
Records Retention in Relational Database Systems

Ahmed Ataullah Ashraf Aboulnaga Frank Wm.Tompa

David R. Cheriton School of Computer Science
University of Waterloo

Waterloo, Ontario, Canada
{aataulla, ashraf, fwtompa}@cs.uwaterloo.ca

ABSTRACT
The recent introduction of several pieces of legislation man-
dating minimum and maximum retention periods for cor-
porate records has prompted the Enterprise Content Man-
agement (ECM) community to develop various records re-
tention solutions. Records retention is a significant subfield
of records management, and legal records retention require-
ments apply over corporate records regardless of their shape
or form. Unfortunately, the scope of existing solutions has
been largely limited to proper identification, classification
and retention of documents, and not of data more generally.

In this paper we address the problem of managed records
retention in the context of relational database systems. The
problem is significantly more challenging than it is for doc-
uments for several reasons. Foremost, there is no clear def-
inition of what constitutes a business record in relational
databases; it could be an entire table, a tuple, part of a tu-
ple, or parts of several tuples from multiple tables. There are
also no standardized mechanisms for purging, anonymizing
and protecting relational records. Functional dependencies,
user defined constraints, and side effects caused by triggers
make it even harder to guarantee that any given record will
actually be protected when it needs to be protected or ex-
punged when the necessary conditions are met. Most im-
portantly, relational tuples may be organized such that one
piece of data may be part of various legal records and subject
to several (possibly conflicting) retention policies.

We address the above problems and present a complete so-
lution for designing, managing, and enforcing records reten-
tion policies in relational database systems. We experimen-
tally demonstrate that the proposed framework can guaran-
tee compliance with a broad range of retention policies on
an off-the-shelf system without incurring a significant per-
formance overhead for policy monitoring and enforcement.

Categories and Subject Descriptors
H.2.7 [Database Administration]: Security, integrity, and
protection; K.5.2 [Legal Aspects of Computing]: Gov-
ernmental Issues - Regulations

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’08, October 26–30, 2008, Napa Valley, California, USA.
Copyright 2008 ACM 978-1-59593-991-3/08/10 ...$5.00.

General Terms
Legal Aspects, Management

Keywords
Privacy, records retention, legal compliance, business records,
relational systems

1. INTRODUCTION
Storage, management, and efficient access to data have

traditionally been of prime importance for businesses. Any
loss of records has meant the loss of valuable business intel-
ligence. However in the past decade, increasing awareness of
privacy related issues and the introduction of several pieces
of legislation mandating strict records retention periods have
forced organizations to move away from the “store every-
thing” paradigm. Customers demand that their personal
information not be indefinitely retained by businesses, and
government legislations require that certain types of records,
such as those related to taxation, be preserved for specified
periods of time. This puts database systems in an awkward
situation of having to store business records in tuples and
tables that are relationally intertwined (e.g., through foreign
keys) but with a diverse set of policies applicable to them.

The problem is further exacerbated by the fact that there
is no clear notion of a “business record” in a database sys-
tem, which means that there is no meaningful way of pro-
tecting records and deleting them after they are no longer
required.1 For example, a typical physical document such
as an invoice may be identified by a row in one table, but
its contents in a database with a normalized schema may
be spread across various tables. Various departments of the
business may consider selected attributes of the invoice or
its related line item tuples as sensitive information and may
want to expunge or protect them as necessitated by law.
With conflicting requirements arising through the intertwin-
ing of complex records, the problem of mediating these re-
quirements and determining whether they can be enforced
becomes a significant challenge. As more and more policies
are integrated from different departments, the problem of
maintaining a consistent and enforceable set of data reten-
tion rules can easily become unmanageable.

Not complying with legally mandated records retention
policies can lead to criminal charges against individuals or
corporations, and this greatly increases the gravity of the
problem. Even accidentally destroying records and being

1It is important to note that in this paper we distinguish
between“records,”which can be thought of as “business doc-
uments,” and “tuples” that are stored in relations.

unable to reproduce them in civil litigation scenarios can
lead to the imposition of heavy fines [14]. At the same time
retaining certain records for too long can be a source of li-
ability or a violation of published records retention policy.
Since records management solutions for relational databases
do not exist, organizations that choose to enforce retention
policies on relational data are forced to do so in an ad-hoc
manner. Legislation is interpreted by a privacy officer who
is aware of the database schema, and then data deletion
specifications are handed down to a programmer. Deleting
records when they have expired is most likely done through
the use of scheduled SQL execution tasks. To implement
protective data retention measures, for example those leg-
islated by the Sarbanes-Oxley Act [1] mandating corporate
financial records to be maintained for specified periods, an
elaborate set of logging (or replicating) triggers is the only
workable solution for database administrators.

Such an approach to hand-coding a corporate retention
policy in a database system has several shortcomings. First,
it is only viable if there is a single corporate privacy offi-
cer providing the interpretation of data retention rules. In
scenarios involving large, complex and possibly federated
schemas, it is unlikely that one administrator will be re-
sponsible for understanding and interpreting legal records
retention requirements for all functional areas of the orga-
nization. Second, administrators are not able to verify the
effect of their policies automatically. For example, batched
execution of data purging queries may attempt to delete
records that are protected by data retention triggers. Policy
conflicts are nearly impossible to detect beforehand when
dealing with arbitrarily written queries. Consequently, ad-
hoc conflict resolution becomes inevitable. The task of man-
aging and maintaining a large number of scheduled tasks and
retention triggers is not only challenging, but can also rep-
resent a significant overhead cost in business situations with
evolving schemas.

In this paper we present a complete end-to-end solution
for managed data retention in relational database systems.
Our key contribution is that of answering three fundamen-
tal questions pertaining to systematic records retention in
database systems:

• What is a business record in the context of a records
retention policy in a relational database system?

• What does it mean to delete (or protect) a particular
record?

• How can privacy officers and database administrators
be sure that policy actions described on what they
deem to be records will be meaningful and correct?

Our proposed framework answers the above questions, and
it builds an expressive and flexible solution for records reten-
tion that can be implemented on top of existing mainstream
database management systems.

2. RECORDS IN DATABASES
Information in a database that should be protected or

deleted under a policy must be identified by subject experts
in formats that are meaningful to them. Since each policy
maker can interpret individual pieces of data differently, we
propose a view based records management system.

