-axis
along any rooted path in the query tree. In general, recursive
documents are the hardest documents to summarize, and
recursive queries are the hardest queries to evaluate and to
estimate.

2.2 Structural Summaries
A structural summary is a graph that summarizes the

nodes and edges in the XML tree. Preferably, the summary
graph should preserve all the structural relations and capture
the statistical properties in the XML tree. There are a
number of proposed summary structures. In the following,
we only introduce the label-split graph [6], which is the
basis of the XSEED kernel.

Definition 3 (Label-split Graph) Given an XML tree
T (Vt, Et), a label-split graph G(Vs, Es) can be uniquely
derived from a mapping f : Vt → Vs as follows:

• For every u ∈ Vt, there is a f(u) ∈ Vs.
• A node u ∈ Vt is mapped to f(u) ∈ Vs if and only if

their labels are the same.
• For every pair of nodes u, v ∈ Vt, if (u, v) ∈ Et, then

there is a directed edge (f(u), f(v)) ∈ Es.
• No other vertices and edges are present in G(Vs, Es).2

Figure 2(b), without the edge labels, depicts the label-
split graph of the XML document shown in Figure 2(a). The
label-split graph preserves the node label and edge relation
in the XML tree, but not the cardinality of the relations.

3 Basic Synopsis Structures—XSEED kernel

Definition 4 (XSEED Kernel) The XSEED kernel for an
XML tree is an edge-labeled label-split graph. Each edge
e = (u, v) in the graph is labeled with a vector of integer
pairs (p0:c0, p1:c1, . . . , pn:cn). The i-th integer pair (pi:ci),
referred as e[i], indicates that, at recursion level i, there are



p

t u c c

a

t t s s

t p s p p p t p s p

t s

p

p

p

p p

p p

sspp s

s

p

(a) An example XML tree

(0:0, 2:2, 1:2)

t c

a

u

ps

(2:2, 1:1)

(1:2)

(2:3)

(1:1)
(1:1)

(2:2)

(2:5)

(5:9, 1:2, 2:3)

(b) The XSEED kernel

Figure 2: An example XML tree and its XSEED kernel

a total of pi elements mapped to the synopsis vertex u and
ci elements mapped to the synopsis vertex v. The pi and ci

are called parent-count (referred as e[i][P CNT]) and child-
count (referred as e[i][C CNT]), respectively. 2

Example 2 The XSEED kernel shown in Figure 2(b) is
constructed from the XML tree in Figure 2(a). In the XML
tree, there is one a node and it has two c children. Thus,
the edge (a, c) of XSEED kernel is labeled with integer pair
(1:2). Out of these two c nodes in the XML tree, there
are five s child nodes. Therefore, the edge (c, s) in the
kernel is labeled with (2:5). Out of the five s nodes, two
of them have one s child each (for a totally two s nodes
having two s children). Since the two s child nodes are
at recursion level 1, the integer pair at position 1 of the label
of (s, s) is 2:2. Since the recursion level could not be 0 for
any path having an edge (s,s), the integer pair at position
0 for this edge is 0:0. Furthermore, one of the two s nodes
at recursion level 1 has two s children, which makes the
integer pair at position 2 of the edge label (s, s) 1:2. 2

The following observations of XSEED kernel are impor-
tant for cardinality estimation algorithm given in Section 4.

Observation 1: For every path (u1, u2, . . . , un) in
the XML tree, there is a corresponding path
(vi, v2, . . . , vn) in the kernel, where the label of
vi is the same as the label of ui. Furthermore,
for each edge (vi, vi+1), the number of integer

pairs in the label is greater than the recursion level
of the path (u1, . . . , ui+1). For example, the path
(a, c, s, s, s, p) in Figure 2(a) has a corresponding path
(a, c, s, s, s, p) in the XSEED kernel in Figure 2(b).
Moreover, the number of integer pairs in the label
vector prevents a path with recursion level larger than
2, e.g., (a, c, s, s, s, s, p), from being derived from
the synopsis.

Observation 2: For every node u in the XML tree, if
its children have m distinct labels (not necessarily
different from u’s label), then the corresponding vertex
v in the kernel has at least m out-edges, where the
labels of the destination nodes match the labels of the
children of u. This observation directly follows from
the first observation. For example, the children of
c nodes in the XML tree in Figure 2(a) have three
different labels, thus the c vertex in the XSEED kernel
in Figure 2(b) has three out-edges.

Observation 3: For any edge (u, v) in the kernel, the sum
of the child-counts over all recursive levels i and
greater is exactly the total number of elements that
should be returned by the path expression q//u//v,
whose recursion level is i and where q is a path
expression that exists in the kernel. As an example,
the number of results of expression //s//s//p on
the XML tree in Figure 2(a) is 5, which is exactly the
sum of the child-counts of the label associated with
edge (s,p) at recursion level 1 and 2.

The first observation guarantees that the synopsis pre-
serves the complete information of the simple paths in the
XML tree. However, some simple rooted paths that can be
derived from the synopsis may not exist in the XML tree.
That is, the kernel may contain false positives for a simple
path query. The second observation guarantees that, for any
branching path query, if it has a match in the XML tree,
it also has a match in the synopsis. Again, false positives
for branching path queries are also possible. The third
observation connects the recursion levels in the data and
in the query. This is useful in answering complex queries
containing //-axes.

Kernel construction. The XSEED kernel can be generated
while parsing the XML document. The pseudo-code in
Algorithm 1 can be implemented using a SAX event-driven
XML parser.