Definition 1. A relational record is a logical view over
a fixed relational schema.

Note that this definition is suitably expressive, as it gives
policy makers the ability to define a record for policy en-
forcement at any level of granularity. Although this defini-
tion obscures the distinction between a single record and a
collection of records, we believe that this is the most suitable
method of identifying valuable business information that
caters to the needs of all users. Such a framework allows
each user to specify his or her own interpretation of a given
record and the valuable information contained therein. Once
important records are identified by users, retention policies
can then be systematically implemented on the relevant view
definitions.

To delimit the scope of the obligations on the data stored
by an organization in a relational database, we propose that
all records be explicitly declared. For example, if a busi-
ness has very specific retention obligations on the taxation
information contained in paid invoices issued to Jones Cor-
poration, it can declare a record as follows:

DEFINE RECORD R1 AS
SELECT *
FROM Invoice NATURAL JOIN LineItem
WHERE Recipient = ‘Jones Corp.’
AND Paid = true

This example of a record declaration captures the data con-
tained in all paid invoices issued to Jones Corp. Observe
that relational records are much more flexible than tradi-
tional physical records (such as a single invoice or telephone
bill) and can encapsulate a collection of related traditional
physical records in a very compact definition. Furthermore,
using views provides a declarative means for policy makers
to specify policy-relevant pieces of data that may be spread
across numerous physical records.

An important requirement for any records retention frame-
work is to accommodate the notion of temporality. The
vast majority of data retention policies are time driven and
warrant that records be destroyed after (or protected for) a
fixed time after an event. We therefore propose the use of
a temporal function NOW, which will denote the current
system-wide time. Such a function is presently implemented
in all modern database systems, and it is simply treated as
a special timestamp. Support for comparative operators,
date-time functions, and even its use in view definitions is
also widespread. An example of a time-varying record would
be to add a temporal predicate to the Jones Corporation
record, R1, to identify those invoices and line items that
were paid within the last five years:

DEFINE RECORD R2 AS
SELECT *
FROM Invoice NATURAL JOIN LineItem
WHERE Recipient = ‘Jones Corp.’
AND Paid = true
AND Years (NOW - PaidDate) < 5

It must be clarified that our model for records and policies
only considers the current state of the database. Here we do
not deal with enforcing retention constraints on backup (of-
fline) copies of the database or on tuples in older snapshots.
Our aim is to ensure that the active database is always in
a compliant state with respect to retention: all records that
warrant protection are not affected by user initiated trans-
actions and no records physically exist that have outlived
their maximum retention period.

3. RETAINING RECORDS
In the context of business documents such as invoices on

which tax has been collected, preservation typically implies
that the invoices are not destroyed, not modified, and that
no new details are added. The natural equivalents of these
protective requirements in databases are to ensure that cer-
tain insertions, deletions, and updates are rejected. We pro-
pose the use of a retention condition to express these pro-
tective requirements in user defined records.

Definition 2. A retention condition is a boolean for-
mula on the attributes of a record to denote tuples in the
record on which a retention policy must be enforced.

If the policy applies to all tuples in the record, the reten-
tion condition is simply the logical value true. We denote
policies that prevent modification of records as protective re-
tention policies. For these policies, we propose two levels of
protection, namely update and append. A protective reten-
tion policy on a record is defined as a pair Retp:(protective
retention condition, level of protection). For a record under
update protection, a DML statement is aborted if it modi-
fies (deletes or updates) tuples in the record for which the
protective retention condition is true. Similarly, for a record
under append protection, a statement is aborted if it in-
serts tuples in the record for which the protective retention
condition is true.

A protective policy on all invoices issued to Jones Cor-
poration and paid within the last five years (R2) could be
Retp1 :(ItemTotalTax > 0, update) and a simple syntax for
defining such a policy is as follows:

DEFINE PROTECTIVE POLICY
ProtectItemTotalTax ON R2 AS
(ItemTotalTax > 0, update)

The effect of the above policy would be that any update lead-
ing to a change in a taxable amount for a tuple in the record
will be rejected if the initial taxable amount was greater than
zero.

Update protection by itself is not adequate for avoiding
phantom inserts. For example an employee could create new
line items for older invoices with non-zero tax amounts. Ap-
pend protection ensures that such inserts cannot happen,
and the record cannot increase in size because of user ini-
tiated transactions. A policy such as (ItemTotalTax <> 0,
append), which can be instantiated using a similar syntax
as described above, will reject all DML statements that lead
to a new tuple being inserted in the record for which the
taxable amount of the line item is non-zero.

Several retention policies can be enacted on a single record
definition. For example, independent update and append
policies can be placed at the same time to make sure that
no change to a record can take place.

Note that changing the record definition slightly can have
significant consequences in terms of these protection levels.
For example consider the following record:

DEFINE RECORD R3 AS
SELECT Sum(ItemTotalTax)
FROM Invoice NATURAL JOIN LineItem
WHERE Recipient = ‘Jones Corp.’
AND Paid = true
AND Years (NOW - PaidDate) < 5

R3 adopts a different, summarized view of the record that
was examined in R2 and focuses on the total tax collected
on behalf of Jones Corporation in the last five years. It is
also an example of a record that may not correspond to a
physical document, but on which retention policies can be
enforced. The intent of a policy protecting R3 could be to
ensure that the total tax owed (paid in the past on behalf
of Jones Corporation) is never changed in the database. An
important difference in protecting R3 is that append protec-
tion for such a record will have no effect. By definition, R3

will always contain a single tuple, therefore the cardinality
of this view can never increase.

It is important to recognize that because of the flexibility
in record definitions, many different records can be created
over the same data, each with its own retention objectives.
In fact, a significant benefit of our approach of using views
to define records is that policy makers can leverage existing
definitions of documents derived from a relational database.
Queries used to generate day to day documents such as in-
voices and sales reports can be taken directly from applica-
tions and used as the view definitions for defining records
that are used to enforce retention policies.

We note that protection for records is only meaningful
(and enforceable) in the context of user initiated transac-
tions. Consider the following example of a record and an
append protection policy:

DEFINE RECORD R4 AS
SELECT *
FROM Invoice
WHERE Days (NOW - CreateDate) > 5

DEFINE PROTECTIVE POLICY
TemporalPolicy ON R4 AS
(true, append)

In this example, a user has defined a record as “all invoices
created more than 5 days ago” and attempted to enforce
append protection for the contents of the record. In such
a situation, as time passes tuples representing new invoices
will automatically slide into the view and become part of the
record definition. Since we are unable to abort the passage
of time, we cannot protect records against trivial temporal
alterations to the view, and we consider this as acceptable
behavior that does not violate the retention policy. Details
on how such trivial temporal alterations can be detected [5]
are omitted due to space considerations.

Our framework for protecting records resembles integrity
constraints on arbitrarily defined views. Consequently we
are able to benefit from the support for views provided by
typical database systems and many of the theoretical results
in the area of static query analysis.

Protecting records from modifications can be addressed
using methods from efficient maintenance of materialized
views. The notion of detecting whether a modification to
a database will impact a particular view applies to both
problems. Specifically, given a record definition and a policy,
we identify precisely the view that needs to be monitored for
relevant updates as follows:

Definition 3. For a given record definition R and a re-
tention condition for a policy C(Ret), a critical view Cv is
defined as Cv = σC(Ret)R

Critical views specified by protective retention policies are
denoted as protective critical views. A critical view is a

subset of a record that contains rows on which policy ac-
tions need to be enforced. Consequently, protecting the
contents of critical views is reduced to identifying modifi-
cations to a base table that will change the contents of a
protective critical view and rejecting such statements. In
our running example, the record and policy pair R2 and
ProtectItemTotalTax generate the critical view specified
by Cp1 as follows:

Cp1 = SELECT ItemTotalTax
FROM Invoice NATURAL JOIN LineItem
WHERE Recipient = ‘Jones Corp.’
AND Paid = true
AND Years (NOW - PaidDate) < 5
AND ItemTotalTax > 0

Updates and mechanisms for monitoring the effect of up-
dates, such as alerters, assertions and triggers, have long
been studied in the database community. A wide array
of techniques, such as static analysis of updates to deter-
mine relevance for a view [7] and incrementally maintaining
and monitoring the impact of updates on views [8] can be
adopted in our context. However, the efficiency of any se-
lected approach depends on a large number of factors spe-
cific to real-world data retention obligations. We provide
a discussion of these factors and highlight the key decision
making criteria that can lead to an efficient retention policy
monitoring system. Our tests (Section 6) were developed
with these principles in mind, and they demonstrate that
the correct choice of event detection mechanism is critical
for a view based records retention system.

The most important design consideration leading to effi-
cient detection of policy violations is how we constrain the
record definitions themselves. With the flexibility of defining
records using arbitrary views with the full expressiveness of
SQL comes the risk of having to incur the worst case cost of
full re-computation of the record at every update. Thus, to
ensure that our policies are practical and can be efficiently
enforced, we need to restrict the record definition language.
Our examination of data retention laws has led us to con-
clude that policies are typically defined on what law-makers
would consider practical business records, which typically
map in our framework to sets of related but simple parame-
terized queries. We observed that in most business schemas
these “practical” records (or the data contained therein) can
be expressed as conjunctive queries. Consequently, we re-
strict ourselves in this paper to the analysis of records spec-
ified as conjunctive queries with support for aggregation.

When enforcing policies, we should consider overlap among
them. For example, given an update that is relevant for
critical view Cv1 and is irrelevant for critical view Cv2 in
all database instances, there is clearly no need to check for
violations on Cv2 for the update in question. This prob-
lem of determining exclusive relevance has been addressed
in the context of query disjointness, and Elkan gives an effi-
cient decision procedure to detect disjointness of conjunctive
queries [10]. Generally, if updates can easily be checked for
relevance against a large number of views, then the task of
capturing violations becomes significantly easier. The com-
plexity of the schema and the density of policies over a given
set of relations also play a critical role in determining pol-
icy overlap. If the majority of data retention policies are
clustered over unrelated relations, then there will certainly
be less overhead in determining the impact of a particular
update on all protected records.

We can also benefit from various static optimizations of
policy actions on records. Given a set of record (view) defini-
tions and a set of protective retention policies, we propose to
derive an optimized set of policies with the same protective
characteristics. One such optimization is that of eliminating
redundancies in protective requirements that can naturally
arise because of the hierarchical nature of business records.
For example, at an abstract level, the data contained within
a monthly sales report will typically be a subset of the data
contained in the relevant yearly sales report. Therefore,
when dealing with a large number of record definitions and
policies, we may be able to exploit such correlations and
check several policy violations against similar records.

Another property of a wide array of business records is
that of temporal stability: as a record becomes older it is
less likely to be modified. In many transactional business
applications, records can be expected to be in the “active
state” for a fixed period of time after their creation and then
gradually achieve temporal stability. It may be beneficial in
these situations to identify active records in order to isolate
the passive or protected records. Temporal stability can also
be used in conjunction with the fact that business records
are often referenced with monotonically increasing identifier
values. For example, if Invoice #500 was the first invoice
created on Jan 01, 2007, and Invoice #1000 was the last
invoice created on Dec 31, 2007, then it is very likely that
all invoices created in the year 2007 lie in that particular
range of identifiers. In such cases maintaining a few pointers
can substantially reduce the overhead involved in monitoring
whether a particular update will affect the contents of a
record. Mechanisms to infer such correlations automatically
or the ability for users to specify them must be supported
by the underlying database system for these optimizations
to be useful (e.g., range partitioning in Oracle and DB2).

4. DELETING RECORDS
So far we have focused on protecting records as long as

retention conditions are met. The flip side of records reten-
tion is to ensure that sensitive information is removed from
a database as soon as it has outlived its purpose.

The two options available to achieve compliance with poli-
cies that dictate maximum retention periods for records are
destruction and transformation. Deleting a sensitive busi-
ness record altogether is not a strategy that is widely prac-
ticed, nor is it suitable in many situations. Instead, tech-
niques such as partial deletion and anonymization are prefer-
able, as they ensure that records retain their business value
and yet pose no liability for the organization.