The path stk in line 1 is a stack of vertices (and other
information) representing the path while traversing in the
kernel. Each stack entry (〈u, out edges〉 in line 9) is a
binary tuple, in which the first item indicates which vertex
in the kernel corresponds to the current XML element, and
the second item keeps a set of (e, l) pairs, in which e is an
outedge of u, and l is the recursion level of the rooted path
ended with the edge e. These pairs are used to increment



Algorithm 1 Constructing the XSEED Kernel

CONSTRUCT-KERNEL(S : Synopsis, X : XMLDoc)
1 path stk ← empty stack;
2 rl cnt ← empty counter stacks;
3 while the parser generates more event x from X
4 do if x is an opening tag event then
5 v ← GET-VERTEX(S, x);
6 if path stk is empty then
7 rl cnt.push(v);
8 path stk .push(〈v, ∅〉);
9 else 〈u, out edges〉 ← path stk .pop();

10 e← GET-EDGE(S, u, v);
11 l← rl cnt.push(v);
12 e[l][C CNT]← e[l][C CNT] + 1;
13 out edges← out edges ∪ (e, l);
14 path stk .push(〈u, out edges〉);
15 path stk .push(〈v, ∅〉);
16 elseif x is a closing tag event then
17 〈v, out edges〉 ← path stk .pop();
18 for each pair (e, l) ∈ out edges
19 do e[l][P CNT]← e[l][P CNT] + 1;
20 rl cnt .pop(v);

the parent-count in the case of a close tag event (line 19).
The rl cnt in line 2 is a data structure, we called

“counter stacks”, which efficiently calculates the recursion
level of a path in expected O(1). When traversing the XML
tree, the vertices in the XSEED kernel are pushed onto and
popped from rl cnt as in a stack (line 7, 11, and 20). The
key idea of the data structure to guarantee the efficiency is
to partition the items into different stacks based on their
number of occurrences. A hash table is kept to give the
number of occurrences for any item pushed onto the counter
stacks. Whenever an item is pushed onto the rl cnt , the
hash table is checked, the counter is incremented, and the
item is pushed onto the corresponding stack maintained in
the data structure. When an item is popped from rl cnt , its
occurrence is looked up in the hash table, popped from the
corresponding stack, and the occurrence counter in the hash
table is decremented. The recursion level of the whole path
is indicated by the number of non-empty stacks minus 1.
As an example, after pushing the sequence of (a, b, b,
c, c, b) the data structure is shown in Figure 3. a and
b are pushed onto counter stack 1 since their occurrences
are 0 before inserting. When the second b is pushed, the
counter of b is already 1, thus the new b is pushed to stack
2. Similarly, the following c, c, and b are pushed to the
stack 1, 2 and 3, respectively. This data structure guarantees
efficient calculation of recursion levels and is also used in
the cardinality estimation algorithm introduced in Section 4.

The functions GET-VERTEX and GET-EDGE (lines 5
and 10) search the kernel and return the vertex or edge
indicated by the parameters. If the vertex or edge is not
in the graph then it is created.

Synopsis update. When the underlying XML document is
updated, i.e., some elements are added or deleted, the kernel

Hash table

After inserting
(a,b,b,c,c,b):

Counter Stacks

a
b

b
c

b
1 2 3

ca ==> 1

b ==> 3

c ==> 2

Figure 3: Counter stacks for efficient recursion level calculation

can be incrementally updated. The basic idea is to compute,
for each subtree that is added or deleted, the kernel structure
for the subtree. Then it can be added or subtracted from the
original kernel using efficient graph merging or subtracting
algorithm. Due to space limitations, the details are left to
the full version of this paper [15].

4 XSEED-based Cardinality Estimation
Before introducing the estimation algorithm, we define

the following notions that are crucial to understand how
cardinalities are estimated.

Definition 5 (Forward and Backward Selectivity) For
any rooted path pn+1 = (v1, v2, . . . , vn, vn+1) in the
XSEED kernel G(Vs, Es), denote e(i,i+1) as the edge
(vi, vi+1), pi as the sub-path (v1, v2, . . . , vi), and ri as the
recursion level of pi, then the forward selectivity (fsel ) and
backward selectivity (bsel ) of path pn+1 are defined as:

fsel(pn+1) =
|/v1/v2/ · · · /vn/vn+1|

Sn+1
,

bsel(pn+1) =
|/v1/v2/ · · · /vn[vn+1]|

|/v1/v2/ · · · /vn|
,

where Sn+1 is the sum of child-counts at the recursion level
rn+1 over all in-edges of vertex vn+1, i.e.,

Sn+1 =
∑

e(i,n+1)[rn+1][C CNT], ∀e(i,n+1) ∈ Es. 2

Intuitively, forward selectivity is the proportion of vn+1

nodes that are contributed by the path (v1, v2, . . . , vn), and
backward selectivity captures the proportion of vn nodes
under the path (v1, v2, . . . , vn−1) that have a child vn+1.

In Definition 5, if we assume that the probability of vn

having a child vn+1 is independent of vn’s ancestors, we
can approximate bsel as:

bsel(pn+1) ≈
e(n,n+1)[rn+1][P CNT]

Sn
,

where Sn is defined similar to Sn+1. This approximated
bsel is the proportion of vn under any path that have a child
vn+1. Combining the definition and the approximation, the
cardinality of the branching path pn[vn+1] can be estimated
using the cardinality of the simple path pn as follows:

|pn[vn+1]| = |pn| × bsel(pn+1)

≈ |pn| ×
e(n,n+1)[rn+1][P CNT]

Sn
.



More generally, given a branching path expression p =
/v1/v2/ · · · /vn[vn+1] · · · [vn+m], let q = /v1/v2/ · · · /vn,
and assuming the bsel of q/vn+i is independent of the bsel
of q/vn+j for any i, j ∈ [1,m], then the cardinality of p is
estimated as:

|q/[vn+1] · · · [vn+m]| ≈ |q| × bsel(q/vn+1)× · · ·
× bsel(q/vn+m)

= |q| × absel(p),

where absel(p) denotes the aggregated bsels (products) of
the rooted paths that end with a predicate query tree node.
Since the bsel of any simple path can be approximated
using the XSEED kernel, the problem is reduced to how to
estimate the cardinality of a simple path query.