We denote policies that mandate removal (deletion or
anonymization) of records as destructive retention policies
and extend our view based records management framework
to support such policies. In this section, we develop a for-
malization for deletion and anonymization of user defined
records over a fixed relational schema.

We define a destructive retention policy on a record as
a pair Retd:(destructive retention condition, α(R)). A de-
structive critical view is defined similar to a protective crit-
ical view, as a conjunction of the destructive retention con-
dition and the record definition. In contrast to their protec-
tive counterparts, however, destructive critical views con-
tain a subset of the rows of the record that need to be ex-
punged from the database. In a retention compliant state
all destructive critical views are empty, reflecting that there

is no sensitive information in the database that needs to
be deleted or anonymized. Monitoring destructive critical
views is also very similar to monitoring protective critical
views, except that we only pay attention to whether the
view is empty or not. If any destructive critical view in a
database is non-empty, then the database is in a retention
unsafe state, and some action needs to be taken to remove
the critical rows from the destructive critical views. De-
structive actions, denoted by α(R), are associated with each
destructive retention policy, and on detection of a non-empty
destructive critical view, the execution of the specified ac-
tions is intended to make the critical view empty, taking the
database into a retention compliant state.

One approach to moving a database into a retention com-
pliant state through destructive actions is to associate a
stored procedure with every destructive policy, and to ex-
ecute the procedure when a non-empty destructive criti-
cal view is detected. This technique essentially offers un-
bounded flexibility in the actions that can be performed to
purge outdated records, but verification and ensuring cor-
rectness of actions performed by arbitrarily written proce-
dures over all database instances is undecidable. Conse-
quently, we focus on a restricted class of destructive actions
and thereby present a provably correct mechanism for policy
enforcement.

4.1 Correctness of Destructive Actions
We now introduce the first formal requirement for any

destructive action on critical views to be provably correct.

Definition 4. A destructive policy P is weakly correct
if upon any tuple becoming part of the destructive critical
view Vd, the destructive actions specified by P, denoted by
α(R), will ensure that Vd will become empty.

Weak correctness implies that the invocation of the de-
structive actions specified by the policy must remove criti-
cal tuples from the critical view. Weak correctness by itself
does not provide any guarantees for termination of policy
actions. This is because actions of a particular destructive
policy may introduce tuples in critical views of other de-
structive policies. Consequently, the notion of non-invasive
policies is presented so that we can reason about policy ex-
ecution patterns.

Definition 5. A destructive policy P is non-invasive
with respect to another policy P ′ if the destructive actions
specified by P, denoted by α(R), cannot affect the critical
view of P ′. P is called invasive with respect to P ′ if α(R)
has the potential to change the contents of the critical view
of P ′.

This definition specializes the definition of relevant up-
dates presented by Blakeley et al. in the context of materi-
alized views [7]. If α(R) of P cannot impact the contents of
the critical view of P ′, then α(R) is irrelevant to the critical
view of P ′ and P is non-invasive with respect to P ′.

An important observation is that the definition of invasive
policies does not restrict P ′ to being a destructive retention
policy, and the notion of invasive policies can be used to
detect delete-protect conflicts (Section 4.4). The definition
also encompasses side effects that could be caused through
destructive actions, for example through foreign key con-
straints with cascading deletes.

Invasiveness among policies need not arise directly be-
cause of data shared among records. As an example, con-
sider two relations X1 and X2, each with a single attribute
called id, and two record definitions, R1 which selects all
id’s in X1 that are not in X2, and R2 which selects all id’s
in X2 that are not in X1. Note that, by definition, R1 and
R2 are always disjoint (R1 ∩ R2 = ∅) but the definitions of
R1 and R2 are inseparable. Performing insertions or dele-
tions on either of these records has a direct impact on the
other. Consequently, we must derive sufficient conditions to
guarantee consistency of execution among the destructive
actions of several destructive retention policies. The follow-
ing requirement ensures that a policy will not only expunge
all tuples from its critical view but also not lead to the in-
sertion of new tuples in the critical views of other policies.

Definition 6. A destructive policy P is strongly cor-
rect if it is weakly correct and either (i) P is non-invasive
with respect to other destructive policies or (ii) the destruc-
tive actions specified by P can only delete tuples from the
critical views of other destructive policies.

Finally, using the notion of invasiveness and strong cor-
rectness, we can offer an algorithm to determine whether a
given set of destructive policy actions can be correctly en-
forced. We rely on constructing a policy interference graph,
which can also be used to visualize the impact of actions
performed by each destructive policy on contents of critical
views of other policies:

Definition 7. A policy interference graph is a directed
graph constructed using a set of policies P = {P1, P2, ..., Pn}
as nodes and edges from Pi to Pj when Pi is invasive with
respect to Pj.

Lemma 1. A set of destructive policies is guaranteed to
be terminating if all cycles in the relevant policy interference
graph involve strongly correct policies.

The above lemma specifies a sufficient condition for avoid-
ing circular enforcement of destructive retention policies.
This result is similar to the results from trigger termina-
tion and cyclic execution of rules in database systems [4]. If
all interfering actions caused by policies only cause removal
of records from destructive critical views, and the number
of tuples in a database is finite, then indefinite execution of
destructive actions is not possible.

4.2 Trading Flexibility for Decidability
It is important to note that the correctness criteria that

we developed for our proposed view based records retention
framework is general enough for all record definitions and all
possible destructive actions that expunge tuples from criti-
cal views. Unfortunately, determining correctness for arbi-
trary record definitions and destructive actions is undecid-
able. Therefore, we restrict ourselves to simple destructive
actions on updatable conjunctive views. We argue (again)
that business records can usually be expressed as conjunctive
queries, and the destructive actions required to expunge or
anonymize these records can be relatively simple. Such ac-
tions include setting a particular attribute value to a default
value or to null, or deleting a tuple altogether; we denote
these as simple destructive actions.

Before presenting a decision procedure for correctness, we
introduce the notion of an extended retention condition and

a post-condition of the actions performed by a destructive
retention policy. An extended retention condition is the
boolean formula that defines the destructive critical view,
constructed as the conjunction of the predicates of the record
and the destructive retention condition of the policy, as de-
scribed earlier. The post-condition of a destructive action
is a boolean formula on the tuples of the critical view that
must hold on a critical tuple (i.e., a tuple in the critical
view) after the action is successfully applied to this tuple.
For updatable conjunctive views, if the action involves delet-
ing the tuple from the critical view, the post-condition is
trivially false, since the deleted tuple will not exist in the
record. On the other hand, if the action involves updating
the value of one or more attributes in the critical tuple, say
setting ai to vi for i = 1 . . . n, then the post-condition is
a1 = v1 ∧ a2 = v2 ∧ . . . ∧ an = vn.

Lemma 2. A destructive retention policy with an extended
retention condition Rp and a destructive action having post-
condition αp(R) is weakly correct if and only if Rp ∧ αp(R)
is unsatisfiable.

The above lemma reduces the problem of verifying cor-
rectness of policies to that of satisfiability of conjunctive
predicates, and it states that enforcement is guaranteed if
and only if Rp ∧ αp(R) is unsatisfiable. To illustrate the
usability of this result, consider the following schema and a
simple destructive retention policy that monitors completed
sales orders that were placed more than a year ago:

Order(OID, Delivered)
Transaction(Txn, OID, TxnDate, CreditCard)

where singly underlined attributes are keys and doubly un-
derlined attributes are foreign keys.

Assume that the administrator has defined a record and
a destructive policy as follows:

DEFINE RECORD OldTxns AS
SELECT OID, Txn, TxnDate, CreditCard
FROM Order NATURAL JOIN Transaction
WHERE Delivered = true
AND CreditCard IS NOT null

DEFINE DESTRUCTIVE POLICY
AnonymizeCreditCard ON OldTxns AS
(Months (NOW-TxnDate)>12, SET CreditCard = null)

Observe that the extended retention condition Rp on this
record and policy pair is (Months(NOW - TxnDate) > 12
∧ Delivered = true ∧ CreditCard IS NOT null) and all rows
in the critical view must satisfy this condition. As a particu-
lar transaction for a delivered order becomes a year old, the
destructive critical view will become non-empty, and con-
sequently α(R) will be triggered. In this case the destruc-
tive action is simply to set the CreditCard attribute to null,
and it is obvious that no tuple can simultaneously satisfy
both the post-condition and the extended retention condi-
tion: the CreditCard attribute cannot be null and non-null
at the same time. The unsatisfiability of Rp ∧ αp(R) proves
that α(R) will always expunge tuples from the critical view.

Note that more general destructive actions can also be
handled by this correctness condition. For example if α(R) is
changed to SET CreditCard = Anonymize(CreditCard),
and if the post-condition of Anonymize(CreditCard) al-
ways invalidates the extended retention condition, then the
destructive action is, again, verifiably correct.

If Rp ∧ αp(R) is satisfiable, the process of proving this
fact can be used to help administrators debug incorrect de-
structive actions. For if Rp ∧ αp(R) is satisfiable, there will
exist at least one possible tuple in the critical view that can
serve as a counterexample in which performing the destruc-
tive action will not remove the tuple that violates the policy
from the critical view. This counterexample serves to illus-
trate that the destructive action is not correct. At the same
time, presenting this counterexample to the administrator
may help in debugging this incorrect destructive action.

The implications of being able to statically verify that a
record’s life cycle will always terminate in destruction (re-
moval from the critical view) are substantial. This proof of
correctness of destructive policy actions provides the highest
level of assurance for automated records retention compli-
ance. The only downside is that, in the general case, check-
ing for satisfiability is NP-complete. This is an improvement
over the case of arbitrary record definitions and destructive
actions, in which static verification is undecidable, but we
still need to pay the cost of solving an NP-complete problem.
We note that in most practical situations where the number
of predicates in the extended retention condition will be lim-
ited, modern SAT solvers will be able to prove correctness
for individual policies efficiently. Furthermore, the cost of
verifying correctness has to be incurred only once (offline)
for any given set of policies and destructive actions. Re-
stricting the expressiveness of records to select-project-join
views also allows us to verify non-invasiveness of actions and
avoid cyclic execution of policy actions, since the problem
of isolating policy interference is equivalent to statically de-
termining relevance of actions on destructive critical views
[7].

4.3 Integrity Preservation
Yet another challenge in providing support for data reten-

tion policies is to ensure that actions performed by retention
policies never compromise the integrity of the database.

Definition 8. A destructive policy P is integrity pre-
serving if its destructive actions α(R) when applied to any
valid instances of the database will always lead to a valid
instance of the database with respect to all integrity con-
straints.

The notion of integrity preservation for a destructive ac-
tion is distinct from the notion of correctness defined earlier.
For example, the action can set a primary key value to null,
which would satisfy the correctness criteria stated in Lemma
1, but would violate integrity. Conversely, a destructive ac-
tion can be integrity preserving without being correct. For
example, the action can simply do nothing, which would
leave the integrity of the database intact but would not elim-
inate the tuples from the critical view. Once again, statically
verifying integrity compliance is undecidable in general, but
the class of records specified by updatable conjunctive views
and simple destructive actions on them can be restricted
further to be made integrity preserving, as described in the
remainder of this section.

4.3.1 Primary Key and Uniqueness
Modifications to primary key and unique attributes can-

not be checked for uniqueness without executing additional
queries. Similarly, we can not statically determine the non-
existence of foreign key references to a primary key value

being deleted. Hence, for proving correctness of destructive
actions on such attributes independently of the database
instance, we must restrict these actions to deletions. Fur-
thermore, if the action requires eliminating a primary key
value, the only option that can be statically proven to be
integrity preserving is to delete the entire tuple from the
critical view, and only if this deletion is guaranteed to be
non-invasive (through possible cascading delete foreign key
constraints) for all protected critical views (Section 4.4).