For the simple path query /v1/v2/ · · · /vn/vn+1 in Def-
inition 5, if we again assume the probability of vi having
a child vi+1 is independent of vi’s ancestors, we can
approximate the cardinality of /v1/v2/ · · · /vn/vn+1 as:

|/v1/v2/ · · · /vn/vn+1| ≈ e(n,n+1)[rn+1][C CNT]×fsel(pn).

Intuitively, the estimated cardinality of /v1/v2/ · · · /vn/vn+1

is the number of vn+1 that are contributed by vn times
the proportion of vn that are contributed by the path
/v1/v2/ · · · /vn−1. Based on this, fsel can be estimated as:

fsel(pn+1) ≈
e(n,n+1)[rn+1][C CNT]× fsel(pn)

Sn+1
.

Since fsel is defined recursively, we should calculate
fsel(pn+1) bottom-up, starting with fsel(p1), and then
fsel(p2) and so on. At the same time, the estimated
cardinalities of all sub-expressions are also calculated.

Example 3 Suppose we want to estimate the cardinality of
query /a/c/s/s/t on the kernel shown in Figure 2(b).
The following table shows the vertices in a path while
traversing the kernel, the estimated cardinality, forward
selectivity, and backward selectivity.

vertex cardinality fsel bsel

a 1 1 1
c 2 1 1
s 5 1 1
s 2 1 0.4
t 1 1 0.5

The first row in the table refers to the path consisting of
the single root node a ; the second row refers to the path of
(a, c) in the kernel, and so on. In particular the cardinality
of the last row indicates the estimated cardinality of the path
expression /a/c/s/s/t.

When traversing the first vertex a , we set the cardinal-
ity, fsel , and bsel at their initial values of 1. When travers-
ing the second vertex c , the cardinality is approximated as

|/a/c| = e(a,c)[0][C CNT]× fsel(a) = 2× 1 = 2, since the
recursion level of path (a, c) is 0. fsel(a, c) is estimated as
|/a/c|
S(a,c)

= 2
2 = 1, where Sa,c is the sum of child-counts of

all in-edges of c at recursion level specified by path (a, c).
bsel(a, c) is estimated as e(a,c)[0][P CNT]

S(a)
= 1

1 = 1. When
traversing a new vertex, the same calculations will take the
results associated with the old vertices and the edge labels
in the XSEED kernel as input, and produce the cardinality,
fsel , and bsel for the new vertex as output. 2

The cardinality of a simple path query can be estimated
as above; if we want to estimate the cardinality of a branch-
ing query or a complex path query consisting of //-axes and
wildcards (*), we need to develop a matching algorithm to
match the pattern tree specified by the expression to the
kernel. In fact, the XSEED estimation algorithm defines a
traveler (Algorithm 2) and a matcher (Algorithm 3). The
matcher calls the traveler, through the function call NEXT-
EVENT, to traverse the XSEED kernel in depth-first order.
The rooted path is maintained while traveling. Whenever
a vertex is visited, the traveler generates an open event,
which includes the information about the label of the vertex,
the DeweyID of this vertex, the estimated cardinality, the
forward selectivity, and the backward selectivity of the
current path. When finishing the visit of a vertex (due to
some criterion introduced later), a close event is generated.
In the end, an end-of-stream (EOS) event is generated when
the whole graph is traversed. The matcher accepts this
stream of events and maintains a set of internal states to
match the tree pattern specified by the path expression.

Algorithm 2 is a simplified pseudo-code for the trav-
eler algorithm. When traversing the graph, the algorithm
maintains a global variable pathTrace, which is a stack
of footprint (line 4). A footprint is a tuple including
the current vertex, the estimated cardinality of the current
path, the forward selectivity of the path, the backward
selectivity of the path, the index of the child to be visited
next, and the hash value for the current path. If the
next vertex to be visited is the root of the synopsis, an
open event with initial values are generated, otherwise
the NEXT-EVENT function calls the VISIT-NEXT-CHILD
function to move to the next vertex in depth-first order. The
latter function calls the END-TRAVELING function to check
whether the traversal should terminate (this is necessary for
a synopsis containing cycles). Whether to stop the traversal
is dependent on the estimated cardinality calculated in
the EST function. In the EST function, the cardinality,
forward selectivity, and backward selectivity are calculated
as described earlier. If the estimated cardinality is less
than or equal to some threshold (CARD THRESHOLD),
the END-TRAVELING function returns true, otherwise it
returns false. The OPEN-EVENT function accepts the
vertex, the estimated cardinality, the forward selectivity, and



Algorithm 2 Synopsis Traveler

NEXT-EVENT()

1 if pathTrace is empty then
2 if no last event then � current vertex is the root
3 h← hash value of curV ;
4 fp ← 〈curV , 1, 1.0, 1.0, 0, h〉;
5 pathTrace.push(fp);
6 evt ← OPEN-EVENT(v, card , fsel , bsel);
7 else evt ← EOS-EVENT();
8 else evt ← VISIT-NEXT-CHILD();

VISIT-NEXT-CHILD()

1 〈u, card , fsel , bsel , chdcnt , hsh〉 ← pathTrace.top();
2 kids ← children of curV ;
3 while size of kids is greater than chdcnt
4 do v ← kids[chdcnt ];
5 if ¬END-TRAVELING(v, chdcnt) then
6 curV ← v;
7 〈v, card , fsel , bsel , hsh〉 ← pathTrace.top();
8 evt ← OPEN-EVENT(v, card , fsel , bsel);
9 return evt ;

10 increment chdcnt in pathTrace.top() by 1;
11 evt← CLOSE-EVENT(u);
12 return evt ;

END-TRAVELING(v : SynopsisVertex, chdCnt : int)
1 old rl ← the recursion level of current path without v;
2 rl ← the recursion level of current path and v;
3 〈stop, card , fsel , bsel , n h〉 ← EST(v, rl , old rl);
4 if stop then
5 return true;
6 fp ← 〈v, card , fsel , bsel , 0,n h〉;
7 pathTrace.push(fp);
8 return false;

EST(v : SynopsisVertex, rl : int, old rl : int)
1 〈u, card , fsel , bsel , chdcnt , hsh〉 ← pathTrace.top();
2 e← GET-EDGE(u, v);
3 if rl < e.label.size() then
4 n card ← e[rl][C CNT] ∗ fsel ;
5 sum cCount ← TOTAL-CHILDREN(u, old rl);
6 n bsel ← e[rl][P CNT]/ sum cCount ;
7 else n card ← 0;
8 sum cCount ← TOTAL-CHILDREN(v, rl);
9 n fsel ← n card / sum cCount ;

10 if n card ≤ CARD THRESHOLD then
11 stop ← true;
12 else stop ← false;
13 return 〈stop,n card ,n fsel ,n bsel ,n hsh〉;

the backward selectivity as input, and generates an event
including the input parameters and the DeweyID as output.
The DeweyID of the event is maintained by the OPEN-
EVENT and CLOSE-EVENT functions and is not shown in
Algorithm 2.

If we treat the sequence of open and close events as open
and close tags of XML elements, with the cardinality and
selectivities as attributes, the traveler generates the follow-
ing XML document from the XSEED kernel in Figure 2(b):

<a dID="1." card="1" fsel="1" bsel="1">
<t dID="1.1." card="1" fsel="0.2" bsel="1"/>

Algorithm 3 Synopsis Matcher

CARD-EST(K : Kernel, qroot : QueryTreeNode)

1 frtSet ← {qroot};
2 frtStk .push(frtSet);
3 est ← 0;
4 evt ← NEXT-EVENT();
5 while evt is not an end-of-stream (EOS) event
6 do if evt is an open event then
7 frtSet ← frtStk .top();
8 new fset ← ∅;
9 for each query tree node q ∈ frtSet

10 do if q.label = evt .label ∨ q.label = “ ∗ ” then
11 insert q’s children into new fset ;
12 insert evt into q’s output queue;
13 if q.axis = “//” then
14 insert q into new fset ;
15 frtStk .push(new fset);
16 else if evt is a close event then
17 qroot .rmUnmatched();
18 if qroot .isTotalMatch() then
19 est ← est +OUTPUT(evt .dID , qroot);
20 else if evt is matched to qroot then
21 qroot .rmDescOfSelf (evt .dID);
22 frtStk .pop();
23 evt← NEXT-EVENT();
24 return est ;

OUTPUT(dID : DeweyID, qroot : QueryTreeNode)

1 Q← rstQTN .outQ ;
2 est ← 0;
3 absel ← AGGREGATED-BSEL(qroot);
4 for each evt ∈ Q
5 do est ← est + evt .card ∗ absel ;
6 Q.clear();
7 rstQTN . rmDescOfSelfSubTree(dID);
8 return est ;

<u dID="1.2." card="1" fsel="1" bsel="1"/>
<c dID="1.3." card="2" fsel="1" bsel="1">
<t dID="1.3.1." card="2" fsel="0.4" bsel="1"/>
<p dID="1.3.2." card="3" fsel="0.25" bsel="1"/>
<s dID="1.3.3." card="5" fsel="1" bsel="1">
<t dID="1.3.3.1." card="2" fsel="0.4" bsel="0.4"/>
<p dID="1.3.3.2." card="9" fsel="0.75" bsel="1"/>
<s dID="1.3.3.3." card="2" fsel="1" bsel="0.4">
<t dID="1.3.3.3.1." card="1" fsel="1" bsel="0.5"/>
<p dID="1.3.3.3.2." card="2" fsel="1" bsel="0.5"/>
<s dID="1.3.3.3.3." card="2" fsel="1" bsel="0.5">
<p dID="1.3.3.3.3.1." card="3" fsel="1" bsel="1"/>

</s> </s> </s> </c> </a>

The tree corresponding to this XML document is dynam-
ically generated and does not need to be stored. Since it
captures all the simple paths that can be generated from the
kernel, we call it the expanded path tree (EPT). In a highly
recursive document (e.g., Treebank), the EPT could be even
larger than the original XML document. This is because
a single path with a high recursion level will result in
generating other non-existing paths during the traversal. In
this case, we need to set a higher CARD THRESHOLD
to limit the traversal. As demonstrated by our experiments,
this heuristic greatly reduces the size of the EPT without
causing much error.



(4:50)

a

b c

e f

d
(2:5) (3:9)

(1:3) (1:4)

(3:20)

Figure 4: Example of ancestor independence assumption breaks

Algorithm 3 shows the pseudo-code for matching a
query tree rooted at qroot with the EPT generated from the
kernel K. The algorithm maintains a stack of frontier sets,
which is a set of query tree nodes (QTN) for the current
path in the traversal. The QTNs in the frontier set are the
candidates that can be matched with the incoming event.
Initially the stack contains a frontier set consisting of the
qroot itself. Whenever a QTN in the frontier set is matched
with an open event, the children of the QTN are inserted into
a new frontier set (line 11). Meanwhile, the matched event
is buffered into the output queue of the QTN as a candidate
match (line 12). In addition to the children of the QTN
that matches with the event, the new frontier set should also
include all QTNs whose axis is “//” (line 14). After that,
the new frontier set is ready to be pushed onto the stack for
matching with the incoming open events if any.

Whenever a close event is seen, the matcher first cleans
up the unmatched events in the output queue associated
with each QTN (line 17). The call qroot .rmUnmatched()
checks the output queue of each QTN under qroot . If some
buffered event does not have all its children QTN matched,
these events are removed from the output queue. After the
cleanup, if the top of the output queue of qroot indicates a
total match, the estimated cardinality is calculated (line 19).
Otherwise, if qroot is not a total match, the partial results
should be removed from the qroot . Finally, the stack for the
frontier set is popped indicating that the current frontier set
is finished matching.