4.3.2 Foreign Keys
Modifying foreign key attributes is slightly less restrictive,

and if the foreign key attribute is nullable then it can always
be set to null. However, in cases where null is not suitable,
we can overwrite the foreign key value with a different but
valid one. To motivate a scenario where this may be useful,
let us assume that the CreditCard attribute in the example
of Section 4.2 was a foreign key reference and that customers
in our database are uniquely identified by their credit card
numbers. An extended schema and a different destructive
policy is described below:

Order(OID, Delivered)
Transaction(Txn, OID, TxnDate, CreditCard)
Customer(CreditCard, CustomerName)

DEFINE DESTRUCTIVE POLICY
AnonymizeCustomer ON OldTxns AS
(Months (NOW-TxnDate) > 12,
SET CreditCard = 1111-1111-1111-1111)

Note that this policy assumes the existence of an artificial
customer (say John Doe) identified by the fictitious credit
card number that is being used for anonymization. However,
to ensure correctness of this policy, the foreign key value (the
tuple for John Doe) must exist in the Customer relation at
the time of policy instantiation, and the system must guar-
antee that the statically used primary key will itself never
be modified or deleted. This requirement ensures that the
destructive action remains valid with respect to the integrity
constraint throughout the lifetime of the policy. This con-
straint on the artificial customer (statically used primary
key value) can itself be modeled as a protective retention
policy as follows:

DEFINE RECORD Customers AS
SELECT CreditCard
FROM Customer

DEFINE PROTECTIVE POLICY
ProtectJDoe ON Customers AS
(CreditCard = 1111-1111-1111-1111, update)

4.3.3 Triggers and Check Constraints
With modern database systems supporting triggers and

check constraints of arbitrary complexity, it becomes signif-
icantly harder to determine statically the consequences of
actions taken in response to policy violations. For exam-
ple, if our attempts to remove outdated records are rejected
by a user programmed trigger, we will be unable to offer
compliance guarantees unless the trigger is removed (or sus-
pended) and the destructive policy actions repeated. Sus-
pending trigger invocation altogether while retention actions
take place is a simple solution, but then extra care must be
taken in programming retention actions.

4.4 Delete-Protect Conflict Detection
The final requirement for proving correctness for a given

set of protective and destructive retention policies is to show
that they are conflict free. Inter-policy conflicts are caused
when expired data that is to be removed or modified ac-
cording to a destructive policy is to be retained under a
protective policy at the same time. Detecting conflicts can
be easily accomplished using the framework for correctness
that we described earlier.

Definition 9. A destructive policy D is conflict free
with respect to a protective policy P if D is non-invasive
with respect to P.

If the actions specified by a destructive policy cannot im-
pact the critical view of a protective policy then the two
policies are guaranteed not to conflict with each other. As
before, the problem of isolating conflicts is reduced to that of
determining whether a given update (destructive policy ac-
tion) is irrelevant to a given relational expression (protected
critical view).

As in Section 4.2 we rely on the result that detecting ir-
relevant updates for select-project-join view based records is
decidable (although it is NP-complete), whereas in the gen-
eral case detecting conflicts is undecidable [7]. To prove total
correctness for a given set of policies, we have to show that
all pairs {P,D}, where P is a protective policy and D is a
destructive policy, are conflict free. If conflicts are detected,
the retention manager(s) responsible for the policies can be
informed, so that appropriate and defensible resolutions can
be devised.

5. IMPLEMENTATION
Our proposal for records retention uses active integrity

constraints and actions on views. We assert that the task of
periodically monitoring destructive critical views and purg-
ing records from them will not be a significant source of
performance overhead in our model. This is because of
the temporal flexibility available in destructive data reten-
tion requirements: as long as records are deleted by well-
documented regular maintenance routines, the legal reten-
tion requirements will be met. For example, this flexibility
allows us to execute daily or weekly batch jobs that enforce
destructive retention policies without interfering with the
online operation of the database system.

However, if a record is accidentally deleted when it is sup-
posed to be protected by an organization, the consequences
are more serious. Naturally, there is no flexibility in protect-
ing records and every modification to a database has to be
checked against the relevant policies to ensure compliance.
Consequently, the cost of computing the effect of updates
on protected records will be the most significant source of
overhead. Thus, the aim of our experimental evaluation is
twofold: first, to measure the overhead of continuous record
protection for a broad mix of protective policies in a high-
update and heavily regulated business scenario; and second,
to determine and recommend means of minimizing this over-
head using features already present in database systems.

There are two widely used mechanisms to detect events
specified by arbitrary relational expressions (such as a tuple
becoming critical) in database systems: incremental com-
putation or total re-computation. More specifically, to de-
tect changes in the contents of a critical view, we can either
materialize the view completely and implement triggers on

Policy # 1 2 3 4 5 6 7 8 9 10 11 12
Critical Row Coverage 0.08% 1.8% 6% 2.8% 6.6% 2.6% 5% 5.3% 0.6% 13.3% 2% 100%

Type C C S C S S C C C A A A

Figure 1: A summary of the policies used for experiments. The critical row coverage represents the proportion
of TPC-H Orders and LineItem tuples that were subject to a specific policy. The type denotes the complexity
of the critical view: simple, on a single relation (S); conjunctive, involving multiple base relations (C); or
involving an aggregate value (A).

the materialized view (a feature present in some commercial
database systems such as Oracle) or implement triggers on
base relations to detect whether the relevant critical view
will be impacted by a triggering statement (possibly after
execution of an additional query) [8]. A detailed examina-
tion of support for triggers on views, including an algorithm
for mapping triggers on views to an equivalent set of triggers
on base relations, has been presented in the literature [17].

We note that for monitoring critical views, there are two
well known optimizations that can be exploited to reduce
overhead. First, we can benefit from the observation that
certain policies naturally favor a particular mechanism to
detect violations. For example, using triggers to monitor
a critical view with an aggregate value is ill-advised, since
this value requires re-computation at every relevant update.
Generally, the decision to materialize or to re-compute de-
pends on the average cost incurred per relevant update, and
most database optimizers can quite easily assess the cost of
a typical update and re-computation query, to give a rea-
sonable estimate of which technique will be better than the
other. The second optimization relies on the observation
that policies can quite often be clustered around a small
number of related tables. Instead of instantiating a large
number of triggers on base relations, the approach of trig-
ger grouping [12, 17] can be used to reduce the number of
triggers per table and to exploit the fact that multiple poli-
cies on similar predicates can be checked by a single trigger
invocation. The result of these optimizations can lead to a
significant reduction in the cost of view monitoring.