In the OUTPUT function, we need to sum the cardi-
nalities of all the events cached in the resulting QTN.
If there are predicates, the function AGGREGATED-BSEL
calculates the product of backward selectivities of all events
matched with predicate QTNs. After the summation, the
output queue of the resulting QTN and all its descendant
QTNs should be cleaned up.

5 Optimization for Accuracy—HET
The whole idea of the cardinality estimation using

XSEED kernel is to first compress the XML tree, in the
construction phase, into a graph structure that contains
small amount of statistical annotations, and then, in the
estimation phase, decompress the graph into a tree (EPT)
based on the independence assumption (explained in detail

later). The accuracy of cardinality estimation, therefore,
depends upon how well the independence assumption
hold on a particular XML document. Intuitively, the
independence assumption refers to whether u having a
child v is independent of the fact whether u having a
particular parent/ancestor or other children. To capture the
cases that are far from the independence assumption, we
need to collect and keep additional information.

There are two cases where the estimation algorithm re-
lies on the independence assumption. The first case happens
when there are multiple in-edges and out-edges to a vertex
v. The probability of v having a child, say w, is independent
of which node is the parent of v. This assumption ignores
the possible correlations between ancestor and descendants.
This case is best illustrated by the following example.

Example 4 Given the XSEED kernel depicted in Figure 4,
we want to estimate the cardinality of b/d/e. Since vertex
d in the graph has two in-edges incident to b and c , the
estimation algorithm assumes that the total number of e

nodes (20) from d nodes are independent of whether d ’s
parents are b nodes or c nodes. Under this assumption,
the cardinality of b/d/e is the cardinality of d/e times
the proportion of d nodes that are contributed by b nodes,
namely the forward selectivity of the path p = b/d/e:

|p| = |d/e| × fsel(b/d/e)

= e(d,e)[0][C CNT]×
e(b,d)[0][C CNT]

e(b,d)[0][C CNT] + e(c,d)[0][C CNT]

= 20× 5
14

≈ 7.14.

The estimate of |b/d/e| is not 100% accurate, due to the
ancestor independence assumption. 2

The second type of independence assumption is in the
case of branching path queries. If a vertex u in the kernel
has two children v and w, the independence assumption
assumes that the number of u nodes that have a child node
v is independent of whether or not u also has a child w,
ignoring the possible correlations between two siblings.

Example 5 Consider the XSEED kernel in Figure 4, and
the path expression b/d[f]/e. Based on the indepen-
dence assumption, the cardinality of the path expression
b/d[f]/e is the cardinality of b/d/e times the pro-
portion of d elements that have a f child, namely the
backward selectivity of f in the path p = b/d/f:

|p| = |b/d/e| × bsel(b/d/f)

= |b/d/e| ×
e(d,f)[0][P CNT]

e(b,d)[0][C CNT] + e(c,d)[0][C CNT]

= 20× 5
14

× 4
14

≈ 2.04.

Again, this estimate is not 100% accurate. 2



A simple solution to this problem is to keep in what
we call the hyper-edge table (HET), the actual cardinalities
of the simple paths (e.g., b/d/e) and the “correlated
backward selectivity” of the branching paths (e.g., the
backward selectivity of f correlated with its sibling e under
the path b/d in Example 5) when they induce large errors,
so that we do not need to estimate it. In principle, the HET
serves the same role as a histogram in relational database
systems.

HET Construction. The HET can be pre-computed
or populated by the optimizer through query feedback.
While constructing the HET through query feedback is
relatively straightforward, there are two issues related
to pre-computation: (1) although we can estimate the
cardinality using the XSEED kernel, we need an efficient
way to evaluate the actual cardinalities to calculate the
errors; and (2) the number of simple paths is usually small,
but the number of branching paths is exponential in the
number of simple paths. Thus, we need a heuristics to
select a subset of the branching paths to evaluate.

To solve the first issue, we generate the path tree [1]
while parsing the XML document (see Figure 1). The path
tree captures the set of all possible simple paths in the
XML tree. While constructing the path tree, we associate
each node with the cardinality and backward selectivity of
the rooted simple path leading to this node. Therefore,
the actual cardinality of a simple path can be computed
efficiently by traversing the path tree. To evaluate the actual
cardinality of a branching path, we use the Next-of-Kin
(NoK) operator [14], which performs tree pattern matching
while scanning the data storage (see Figure 1) once, and
returns the actual cardinality of a branching path.

To solve the second issue, we introduce two thresholds
that effectively control the number of candidate branching
paths. The first threshold is the maximum number of
branching predicates MBP in the candidate path expres-
sions. This threshold is the most effective one, since if we
only consider the case where branching are restricted at the
leaf level, the number of candidate branching paths could
be

∑n
i=1

∑min(fi,MBP +1)
j=1

(
fi

j

)
, where n is the number

of nodes in the path tree, and fi is the fan-out of node
vi in the path tree. MBP should be set to a very small
number, say 2 (in which case it is called a 2BP HET), in
order to obtain reasonable number of candidate paths. To
further reduce the candidates, we setup another threshold
(BSEL THRESHOLD) for the backward selectivity of
the path tree node to be examined, i.e., if bsel(v) <
BSEL THRESHOLD , we evaluate the actual backward
selectivity of the branching paths that have v as a predicate;
otherwise v is omitted.

Accordingly, the construction of the hyper-edge table
is straightforward: for every node v in the path tree, the
estimated cardinality and actual cardinality are calculated.