6. EXPERIMENTAL EVALUATION
Our tests use the TPC-H benchmark database represent-

ing a business scenario involving the sale of parts to cus-
tomers worldwide. We developed 12 different protective
data retention policies and translated them into critical views
that would need to be monitored. These policies were di-
rectly derived from real-world records retention requirements
imposed on TPC-H like businesses by various security, ex-
port, and taxation agencies. Examples of such policies in-
clude protecting purchase orders involving the sale of special
parts like uranium fuel rods, protecting order details with
particularly large monetary sums, and protecting sales tax
totals for specific countries. Our policy set consists of 3 sim-
ple policies on single relations, 6 policies leading to the mon-
itoring of conjunctive views, and 3 policies that protect an
aggregate amount. We define a policy’s critical row coverage
as the fraction of tuples subject to protection/monitoring in
the base relations. In choosing our experimental policies we
ensured that all but one has a low tuple coverage, and yet
every tuple is protected against modification by at least one
policy (Figure 1). A detailed description of the motivations
behind these policies, their parameters, and the resulting
critical views is available in our full report [5].

0

5

10

15

2 0

2 5

1 2 3 4 5 6 7 8 9 10 11 12

M aterialized V iews

T riggers

1825

R
es

po
ns

e
Ti

m
e

(m
s)

Policy #

Figure 2: Average completion (commit) time for an
update to a single tuple in a base relation protected
under a single policy implemented using triggers
over base relations and using the incremental view
maintenance approach. The horizontal line repre-
sents the cost of an update without any monitoring
mechanisms in place.

Our tests were conducted using a 1GB dataset on an Intel
Core 2 Duo (1.8Ghz) machine with 1.5GB of RAM. All tests
were performed on a warm database using DB2 v9.5 and
involved issuing several thousand individual update state-
ments on base relations that impact critical views defined by
protective retention policies. We issued update statements
until the confidence intervals for expected update time were
very small, which typically required issuing 3,000-5,000 up-
dates. The standard error in measured wall-clock response
times in our tests was usually less than 5% of the average
time to commit for an update.

Figure 2 summarizes the results of the overhead incurred
by each of the 12 protection policies when they are individ-
ually implemented as a materialized view and as a set of
(base relation) triggers. All updates were performed ran-
domly over the dataset (each tuple was equally likely to be
modified). Policies involving aggregated information (poli-
cies 10, 11 and 12) clearly favor incremental computation
(the materialized view approach), whereas the maintenance
overhead caused by materialization for other policies is far
greater than simply checking the relevance of updates using
triggers on base tables.

The reason for triggers individually performing better than
materialized views for event detection in most policies is
largely due to the TPC-H schema and data specification. For
example, a purchase order in the TPC-H schema is related
to only one customer, nation and region. Furthermore, the
data contained in any purchase order includes at most 7 line
items. Consequently, the majority of simple policy decisions

0

10
20

30
40

50

60
70

1 2 3 4 5 6 7 8 9 10 11 12

R
es

po
ns

e
Ti

m
e

(m
s)

Materialized Views

Triggers

Figure 3: The scalability of incremental computa-
tion (materialized views) and total re-computation
(triggers) for detecting changes in the contents of
critical views. The values on the x-axis represent the
total number of protective policies being enforced on
the database. For example at 7, Policies 1 through
7 are all being enforced at the same time.

on updates pertaining to individual purchase orders can be
made by examining a small number of tuples. Only when a
large number of tuples has to be examined (e.g., for policies
involving aggregated totals) does the active re-computation
required when using triggers pay a heavy price.

Figure 3 demonstrates how both the incremental (materi-
alized views) and total re-computation (triggers) approaches
scale as more and more policies are implemented. Mate-
rialization suffers from the overhead of view maintenance
whereas triggers have scalability problems arising from one
policy on a view being translated into multiple triggers on
base tables. It is worth mentioning that most commercial
database systems have strict limits on the number of triggers
that can be instantiated on a relation (typically fewer than
64). Consequently, it is very unlikely when dealing with a
large number of policies that triggers would be able to ac-
commodate the monitoring of all protective critical views.
Note that the policies where triggers incur a high overhead
are deliberately introduced as the last three policies in the
mix. Thus, the figure misleadingly seems to favor the use of
triggers for critical view monitoring. However, the total cost
associated with monitoring all policies using triggers is far
greater than that of using materialized views. It is clear that
neither triggers nor incremental view maintenance alone can
work well in general for monitoring a broad variety of records
and policies.

We can instead combine the two monitoring methods into
a hybrid critical view monitoring technique that attempts to
take advantages of the positive aspects of both approaches.
Simply choosing the correct and more suited event moni-
toring mechanism for each policy can substantially reduce
the cost associated with monitoring a collection of critical
views. Figure 4 shows that the simple hybrid strategy per-
forms better than either technique alone. However it still
suffers from having to instantiate a large number of trig-
gers which greatly reduces its scalability. Since the TPC-H
schema is relatively compact, and a large number of our
policies revolve around the Orders and LineItem tables, we
also recommend trigger grouping [21], which provides a sig-

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12

R
es

po
ns

e
Ti

m
e

(m
s)

Hybrid

Hybrid (w/Trigger Grouping)

No Monitoring

Figure 4: The scalability of the hybrid approaches
to event detection on views. The values on the x-
axis represent the total number of protective policies
being enforced on the database. For example at 7,
Policies 1 through 7 are all being enforced at the
same time.

nificant improvement in response times by minimizing the
number of trigger invocations per update on a base table.

Finally, we note that our tests stress retention monitoring
much more than real world scenarios would. The foremost
difference is the non-uniform pattern for updates: all pro-
tected tuples are not equally likely to be modified. As noted
earlier, many businesses do not actively modify temporally
stable records (for example very old purchase orders). Con-
sequently, the use of temporal or range based indexing and
partitioning will substantially reduce monitoring costs. Sec-
ond, we note that our tests were done using unrealistically
high record coverage (each tuple was protected under at least
one policy) and typical coverage can be expected to be much
lower than what we tested against.

In practice, we recommend that the decision to use a par-
ticular strategy for monitoring views be made by the query
optimizer after considering the expected number of policy vi-
olations, expected number of relevant updates, level of tem-
poral stability exhibited by records, and types of views to be
monitored. Given a particular workload, modern database
systems are able to recommend materializations of views
that can improve query performance. Much of the infras-
tructure to measure the cost and benefit of incremental com-
putation of views versus re-computation costs of queries al-
ready exists. Therefore we believe that by using these ex-
isting features a “retention policy advisor” can be built such
that given a set of record definitions, protective policies on
records and an expected workload profile, the best monitor-
ing mechanism can easily be determined.