The path is put into a priority queue keyed by the absolute
estimation error. If bsel(v) < BSEL THRESHOLD , all
branching paths (only at the leaf level) with this node as
one of the predicates are enumerated, and the paths are put
into the priority queue. To limit the memory consumption
of the hyper-edge table, we use a hashed integer (32 bits)
to represent the string of path expression. When the hash
function is reasonably good, the number of collisions is
negligible. The hashed integer serves as a key to the actual
cardinality and the correlated backward selectivity of the
path expression. Table 1 is an example HET for the XSEED
kernel in Figure 4, where actual hyper-edges rather than
hashed values are shown.

hyper-edges cardinality correlated bsel
/a/b/d/e 14 0.1
/a/c/d/e 6 0.14
/a/b/d/f 21 0.25
/a/c/d/f 29 0.52
d[e]/f 4 0.35

Table 1: Hyper-Edge Table

We manage HET simply: we keep all the hyper-edges
sorted in descending order of their errors on secondary
storage and only keep the top k entries which have the
largest errors in main memory to fill the memory budget.
In our experiments, an 1BP hyper-edge table does not take
a lot of disk space (less than 500,000 entries in the most
complex Treebank data set and less than 1,000 entries for
all the other tested data sets), but 2BP and 3BP could be
very large for complex data sets.

Cardinality estimation. If the HET is available, we need
to modify the traveler and matcher algorithms to exploit
the extra information. The following changes apply to the
1BP HET. For 2BP and 3BP HET we need to change the
AGGREGATED-BSEL as well, which we omit it here due to
lack of space. In the traveler algorithm, we need to modify
the lines 2 to 7 in function EST as follows:

1 if HET is available then
2 n hsh ← incHash(hsh, v);
3 if n hsh is in HET then
4 〈n card ,n bsel〉 ← HET.lookup(n hsh);
5 else
6 e← GET-EDGE(u, v);
7 if rl < e.label.size() then
8 n card ← e[rl][C CNT] ∗ fsel ;
9 sum cCount ← TOTAL-CHILDREN(u, old rl);

10 n bsel ← e[rl][P CNT]/ sum cCount ;
11 else n card ← 0;

This snippet of code guarantees that the actual cardi-
nalities of simple paths are retrieved from the HET. The
incHash function incrementally computes the hash value
of a path: given an old hash value for the path up to the new
vertex and the new vertex to be added, the function returns
the hash value for the path including the new vertex.



The matcher also needs to be modified to retrieve the
correlated backward selectivity from the HET. The follow-
ing should be inserted after line 11 in function CARD-EST:

1 if HET is available and q is a predicate QTN then
2 p← q’s parent QTN;
3 r ← p’s non-predicate child QTN;
4 hsh ← incHash(“p[q]/r”);
5 if hsh is in HET then
6 〈card , bsel〉 ← HET .lookup(hsh);
7 evt . bsel ← bsel ;

In this code, the correlated backward selectivity of q and
its non-predicate sibling QTN is checked. The parameter
to the incHash function is the string representation of the
branching path p[q]/r.

6 Experimental results
We first evaluate the performance of the synopsis in

terms of the following: (1) compression ratio of the syn-
opsis on different types of data sets, and (2) accuracy of
cardinality estimation for different types of queries.

To evaluate the combined effects of the above two prop-
erties, we compare accuracy with different space budgets
against a state-of-the-art synopsis structure, TreeSketch [8].
TreeSketch is considered the best synopsis in terms of
accuracy for branching path queries, and it subsumes XS-
ketch [6] for structural-only summarization.

Another aspect of the experiments is to investigate the
efficiency of the cost estimation function using the synopsis.
We report the running time of the estimation algorithm for
different types of queries. The ratios of the estimation times
and the actual query processing times are also reported.

These experiments are performed on a dedicated ma-
chine with 2GHz Pentium 4 CPU and 1GB memory. The
synopsis construction and cardinality estimation are imple-
mented in C++. The TreeSketch code is obtained from its
developers. The reported running times for the estimation
algorithms are the averages of five runs.

6.1 Data sets and workload
We tested synthetic and real data sets with different char-

acteristics: simple without recursion (DBLP3, SwissProt4,
and TPC-H4), complex with small degree of recursion
(XMark [9], NASA4, and XBench TC/MD [12]), and
complex with high degree of recursion (Treebank4). In
this paper, we report DBLP, XMark10 and XMark100
(XMark with 10MB and 100MB of sizes, respectively), and
Treebank.05 (randomly chosen 5% of Treebank) as well as
the full Treebank as representative data sets for the three
categories. The trends for the other data sets are similar.
The basic statistics about the data sets are listed in Table 2.

3Available for download at http://dblp.uni-trier.de/xml
4Available for download at http://www.cs.washington.edu/

research/xmldatasets/www/repository.html

We divided the workload into three categories: sim-
ple path (SP), branching path (BP), and complex path
(CP). BP and CP queries represent the simplest branching
queries with 0 or 1 predicate for each step. For each
data set, we generate all possible SP queries, and 1, 000
random BP and CP queries. To test the effectiveness of
HET with different MBP configurations, we also generate
workload that have up to 2 branching predicates (2BP
and 2CP) and 3 branching predicates (3BP and 3CP) in
each step. The randomly generated queries are non-trivial.
A sample CP query looks like //regions/australia

/item[shipping]/location. The full test workload
can be found in the full paper [15].

6.2 Construction time
For each data set, we measure the time to construct the

kernel and HET separately. As described in Section 5,
branching paths are estimated only for those path
tree nodes whose backward selectivity is less than
BSEL THRESHOLD . We use 0.1 as the threshold for all
the data sets except Treebank, for which it is set to 0.001.

The construction time for XSEED and TreeSketch are
given in Table 2. In this table, “DNF” indicates that the
construction did not finish in 24 hours. The construction
time for XSEED consists of the kernel construction time
and the 1BP HET construction time (first and second part,
respectively). The total construction time is the sum of
these two numbers. As shown in the table, XSEED kernel
construction time is negligible for all data sets, and the
HET construction time is reasonable; overall they are much
smaller than TreeSketch.