7. RELATED WORK
Limited and managed data retention has long been of

prime importance in the field of records management. Re-
tention solutions for unstructured data, such as documents
and email, are widely deployed in large organizations, and
the importance of limited retention has also been acknowl-
edged as a fundamental requirement in privacy aware Hip-
pocratic databases [3]. The problem of unintentional data
retention in relational database systems, even after explicit
deletion by users, has been also been examined recently [18].

Unfortunately the need to have a formal framework for sys-
tematically creating, managing and enforcing records reten-
tion policies has been ignored for structured records.

The work by Garcia-Molina et al. [11] and Toman [19]
in removing tuples from large fact tables in data warehouses
when they are not required in answering a given set of queries
is similar in spirit to ours. The problems being addressed,
however, are quite different, and our framework extends the
notion of removal of sensitive data to apply to records as
views and takes into consideration the interaction between
protective and destructive policies.

Other suggested approaches to solving the problems as-
sociated with data retention in relational databases have
generally taken a very simplistic approach to the problem of
managed records retention, where a piece of metadata, such
as a purpose or expiry timestamp, is attached to abstractly
defined facts that have retention obligations [2, 3, 16]. Such
proposals also trivialize the problem to that of deleting
records when they have outlived their purpose, whereas the
vast majority of legal retention obligations faced by organi-
zations are protective and not destructive. Needless to say
that for provable regulatory compliance, the interaction be-
tween protective and destructive policies has to be examined
carefully, and our research looks at the problem from both
perspectives.

Our proposed framework for protective policies on records
is related to several features present in traditional integrity
constraint and materialized view mechanisms, which have
been exhaustively examined in the past several decades. Ef-
ficient monitoring of records is directly related to several
problems in efficient materialized view maintenance [7] and
incremental evaluation [8]. The problem of policy enforce-
ment and actions on views relies heavily on the notion of
updatable views [9]. Verifying the impact of user defined
actions on views [15] and assisting users in creating mean-
ingful actions on views [13] have also been examined in the
literature.

8. CONCLUSION
In this paper we present a view based framework for sys-

tematically creating and enforcing records retention policies
in relational database systems. Using such a framework en-
ables users to define records at any granularity and enforce
a rich set of protective and destructive retention policies on
these records. A significant benefit of our approach is that
it specifies a formal criterion for correctness for any user
defined record and policy action. We demonstrate that for
the class of records specified by updatable conjunctive views
and simple destructive actions on them, users can statically
verify the effect of their policies and be certain that pol-
icy execution will always guarantee regulatory compliance.
The requirement to use such views can be enforced syntacti-
cally. The layer of formal reasoning that we have developed
can also be extended to encompass more expressive records
(e.g., outer joins) and can be combined with a wide choice of
anonymization functions. Our framework can be efficiently
implemented using the infrastructure for triggers and mate-
rialized views that is part of almost all commercial database
systems.

Acknowledgements
This work was funded by the University of Waterloo, Open
Text Corporation, and the Natural Sciences and Engineering
Research Council of Canada.

9. REFERENCES
[1] United States Public Company Accounting Reform

and Investor Protection Act of 2002 (Sarbanes-Oxley
Act) (Pub.L. 107-204, 116 Stat. 745). August 2002.

[2] Rakesh Agrawal, Paul Bird, Tyrone Grandison, Jerry
Kiernan, Scott Logan, and Walid Rjaibi. Extending
relational database systems to automatically enforce
privacy policies. In ICDE, 2005.

[3] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan
Srikant, and Yirong Xu. Hippocratic databases. In
VLDB, 2002.

[4] Alexander Aiken, Jennifer Widom, and Joseph M.
Hellerstein. Behavior of database production rules:
Termination, confluence, and observable determinism.
In SIGMOD, 1992.

[5] Ahmed Ataullah. A Framework for Records
Management in Relational Database Management
Systems. Master’s thesis, University of Waterloo,
Waterloo, Ontario, Canada, April 2008.

[6] Lars Bækgaard and Leo Mark. Incremental
computation of time-varying query expressions. IEEE
Transactions on Knowledge and Data Engineering,
1995.

[7] José A. Blakeley, Neil Coburn, and Per-Åke Larson.
Updating derived relations: Detecting irrelevant and
autonomously computable updates. ACM
Transactions on Database Systems, 1989.

[8] Stefano Ceri and Jennifer Widom. Deriving
production rules for incremental view maintenance. In
VLDB, 1991.

[9] Umeshwar Dayal and Philip A. Bernstein. On the
updatability of relational views. In VLDB, 1978.

[10] Charles Elkan. A decision procedure for conjunctive
query disjointness. In PODS, 1989.

[11] Hector Garcia-Molina, Wilburt Labio, and Jun Yang.
Expiring data in a warehouse. In VLDB, 1998.

[12] Eric N. Hanson, Chris Carnes, Lan Huang, Mohan
Konyala, Lloyd Noronha, Sashi Parthasarathy, J. B.
Park, and Albert Vernon. Scalable trigger processing.
In ICDE, 1999.

[13] Arthur M. Keller. Choosing a view update translator
by dialog at view definition time. In VLDB, 1986.

[14] Bill Lipner. The million-dollar backup tape.
ComputerWorld Magazine, August 2006.

[15] Claudia Bauzer Medeiros and Frank Wm. Tompa.
Understanding the implications of view update
policies. Algorithmica, 1986.

[16] Marco C. Mont and Robert Thyne. A System to
Handle Privacy Obligations in Enterprises. In
Hewlett-Packard Internal Technical Report
(HPL-2005-180), 2005.

[17] Feng Shao, Antal Novak, and Jayavel
Shanmugasundaram. Triggers over nested views of
relational data. ACM Transactions on Database
Systems, 2006.

[18] Patrick Stahlberg, Gerome Miklau, and Brian Neil
Levine. Threats to privacy in the forensic analysis of
database systems. In SIGMOD, 2007.

[19] David Toman. Expiration of historical databases. In
TIME, 2001.