6.3 Accuracy of the synopsis
To evaluate the accuracy of XSEED synopsis, we again

compare with TreeSketch on different types of queries (SP,
BP, and CP). We calculated several error metrics but report
here two5, Root-Mean-Squared Error (RMSE) and Normal-
ized RMSE (NRMSE), to evaluate the quality of the esti-
mations. The RMSE is defined as

√
(
∑n

i=1(ei − ai)2)/n,
where ei and ai are the estimated and actual result sizes,
respectively, for the i-th query in the workload. The
RMSE measures the average error over all queries in the
workload. The NRMSE is adopted from [13] and is defined
as RMSE/ā, where ā = (

∑n
i=1 ai)/n. NRMSE is a

measure of the average error per unit of accurate result size.
Since TreeSketch synopses cannot be constructed in

our time limit on Treebank, we only list, in Table 3, the
error metrics on the DBLP, XMark10, XMark100, and
Treebank.05. These data sets represent all three data
categories: simple, complex with small degree of recursion,
and complex with high degree of recursion. The workload

5The Coefficient of Determination (R-squared) and Order Preserving
Degree (OPD) are also calculated, but the values are very close to the
perfect score for almost all datasets, so we omitted here.

http://dblp.uni-trier.de/xml
http://www.cs.washington.edu/research/xmldatasets/www/repository.html
http://www.cs.washington.edu/research/xmldatasets/www/repository.html


Data
sets

Data characteristics XSEED kernel
size

Synopsis construction time (mins)
total size # of nodes avg/max rec. level XSEED TreeSketch

DBLP 169 MB 4022548 0 / 1 2.8KB 0.24 + 27 11
XMark10 11 MB 167865 0.04 / 1 2.7KB 0.01 + 0.27 31
XMark100 116 MB 1666315 0.04 / 1 2.7KB 0.1 + 2.7 815

Treebank.05 3.4 MB 121332 1.3 / 8 24.2KB 0.008 + 52 839
Treebank 86 MB 2437666 1.3 / 10 72.7KB 0.168 + 261 DNF

Table 2: Characteristics of experimental data sets, their XSEED kernel size, and construction times

is the combined SP, BP, and CP queries. We tested both
programs using 25KB and 50KB memory budgets, as well
as testing XSEED kernel without HET, thus reducing the
memory requirement. For the DBLP and XMark data sets,
XSEED only uses 20KB and 25KB memory respectively
for the total of kernel and HET, thus their error metrics on
25KB and 50KB are the same. Even without help from
the HET, the XSEED kernel outperforms TreeSketch with
50KB memory budget on the XMark and Treebank.05 data
sets. The reason is that the TreeSketch synopsis does not
recognize recursions in the document, so even though it uses
much more memory, the performance is not as good as the
recursion-aware XSEED synopsis. When the document is
not recursive, TreeSketch has better performance than the
bare XSEED kernel. However, spending a small amount of
memory on the HET greatly improves performance. The
RMSE for XSEED with 25KB (i.e., a small HET) is almost
half of the RMSE for TreeSketch with 50KB memory.

There is only one case—BP queries on DBLP (see
Figure 5)—where TreeSketch outperforms XSEED
even with the help of HET. In this case, XSEED errors
are caused by the correlations between siblings that
are not captured by the HET. For example, the query
/dblp/article[pages]/publisher causes a
large error on XSEED. The reason is that the backward
selectivity (0.8) of pages under /dblp/article
is above the default BSEL THRESHOLD (0.1), so
the hyper-edge article[pages]/publisher was
omitted in the HET construction step, thus the correlation
between pages and publisher is not captured. It is
possible to use better heuristics to address this problem,
although we have not investigated this in this paper.

We also tested the accuracy of different types of work-
load (1BP, 2BP and 3BP) on HETs with different MBP
(maximum branching predicates) settings. Our observation
is that 1BP HET is usually the best tradeoff between
construction time and accuracy. Figure 6 shows the HET
construction times (on the right y-axis) using different MBP
settings for the DBLP dataset, and the estimation errors (on
the left y-axis) for each setting on the 2BP workload. The
error is reduced significantly (66%) going from no HET to
1BP HET, but the reduction in errror from 1BP HET to 2BP
HET diminishes to 8%. On the other hand, the construction
time of 2BP HET is about 10 times that of 1BP HET.

Figure 5: Estimation errors for different query types on DBLP

0

10

20

30

40

50

60

0BP (Kernel) 1BP 2BP

R
o

o
t-

M
e
a
n

-S
q

u
a
re

d
 E

rr
o

r 
(R

M
S

E
)

0

50

100

150

200

250

300

H
E

T
 C

o
n

s
tr

u
c
ti

o
n

 T
im

e
 (

m
in

s
)

Estimation Error (RMSE)

HET Construction Time

Figure 6: Different MBP settings on DBLP

6.4 Efficiency of cardinality estimation algorithm

To evaluate the efficiency of the cardinality estimation
algorithm, we listed the ratio of the time spent on estimating
the cardinality and the time spent on actually evaluating the
path expression. The path expression evaluator we used is
the NoK operator [14] extended to support //-axes.

The efficiency of the cardinality estimation algorithm
depends on how many tree nodes there are in the expanded
path tree (EPT) that can be generated from traversing the
XSEED kernel. For DBLP, XMark10 and XMark100 data
sets, the generated EPT is very small—0.0035%, 0.036%,
and 0.05% of the original XML tree, respectively. As
mentioned previously, the EPT could be large for highly
recursive documents such as Treebank.05 and Treebank. To
limit the size of EPT, as mentioned earlier, we establish a
threshold for the estimated cardinality of the next vertex to
visit. In these experiments, the threshold is set to 20 (i.e.,



Program settings DBLP XMark10 XMark100 Treebank.05
RMSE NRMSE RMSE NRMSE RMSE NRMSE RMSE NRMSE

XSEED kernel 1960.5 15.4% 39.6 15.1% 276.15 5.06% 22.7 169%

25KB mem XSEED 103 0.81% 3.737 1.43% 256.3258 4.71% 22.7 169%
TreeSketch 221.5 1.67% 62.738 23.7% 638.1908 11.7% 229.5823 877.14%

50KB mem XSEED 103 0.81% 3.737 1.43% 256.3258 4.71% 12.82 95.61%
TreeSketch 203.09 1.59% 58.3946 22.09% 635.5347 11.65% 227.1157 867.71%

Table 3: Error metrics for XSEED andTreeSketch

if the estimated cardinality of the next vertex in depth-first
order is less than 20, it will not be visited), and the ratio of
EPT size to XML tree size is 6.9% and 5.5%.

The average ratios of the estimation time to the actual
query running time on DBLP, XMark10, XMark100, Tree-
bank.05, and Treebank are 0.018%, 0.57%, 0.0916%, 2%,
and 1.5%. The ratios for XMark10 and XMark100 differ
significantly because their XSEED kernels are very similar,
but the size of the XML documents differs by a factor of 10.

7 Related work

There are many approaches dealing with cardinality
estimation for path queries (e.g., [5, 4, 1, 6, 11, 2, 8,
10]). Some of them [5, 1, 11, 10] focus only on a
subset of the possible path expressions, e.g., simple paths
(linear chain of steps that are connected by /-axis) or linear
paths containing //-axes. Moreover, none of them directly
addresses recursive data sets, and only [5] and [10] support
incremental maintenance of the synopsis structures.

TreeSketch [8], an extension to XSketch [6], can esti-
mate the cardinality of branching path queries very accu-
rately in many cases. However, it does not perform as
well on recursive data sets. Also, due to the complexity
of the construction process, TreeSketch is not practical
for structure-rich data such as Treebank. XSEED has
similarities to TreeSketch, but the major difference is that
XSEED preserves structural information in two layers of
granularity (kernel and HET); while TreeSketch tries to
preserve this information in a complex and unified structure.

The hyper-edge table has been inspired by previous pro-
posals [2, 10]. In [2], the actual statistics of previous queries
are recorderd into a table and reused later. In [10], a Bloom
Filter is used to compactly store cardinality information
about simple paths. In this paper, we use one hash value for
that purpose, since practice shows that a good hash function
produces very few collisions for thousands of paths.

8 Conclusion

In this paper, we propose a compact synopsis structure
to estimate the cardinalities of path queries. To the best of
our knowledge, our approach is the first to support accurate
estimation for all types of queries and data, incremental

update of the synopsis when the underlying XML document
is changed, dynamic reconfiguration of the synopsis accord-
ing to the memory budget, and the ability to exploit query
feedback. The simplicity and flexibility of XSEED make it
well suited for implementation in a real DBMS optimizer.

Acknowledgement: We thank Neoklis Polyzotis and Mi-
nos Garofalakis for providing us with the TreeSketch code.

References
[1] A. Aboulnaga, A. R. Alameldeen, and J. F. Naughton.

Estimating the Selectivity of XML Path Expressions for
Internet Scale Applications. In VLDB, 2001.

[2] A. Aboulnaga and J. F. Naughton. Building XML Statistics
for the Hidden Web. In CIKM, 2003.

[3] D. Chamberlin. XQuery: An XML Query Language. IBM
Systems Journal, 41(40), 2002.

[4] Z. Chen, H. V. Jagadish, F. Korn, N. Koudas, S. Muthukr-
ishnan, R. Ng, and D. Srivastava. Counting Twig Matches
in a Tree. In ICDE, 2001.

[5] R. Goldman and J. Widom. DataGuides: Enabling Query
Formulation and Optimization in Semistructured Databases.
In VLDB, 1997.

[6] N. Polyzotis and M. Garofalakis. Statistical Synopses for
Graph Structured XML Databases. In SIGMOD, 2002.

[7] N. Polyzotis and M. Garofalakis. Structure and Value
Synopses for XML Data Graphs. In VLDB, 2002.

[8] N. Polyzotis, M. Garofalakis, and Y. Ioannidis. Approximate
XML Query Answers. In SIGMOD, 2004.

[9] A. R. Schmidt, F. Waas, M. L. Kersten, D. Florescu,
I. Manolescu, M. J. Carey, and R. Busse. The XML
Benchmark Project. Tech. Report INS-R0103, CWI, 2001.

[10] W. Wang, H. Jiang, H. Lu, and J. X. Yu. Bloom Histogram:
Path Selectivity Estimation for XML Data with Updates. In
VLDB, 2004.

[11] Y. Wu, J. M. Patel, and H. Jagadish. Estimating Answer
Sizes for XML Queries. In EDBT, 2002.

[12] B. B. Yao, M. T. Özsu, and N. Khandelwal. XBench
Benchmark and Performance Testing of XML DBMSs. In
ICDE, 2004.

[13] N. Zhang, P. J. Haas, V. Josifovski, G. M. Lohman, and
C. Zhang. Statistical Learning Techniques for Costing XML
Queries. In VLDB, 2005.

[14] N. Zhang, V. Kacholia, and M. T. Özsu. A Succinct Physical
Storage Scheme for Efficient Evaluation of Path Queries in
XML. In ICDE, 2004.

[15] N. Zhang, M. T. Özsu, A. Aboulnaga, and I. F. Ilyas. XSeed:
Accurate and Fast Cardinality Estimation for XPath Queries.
Technical report CS-2005-22, University of Waterloo, 2005.


	Introduction
	Preliminaries 
	Recursion
	Structural Summaries

	Basic Synopsis Structures---XSeed kernel
	XSeed-based Cardinality Estimation
	Optimization for Accuracy---HET
	Experimental results 
	Data sets and workload
	Construction time 
	Accuracy of the synopsis
	Efficiency of cardinality estimation algorithm

	Related work 
	Conclusion 

